• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling of Surface Tension and Viscosity for Non-electrolyte Systems by Means of the Equation of State for Square-wellChain Fluids with Variable Interaction Range*

    2011-03-22 10:09:10LIJinlong李進(jìn)龍HEChangchun何昌春MAJun馬俊PENGChangjun彭昌軍LIUHonglai劉洪來andHUYing胡英
    關(guān)鍵詞:胡英劉洪馬俊

    LI Jinlong (李進(jìn)龍), HE Changchun (何昌春), MA Jun (馬俊), PENG Changjun (彭昌軍)**,LIU Honglai (劉洪來) and HU Ying (胡英)

    State Key Laboratory of Chemical Engineering and Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China

    1 INTRODUCTION

    It has been long recognized that the equations of state (EOS) can be extensively used for descriptions of thermodynamic properties such as phase equilibrium,surface tension, viscosity, and caloric properties [1, 2].So far, many EOSs have been developed for calculations of various physicochemical properties. One of the most successful EOSs is the statistical associating fluid theory (SAFT), first proposed by Chapman et al.[3, 4] about two decades ago. After that, many derived versions of SAFT-based EOSs have been presented and several detailed reviews have been made [1, 2, 5, 6].In SAFT, the special point is to capture both the chain length (molecular size and shape) and the molecular association for a reference fluid in place of the simple hard sphere reference fluid while the effects due to other interactions such as dispersion, induction, and polar are brought into a perturbation term. Coupling with density functional theory, density gradient theory,or scaled particle theory, the SAFT related EOSs have been satisfactorily extended to study the surface tension and viscosity of common pure fluids and mixtures [1]. Recently, Wang et al. [7] presented a comprehensive model, which is a combination of a correlation for computing the surface tension of solvent mixture and a formula for the influence of electrolyte concentration and can be used for complex electrolyte systems ranging from dilute solutions to fused salts.Some experimental data for surface tension and viscosity of ionic liquid (IL) related systems have been reported [8-14], but SAFT based EOS is seldom used to model the properties. Thus, in the present work, we will compute the surface tension and viscosity of IL related systems and common fluids by combining a new EOS, which was recently developed in our laboratory [15], the scaled particle theory [16], and a viscosity model [17]. In the EOS, two modifications for dispersion and chain formation terms have been made:(1) a new square well dispersion term with variable interaction range (1.1≤λ≤3) is derived, and (2) the chain formation term is divided into the hard sphere chain formation contribution and the effects of square well dispersion on chain formation of hard spheres.The residual Helmholtz free energy of a mixture is written as [15]

    where the superscripts hs-mono, sw-mono, hs-chain,and sw-chain represent the contributions from hard sphere monomers, square well dispersion, the formation of hard chain, and the effects of square well potential on the formation of hard chain, respectively. In the model, each molecule is characterized by four molecular parameters, namely, segment number (r),segment diameter (σ), dispersion interaction energy (ε)and reduced well width (λ). The SWCF-VR EOS can well reproduce the vapor-liquid coexistence curves and the compressibility factor of prototype fluids as well as real fluids [5, 16, 18-21]. The salient feature is that the molecular parameters in this model are selfconsistent and can be obtained by fitting the experimental saturated pressure and/or liquid volume data.

    2 BRIEF DESCRIPTION OF MODELS FOR SURFACE TENSION AND VISCOSITY

    2.1 Surface tension

    Based on the scaled particle theory (SPT) [22], a vapor-liquid interfacial tension model for liquid mixture has been presented and the formula is [16]where γ is the surface tension, σ is the segment diameter, x is the mole fraction of liquid component, K is the number of component in a mixture, the subscripts i and m repesent the pure component i and a mixture, respectively. In Eq. (2),=m,siψ and σmare calculated as follows a where lijis the adjustable size parameter. The reduced density of a mixture in Eqs. (3) and (4), ηm, can be obtained with any EOS by the relationship where R is the gas constant, r is segment number of pure component i, p and T denote system pressure and temperature, z is the compressibility factor of a mixture and can be calculated with SWCF-VR EOS [15].In calculating the compressibility factor, the crossing segment diameter (σij) and well depth (εij) are estimated through the standard Lorentz-Berthelot rules [23] as

    respectively. For the unlike interaction square-well potential range parameter λij, a simple arithmetic combining rule is used

    In Eq. (7), κijis an adjustable energy parameter. Note that the crossing segment diameter in calculation of compressibility factor of a mixture is always given by Eq. (6) and no binary interaction parameter is used.

    2.2 Viscosity

    Based on Eyring’s viscosity theory at elevated pressure, Xuan et al. [17] presented a viscosity model for pure fluids

    where μ is the viscosity, k1and k2denote the adjustable model parameters, and z is the compressibility factor which can be calculated with SWCF-VR EOS.In the model, the effect of temperature on viscosity is characterized by k1, k2and z, and the effect from pressure is only depicted by z. The details of this model are described in Xuan et al.’s work [17].

    3 RESULTS AND DISCUSSION

    To calculate the surface tension and viscosity, it is necessary to know the model parameters of pure fluids. These molecular parameters for various pure fluids has been obtained through fitting the experimental saturated vapor pressure and/or liquid volumetric values in our previous work [18, 19] and listed in Table 1 for the fluids investigated in this work.Once the model parameters are given, it is convenient to calculate the surface tension and viscosity on the basis of the given models. To improve the calculated precision of surface tension and determine the adjustable parameters (k1and k2) in viscosity model, an objective function is used

    where Npis the number of experimental data point, θ represents the surface tension or viscosity, superscripts exp and cal denote the experimental and calculated results respectively.

    3.1 Surface tension

    The detailed calculation process for the surface tension is as follows. The compressibility factor of pure fluid and mixture at given temperatures and pressures is first calculated using SWCF-VR EOS [15].The reduced density of a mixture is given by Eq. (5).The parameters ψmand σmare then computed withEqs. (3) and (4) respectively. Finally, the surface tension of a mixture under given condition is obtained from Eq. (2). To improve the calculation precision,bothlijandκijor either of them are considered as adjustable parameters and obtained by fitting the experimental surface tension.

    Table 1 Molecular parameters for the pure substances investigated

    Table 2 The predicted and correlated results of surface tension for binary mixtures

    Table 2 (Continued)

    3.1.1Correlations

    The correlated results and adjustable parameters in 24 cases for 18 binary mixtures are listed in Table 2,with the sources of experimental values. The overall average relative deviation, except for IL mixtures, is 2.56% for prediction withκij=lij=0, 0.42% for correlation withκij, 0.41% for correlation withlij, and 0.36% for correlation with bothκijandlij. The calculation precision of surface tension can be greatly improved when using adjustable parameter eitherκijorlij,and the improvement is almost the same with the correlated values ofκijandlij. Thus, one adjustable parameter (eitherκijorlij) is recommended to use for practical applications. A typical graphical comparison between theoretical calculations and experiments for cyclopentane(1) + benzene(2) [32] and hexane(1) +acetone(2) [33] mixtures is illustrated in Fig. 1. The calculated results with adjustable parameterlijwell agree with experimental values.

    To test the feasibility of this model for mixtures containing ILs, two typical examples [8] are given in this work, as illustrated in Fig. 2. The results are satisfactory with one adjustable parameterκij. However,the deviations increase at low IL concentrations for[C4mim][NTf2] + 1-butanol mixture. The reason may be that the associations of alcohols and the long rang static interactions of ILs are not considered in this model.

    Figure 1 Comparison of theoretical (lines) and experimental [32, 33] (symbols) surface tension of mixtures (solid line:correlation with lij; dash line: predicted with κij=lij=0)□ cyclopentane(1) + benzene(2); ○ n-hexane(1) + acetone(2)

    Based on SPT, Liet al. [42] also proposed a model for surface tension of liquid mixtures. In the model, a real mixture is supposed as a pseudo-pure fluid and the expression is written as

    Figure 2 Comparison of theoretical (lines) and experimental [8] (symbols) surface tension of IL mixtures (solid lines: correlations; dash lines: predictions)

    Table 3 Predicted surface tension of bianry mixtures at different temperatures

    whereγmdenotes the surface tension of the mixture,σma pseudo-dimeter andηmthe reduced density. In this model, a new molecular parameterσis first determined by fitting the experimental surface tension and liquid density of pure fluid. The pseudo-diameterσmis then obtained by combining a cross rule (such as Meyer’s cross rule [43]). Finally, the surface tension for a mixture is calculated by Eq. (11). The calculation accuracy of our model and Liet al.’s equation for eight mixture systems (cyclohexane +n-hexane,cyclohexane + chlorobenzene, tetrachloromethane +benzene,n-hexane + acetone, benzene + acetone,cyclopentane + toluene, cyclopentane + tetrachloromethane and toluene + ethyl acetate) that are random selected is obtained and the overall average deviations are 0.40% and 0.42%, respectively. In calculations,only one adjustable parameterlijin Eq. (4) is used to improve the correlation precision in both models.However, in Liet al.’s model [42] a real fluid is supposed to be composed of sphere molecules and a new molecular parameterσis required and obtained from the experimental surface tension and liquid density for calculating surface tension of the mixture. A real fluid molecule in this model is a chain molecule composed ofrsegments with a diameter ofσ, and the molecular parameters used in our model are self-consistent and can be applied for calculations of vapor-liquid equilibrium, caloric properties, surface tension,etc.

    3.1.2Predictions

    Parametersκijandlijlisted in Table 2 for a given mixture are almost identical at different temperatures,indicating that the surface tension of a binary mixture at other temperatures can be predicted afterκijorlijis obtained from experimental values at a specific temperature, for example, at room temperature. The surface tensions for several typical binary mixtures are predicted with the binary interaction parameterκijorlijdetermined from the experimental surface tension at 293.15 K, as shown in Table 3 and Fig. 3 (a). The predicted results are in good agreement with experiments[40]. In addition, the surface tension of multicomponent mixtures can be predictedviathe binary adjustable parameter, as shown in Fig. 3 (b). Good consistency between the theoretical predictions withκijand the experimental surface tension for two ternary mixtures [33, 34] is obtained.

    Figure 3 Comparison of the predicted and experimental [33, 34, 40] surface tension for mixtures

    Table 4 Calculated results of viscosity at high pressure for common fluids and ionic liquids

    Table 4 (Continued)

    Table 4 (Continued)

    3.2 Viscosity

    In the viscosity model, two adjustable parametersk1andk2are determined based on the experimental viscosity data. The calculation process is as follows.The molecular parameters are obtained by fitting the experimental saturated vapor pressure and liquid volumetric properties. The compressibility factor at a given temperature and pressure are computed using SWCF-VR EOS. The viscosity under a given condition is determined by substituting the obtained compressibility factor to Eq. (9).

    This model is employed to calculate the viscosities of 14 pure components in different temperature and pressure ranges and the results are listed in Table 4,with the adjustable parametersk1andk2, the average relative deviations and data sources. The highest pressure for some systems is up to 300 MPa and the overall average absolute deviation is only 1.44%, and the average relative deviations are 2.21% for common fluids and 0.70% for ILs. A graphical comparison between theoretical and experimental [44, 45] viscosities at 303 K for several common alkanes are shown in Fig. 4. The pressure ranges from 0.1 to 250 MPa. The theoretical results are in good agreement with experiments. Another typical comparison between correlations and experiments [11] of viscosity at the temperature range from 298.15 to 348.15 K and pressure up to 200 MPa for ionic liquid [C8mim][BF4] is illustrated in Fig. 5 and good consistency is also observed.

    Figure 4 Theoretical (lines) and experimental [44, 45](symbols) results of viscosity at 303.15K for n-alkanes□ n-pentane; ○ n-hexane; △ n-octane; ▽ n-decane

    Figure 5 Theoretical (lines) and experimental [11](symbols) results of viscosity at different temperaturesfor[C8mim][BF4]T/K: □ 298.15; ○ 308.15; △ 323.15; ▽ 333.15; ◇ 348.15

    Figure 6 Relationship between lg(k1)/lg(k2) and 1/T (symbols: modeled results; lines: drawn to guide the eye)

    Table 4 also shows that the logarithm values ofk1and/ork2for common fluids and ILs can be expressed as a linear function of the reciprocal of temperature(1/T),viz.The linear relationships between the logarithm ofk1and 1/Tforn-alkanes are shown in Fig. 6 (a). The logarithms of bothk1andk2have a good linear relationship with 1/Tfor ILs as shown in Fig. 6 (b). Actually, it is not surprising that the logarithm values ofk1is a linear function of 1/Tas the relationship between viscosity of liquid at low pressure and 1/Tcan be written as ln(μ)=A+B/Taccording to Eyring’s viscosity model.For model parameterk2in the viscosity model, it should also have a linear relationship with 1/Tsincek2is proportional to exp( / )EkT≠- , whereE≠is the molecular activation energy. From Table 4, no linear relation is observed for common fluids while a linear relationship exists for some ionic liquids as shown in Fig. 6 (b). The reason may be that the effect ofTonk2is smaller than onk1and the regressed parameter is only an optimum value at different temperatures [17].Furthermore, the obtained values ofk1at a given temperature for all systems are almost equal to the real viscosity data at the corresponding temperature and a pressure of 0.1 MPa, as shown by Xuanet al. [17]. It may be explained as that the compressibility factor of liquid at low pressure is so small that the value of exp(k2z) in Eq. (9) is approximately equal to 1. In addition, it should be stressed that the logarithms of parametersk1andk2at certain temperature for homologousn-alkanes are proportional to their molecular mass. This indicates that the model can be used to predict the viscosity of some homologous compounds under certain condition when no experimental viscosity is available.

    4 CONCLUSIONS

    Coupled with the scaled particle theory and Xuanet al.’s viscosity model, the equation of state for square well chain fluid with variable interaction range was extended to represent the surface tension of multicomponent liquid mixtures at atmospheric pressure and viscosity of pure substance at elevated pressure.The feasibility of the two models was checked and confirmed for real systems containing common fluids and ionic liquids, and excellent agreement between the theoretical and experimental results was observed.The distinct feature of this model is that the molecular parameters can be used to calculate thepVT, vapor-liquid equilibrium, caloric properties, surface tension, viscosity,etc., indicating that the models can be used for industrial practice.

    1 Tan, S.P., Adidharma, H., Radosz, M., “Recent advances and applications of statistical associating fluid theory”,Ind.Eng.Chem.Res.,47, 8063-8082 (2008).

    2 Wei, Y.S., Sadus, R.J., “Equation of state for the calculation of fluid-phase equilibria”,AIChE J., 46, 169-196 (2000).

    3 Chapman, W.G., Gubbins, K.E., Jackson, G., Radosz, M., “SAFT:Equation of state solution model for associating fluids”,Fluid Phase Equilib., 52, 31-38 (1989).

    4 Chapman, W.G., Gubbins, K.E., Jackson, G., Radosz, M., “New reference equation of state for associating liquids”,Ind.Eng.Chem.Res., 29, 1709-1721 (1990).

    5 Li, J.L., He, C.C., Peng, C.J., Liu, H.L., Hu, Y., “Equation of state for chain like fluid based on statistical theory for chemical association”,Sci.Chin.Chem., 40, 1198-1209 (2010).

    6 Muller, E.A., Gubbins, K.E., “Molecular-based equations of state for associating fluids: A review of SAFT and related approaches”,Ind.Eng.Chem.Res., 40, 2193-2211 (2001).

    7 Wang, P., Anderko, A., Young, D.R., “Modeling surface tension of concentrated and mixed-solvent electrolyte systems”,Ind.Eng.Chem.Res., 50, 4086-4098 (2011).

    8 Wandschneider, A., Lehmann, J.K., Heintz, A., “Surface tension and density of pure ionic liquids and some binary mixtures with 1-propanol and 1-butanol”,J.Chem.Eng.Data, 53, 596-599 (2008).

    9 Ahosseini, A., Scurto, A.M., “Viscosity of imidazolium based ionic liquids at elevated pressures: Cation and anion effects”,Int.J.Thermophys., 29, 1222-1243 (2008).

    10 Harris, K.R., Kanakubo, M., Woolf, L.A., “Temperature and pressure dependence of the viscosity of the ionic liquid 1-methyl-3-octylimidazolium hexafluorophosphate and 1-methyl-3-octylimidazolium tetrafluoroborate”,J.Chem.Eng.Data, 51, 1161-1167 (2006).

    11 Harris, K.R., Kanakubo, M., Woolf, L.A., “Temperature and pressure dependence of the viscosity of the ionic liquid 1-butyl-3methylimidazolium tetrafluoroborate: Viscosity and density relationships in ionic liquids”,J.Chem.Eng.Data, 52, 2425-2430(2007).

    12 Harris, K.R., Woolf, L.A., Kanakubo, M., “Temperature and pressure dpendence of the viscosity of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate”,J.Chem.Eng.Data, 50, 1777-1782 (2005).

    13 Tomida, D., Kumagai, A., Kenmochi, S., Qiao, K., Yokoyama, C.,“Viscosity of 1-hexyl-3-methylimidazolium hexafluorophosphate and 1-octyl-3-methylimidazolium hexafluorophosphate at high pressure”,J.Chem.Eng.Data, 52, 577-579 (2007).

    14 Tomida, D., Kumagai, A., Qiao, K., Yokoyama, C., “Viscosity of[Bmim][PF6] and [Bmim][BF4] at high pressure”,Int.J.Thermophys., 27, 39-47 (2006).

    15 Li, J.L., He, H.H., Peng, C.J., Liu, H.L., Hu, Y., “A new development of equation of state for square-well chain-like molecules with variable width 1.1≤λ≤3”,FluidPhaseEquilib., 276, 57-68 (2009).16 Li, J.L., Ma, J., Peng, C.J., Liu, H.L., Hu, Y., Jiang, J.W., “Equation of state coupled with scaled particle theory for surface tension of liquid mixtures”,Ind.Eng.Chem.Res., 46, 7267-7274 (2007).

    17 Xuan, A., Wu, Y., Peng, C.J., Ma, P.S., “Correlation of the viscosity of pure liquids at high pressures based on an equation of state”,Fluid Phase Equilib., 240, 15-21 (2006).

    18 Li, J.L., He, H.H., Peng, C.J., Liu, H.L., Hu, Y., “Equation of state for square-well chain molecules with variable range. I: Application for pure substances”, Fluid Phase Equilib., 286, 8-16 (2009).

    19 Li, J.L., He, Q., He, C.C., Peng, C.J., Liu, H.L., “Represention of phase behavior of ionic liquids using the equation of state for square well chain fluids with variable range”, Chin. J. Chem. Eng., 17,983-989 (2009).

    20 Li, J.L., Peng, C.J., Liu, H.L., “Mdeling vapor-liquid equilibrium of refrigerants using an equation of state for square well chain fluid with variable range”, CIESC J., 60, 545-552 (2009).

    21 Li, J.L., Tong, M., Peng, C.J., Liu, H.L., Hu, Y., “Equation of state for square-well chain molecules with variable range. II: Extension to mixture”, Fluid Phase Equilib., 287, 56-67 (2009).

    22 Reiss, H., Frisch, H.L., Helfand, E., Lebowitz, J.L., “Aspects of the statistical thermodynamics of real fluids”, J. Chem. Phys., 32,119-124 (1960).

    23 Rowlinson, J.S., Swinton, F.L., Liquids and Liquid Mixtures. 3rd ed.;Butterworth, London (1982).

    24 Smith, B.D., Srivastava, R., Thermodynamic Data for Pure Compounds, Elsevier, Amsterdam (1986).

    25 Daubert, T.E., Danner, R.P., Physical and Thermodynamic Properties of Pure Chemicals, John wiley & Sons, New York (1989).

    26 Vargaftik, N.B., Tables on the Thermophysical Properties of Liquids and Gases, John Wiley & Sons, New York (1975).

    27 Lu, H.Z., Handbook of Petrochemical Data, Chemical Industry Press,Beijing (1982).

    28 Machida, H., Sato, Y., Smith, J.R.L., “Pressure-volume-temperature measurement of ionic liquids ([Bmim][PF6], [Bmim][BF4],[Bmim][OcSO4]”, Fluid Phase Equilib., 264, 147-155 (2008).

    29 Gardas, R.L., Freire, M.G., Carvalho, P.J., Marrucho, I.M., Fonseca,I.M.A., Ferreira, A.G.M., COutinho, J.A.P., “High pressure densities and derived themodynamic properties of imidazolium-based ionic liquids”, J. Chem. Eng. Data, 52, 80-88 (2007).

    30 Fredlake, C.P., Crosthwaite, J.M., Hert, D.G., Aki, S.N.V.K., Brennecke, J.F., “Thermophysical properties of imidazolium based ionic liquids”, J. Chem. Eng. Data, 49, 954-964 (2004).

    31 Azevedo, R.G., Esperanca, J.M.S.S., Szydlowski, J., Visak, Z.P.,Pires, P.E., Guedes, H.J.R., Rebelo, L.P.N., “Thermophysical and thermodynamic properties of ionic liquids over an extended pressure range: [Bmim][NTf2] and [Hmim][NTf2]”, J. Chem. Thermodyn., 37,888-899 (2005).

    32 Lam, V.T., Benson, G.C., “Surface tensions of binary liquid systems I. Mixture of nonelectrolytes”, Can. J. Chem., 48, 3773-3781(1970).

    33 Rusanov, A.I., Levichev, S.A., “Thermodynamic investigation of surface layers of liquid solutions”, Kolloidn. Zh., 30, 112-118 (1968).

    34 Ridgway, K., Bulter, P.A., “Some physical properties of the ternary system benzene + cyclohexane + n-hexane”, J. Chem. Eng. Data, 12,509-515 (1967).

    35 Clever, H.L., Chase, M.W., “Thermodynamics of liquid surfaces:Surface tension of n-hexane-cyclohexane mixture at 25, 30 and 35 °C”, J. Chem. Eng. Data, 8, 291-292 (1963).

    36 Suri, S.K., Ramakrishna, V., “Surface tension of some binary liquid mixture”, J. Phys. Chem., 72, 3073-3079 (1968).

    37 Siskova, M., Secova, V., “Surface tension of binary solution of non-electrolytes V”, Collect. Czech. Chem. Commun., 35, 2702-2711(1970).

    38 Koefoed, J., Villadsen, J.V., “Surface tension of liquid mixtures: A micro-method applied to the system: chloroform-carbon-tetrachloride,benzene-diphenylmethane and heptane-hexadecane”, Acta Chem.Scand., 12, 1124-1134 (1958).

    39 Waket, E.S., “Surface tension of binary mixtures of several organic liquids at 25 °C”, J. Chem. Eng. Data, 15, 308-311 (1970).

    40 Schmidt, R.L., Randall, J.C., Clever, H.L., “Surface tension and density of binary hydrocarbon mixtures”, J. Phys. Chem., 70,3912-3918 (1966).

    41 Litkenhous, E.E., van Arsdale, J.D., Hutchison, I. W., “The system butyl alcohol-ehtyl acetate-toluene”, J. Phys. Chem., 44, 377-382(1940).

    42 Li, Z.B., Hu, Y.Q., Li, Y.G., Lu, J.F., “Molecular model of vaporliquid and liquid-liquid interface tension for mixture”, Chem. Eng.,28, 57-61 (2000).

    43 Meyer, E.C., “A one-fluid mixing rule for hard spheres mixtures”,Fluid Phase Equilib., 41, 19-29 (1988).

    44 Kiran, K., Sen, Y.L., “High-pressure viscosity and density of n-alkanes”, Int. J. Thermophys., 13, 411-445 (1992).

    45 Oliveira, C.M.B.P., Wakeham, W.A., “The viscosity of five liquid hydrocarbons at pressure up to 250 MPa”, Int. J. Thermophys., 13,773-790 (1992).

    猜你喜歡
    胡英劉洪馬俊
    Coercivity mechanism of La–Nd–Fe–B lms with Y spacer layer
    Effect of pressure evolution on the formation enhancement in dual interacting vortex rings
    Maria Montessori
    Lagrangian analysis of the formation and mass transport of compressible vortex rings generated by a shock tube?
    自抬身價(jià)
    分手多情
    測(cè) 量
    長江叢刊(2018年16期)2018-11-14 19:04:05
    In-situ Observation of the Growth of Fibrous and Dendritic Crystals in Quasi-2-dimensional Poly(ethylene oxide) Ultrathin Films*
    Multiscale Modeling of Collagen Fibril in Bone at Various Crosslink Densities:An Insight into Its Deformation Mechanisms
    斯人已逝 浩氣長存—— 『最美消防員戰(zhàn)士』劉洪坤、劉洪魁
    欧美黑人欧美精品刺激| 在线十欧美十亚洲十日本专区| 99热网站在线观看| 狂野欧美激情性xxxx| bbb黄色大片| 黄色片一级片一级黄色片| 法律面前人人平等表现在哪些方面| 亚洲av国产av综合av卡| tocl精华| 9色porny在线观看| 在线观看www视频免费| 国产高清视频在线播放一区| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲性夜色夜夜综合| 国产熟女午夜一区二区三区| 啦啦啦视频在线资源免费观看| 色播在线永久视频| 国产深夜福利视频在线观看| 大陆偷拍与自拍| 99精品久久久久人妻精品| 欧美精品av麻豆av| 一二三四在线观看免费中文在| 国产精品麻豆人妻色哟哟久久| 国产成人精品在线电影| 在线观看免费午夜福利视频| 黄色丝袜av网址大全| 亚洲一区中文字幕在线| 在线观看免费视频网站a站| 肉色欧美久久久久久久蜜桃| 操美女的视频在线观看| 91九色精品人成在线观看| 亚洲成人免费电影在线观看| 老熟妇乱子伦视频在线观看| 欧美 亚洲 国产 日韩一| 美女国产高潮福利片在线看| 一级a爱视频在线免费观看| 婷婷成人精品国产| 国产高清视频在线播放一区| 国产欧美日韩一区二区三区在线| 色视频在线一区二区三区| 久久久久久久久免费视频了| 18禁黄网站禁片午夜丰满| 两性午夜刺激爽爽歪歪视频在线观看 | 久久国产精品男人的天堂亚洲| 久久精品熟女亚洲av麻豆精品| 少妇被粗大的猛进出69影院| 精品少妇黑人巨大在线播放| 丝袜美腿诱惑在线| 麻豆av在线久日| 啦啦啦免费观看视频1| 天天添夜夜摸| 狂野欧美激情性xxxx| 日韩免费高清中文字幕av| www.自偷自拍.com| 亚洲人成77777在线视频| 国产成人av教育| 91精品国产国语对白视频| 亚洲国产欧美日韩在线播放| 女人久久www免费人成看片| 欧美日韩一级在线毛片| 丝袜美足系列| 亚洲美女黄片视频| 欧美在线一区亚洲| 国产一区二区 视频在线| 黄色成人免费大全| 精品人妻在线不人妻| 人成视频在线观看免费观看| 久久久精品94久久精品| 亚洲精品在线美女| 亚洲精品国产精品久久久不卡| 香蕉国产在线看| 精品少妇久久久久久888优播| 天堂俺去俺来也www色官网| 一进一出好大好爽视频| 国产av又大| 久久ye,这里只有精品| 亚洲色图av天堂| 久久久精品免费免费高清| av超薄肉色丝袜交足视频| 亚洲国产欧美在线一区| 黄色视频在线播放观看不卡| 亚洲av美国av| bbb黄色大片| 亚洲国产欧美网| 男女午夜视频在线观看| av网站免费在线观看视频| 国产精品 欧美亚洲| 久久精品亚洲精品国产色婷小说| 午夜福利欧美成人| 中文欧美无线码| 精品少妇久久久久久888优播| 中文字幕制服av| 国产成人精品在线电影| 欧美黄色淫秽网站| 五月天丁香电影| 99久久人妻综合| 色尼玛亚洲综合影院| 成人国产av品久久久| 一本色道久久久久久精品综合| 亚洲欧洲精品一区二区精品久久久| 一本大道久久a久久精品| 成年人午夜在线观看视频| 国产精品98久久久久久宅男小说| 久久久久久久国产电影| 午夜福利乱码中文字幕| 大香蕉久久网| 一二三四社区在线视频社区8| 日韩 欧美 亚洲 中文字幕| 久久毛片免费看一区二区三区| 国产成人精品在线电影| 交换朋友夫妻互换小说| 两性夫妻黄色片| 精品亚洲乱码少妇综合久久| 国产精品久久久久久精品古装| 极品少妇高潮喷水抽搐| 国产在线视频一区二区| 中亚洲国语对白在线视频| av片东京热男人的天堂| 多毛熟女@视频| 咕卡用的链子| 国产亚洲一区二区精品| 亚洲第一av免费看| 久久中文字幕一级| 麻豆国产av国片精品| 最近最新中文字幕大全电影3 | 亚洲五月色婷婷综合| 国产不卡av网站在线观看| 91国产中文字幕| 久久影院123| 亚洲中文字幕日韩| 99精国产麻豆久久婷婷| 国产高清国产精品国产三级| 精品国产超薄肉色丝袜足j| 亚洲熟妇熟女久久| 操美女的视频在线观看| 久久久精品区二区三区| 国内毛片毛片毛片毛片毛片| 亚洲国产中文字幕在线视频| 亚洲国产欧美日韩在线播放| 99国产精品一区二区蜜桃av | 免费日韩欧美在线观看| kizo精华| 亚洲人成伊人成综合网2020| 超碰成人久久| 两个人免费观看高清视频| 青草久久国产| 亚洲av片天天在线观看| 欧美黑人精品巨大| 亚洲人成电影免费在线| 欧美日韩精品网址| 99在线人妻在线中文字幕 | 精品久久久精品久久久| 久久久精品免费免费高清| 这个男人来自地球电影免费观看| 国产免费视频播放在线视频| 波多野结衣av一区二区av| 国内毛片毛片毛片毛片毛片| 久久国产精品人妻蜜桃| 18禁观看日本| 欧美精品人与动牲交sv欧美| 久久青草综合色| 女人高潮潮喷娇喘18禁视频| a级毛片在线看网站| 天堂8中文在线网| 亚洲av成人不卡在线观看播放网| 欧美在线一区亚洲| 午夜免费鲁丝| 国产不卡一卡二| 欧美亚洲 丝袜 人妻 在线| 91精品国产国语对白视频| 在线观看人妻少妇| 汤姆久久久久久久影院中文字幕| 精品高清国产在线一区| 国产精品国产av在线观看| 午夜精品久久久久久毛片777| 一本久久精品| 少妇被粗大的猛进出69影院| 男人操女人黄网站| 超碰成人久久| 国产亚洲欧美在线一区二区| 国产精品 欧美亚洲| 另类精品久久| 精品免费久久久久久久清纯 | 欧美激情久久久久久爽电影 | 国产在线免费精品| 69av精品久久久久久 | 欧美精品亚洲一区二区| 999精品在线视频| 欧美午夜高清在线| 亚洲av欧美aⅴ国产| 久久久精品国产亚洲av高清涩受| 啦啦啦视频在线资源免费观看| 国产精品亚洲一级av第二区| 不卡一级毛片| 熟女少妇亚洲综合色aaa.| 国产男女内射视频| 久久 成人 亚洲| 精品高清国产在线一区| 国产亚洲一区二区精品| 80岁老熟妇乱子伦牲交| 人成视频在线观看免费观看| 女人精品久久久久毛片| 精品高清国产在线一区| 欧美+亚洲+日韩+国产| 日韩三级视频一区二区三区| 成年人黄色毛片网站| 黄色怎么调成土黄色| 欧美日韩黄片免| 精品人妻熟女毛片av久久网站| 国产色视频综合| 性色av乱码一区二区三区2| 久久精品成人免费网站| 亚洲成国产人片在线观看| 亚洲欧美精品综合一区二区三区| 亚洲精品美女久久久久99蜜臀| av又黄又爽大尺度在线免费看| 欧美成人午夜精品| 免费女性裸体啪啪无遮挡网站| 两个人看的免费小视频| 久久久国产欧美日韩av| 一区在线观看完整版| 国产成+人综合+亚洲专区| 人妻一区二区av| 欧美黄色淫秽网站| 久久婷婷成人综合色麻豆| 免费女性裸体啪啪无遮挡网站| 两个人看的免费小视频| 国产成人系列免费观看| 丝袜人妻中文字幕| 超碰成人久久| 极品教师在线免费播放| 色视频在线一区二区三区| 在线观看一区二区三区激情| 视频区图区小说| 黄色视频在线播放观看不卡| 欧美激情高清一区二区三区| 亚洲情色 制服丝袜| 国产日韩欧美亚洲二区| 日本av免费视频播放| 色婷婷久久久亚洲欧美| 19禁男女啪啪无遮挡网站| 首页视频小说图片口味搜索| 狠狠精品人妻久久久久久综合| 国产亚洲精品久久久久5区| 青青草视频在线视频观看| 日韩成人在线观看一区二区三区| 免费观看a级毛片全部| 免费日韩欧美在线观看| 日韩视频一区二区在线观看| 国产精品一区二区免费欧美| 久久精品aⅴ一区二区三区四区| 黄色片一级片一级黄色片| 国产精品亚洲一级av第二区| 欧美在线一区亚洲| 亚洲自偷自拍图片 自拍| 国产精品二区激情视频| 色尼玛亚洲综合影院| 男人舔女人的私密视频| 麻豆av在线久日| 9191精品国产免费久久| 国产一区二区三区综合在线观看| 久久影院123| 午夜福利欧美成人| 精品久久蜜臀av无| 久久久久久久国产电影| 69精品国产乱码久久久| 亚洲精品中文字幕在线视频| 99riav亚洲国产免费| 天天躁日日躁夜夜躁夜夜| 宅男免费午夜| 男女高潮啪啪啪动态图| 亚洲国产看品久久| 久久久久久亚洲精品国产蜜桃av| 悠悠久久av| 中亚洲国语对白在线视频| 午夜91福利影院| 他把我摸到了高潮在线观看 | 12—13女人毛片做爰片一| 亚洲七黄色美女视频| 亚洲 欧美一区二区三区| 久久精品熟女亚洲av麻豆精品| 99精品久久久久人妻精品| 欧美日韩av久久| 天天添夜夜摸| 色播在线永久视频| 日韩熟女老妇一区二区性免费视频| 欧美国产精品一级二级三级| 无遮挡黄片免费观看| 超色免费av| a级毛片黄视频| 国内毛片毛片毛片毛片毛片| 精品久久久精品久久久| 美女高潮到喷水免费观看| 午夜久久久在线观看| 在线观看人妻少妇| 久9热在线精品视频| 九色亚洲精品在线播放| 日本a在线网址| 色播在线永久视频| 免费高清在线观看日韩| 成人精品一区二区免费| 国产欧美日韩精品亚洲av| www.精华液| 亚洲成人免费av在线播放| 香蕉国产在线看| 精品少妇一区二区三区视频日本电影| 久久天躁狠狠躁夜夜2o2o| 99国产精品一区二区三区| 成在线人永久免费视频| 色视频在线一区二区三区| 丁香欧美五月| 日韩大片免费观看网站| 99久久人妻综合| 欧美在线一区亚洲| 成年版毛片免费区| 欧美精品一区二区大全| 黄色视频在线播放观看不卡| 亚洲一码二码三码区别大吗| 久久精品亚洲熟妇少妇任你| 免费女性裸体啪啪无遮挡网站| 精品高清国产在线一区| 女人久久www免费人成看片| 人人澡人人妻人| 欧美黑人精品巨大| www.熟女人妻精品国产| 国产av一区二区精品久久| 精品久久蜜臀av无| 午夜福利欧美成人| 欧美中文综合在线视频| 久久精品aⅴ一区二区三区四区| 亚洲人成伊人成综合网2020| 少妇粗大呻吟视频| 最黄视频免费看| 欧美日韩黄片免| 国产精品偷伦视频观看了| 曰老女人黄片| 人成视频在线观看免费观看| 女性被躁到高潮视频| 亚洲精品粉嫩美女一区| 久久青草综合色| 中文字幕人妻丝袜一区二区| 精品国产乱子伦一区二区三区| 他把我摸到了高潮在线观看 | 欧美激情 高清一区二区三区| 老司机福利观看| 黄色 视频免费看| 桃红色精品国产亚洲av| 国产无遮挡羞羞视频在线观看| 男女边摸边吃奶| 亚洲欧美精品综合一区二区三区| 国产黄色免费在线视频| 黄网站色视频无遮挡免费观看| 丝袜人妻中文字幕| 999久久久精品免费观看国产| 黄片大片在线免费观看| 国产无遮挡羞羞视频在线观看| 中文欧美无线码| 妹子高潮喷水视频| 在线观看免费午夜福利视频| 老熟女久久久| 制服诱惑二区| 精品少妇内射三级| 精品国产乱子伦一区二区三区| 99精品在免费线老司机午夜| 两个人看的免费小视频| 黄色 视频免费看| 大陆偷拍与自拍| 精品第一国产精品| 波多野结衣av一区二区av| 电影成人av| 一本久久精品| 美女高潮喷水抽搐中文字幕| 一区在线观看完整版| 热re99久久国产66热| 欧美av亚洲av综合av国产av| 日韩大码丰满熟妇| 我要看黄色一级片免费的| 80岁老熟妇乱子伦牲交| 免费不卡黄色视频| 久久精品国产综合久久久| 免费av中文字幕在线| 少妇 在线观看| 国产不卡av网站在线观看| 亚洲色图 男人天堂 中文字幕| 一级黄色大片毛片| 成人亚洲精品一区在线观看| 黄色a级毛片大全视频| 亚洲视频免费观看视频| 桃花免费在线播放| 欧美乱码精品一区二区三区| 少妇被粗大的猛进出69影院| 波多野结衣一区麻豆| 亚洲午夜精品一区,二区,三区| 成人免费观看视频高清| 最近最新中文字幕大全电影3 | 国产欧美日韩一区二区精品| 两性午夜刺激爽爽歪歪视频在线观看 | 夜夜爽天天搞| 亚洲欧洲精品一区二区精品久久久| 在线观看人妻少妇| 免费在线观看黄色视频的| 丰满少妇做爰视频| 久久久久精品人妻al黑| 高清av免费在线| 黄网站色视频无遮挡免费观看| 国产精品av久久久久免费| 高清在线国产一区| 丝袜在线中文字幕| 美女高潮到喷水免费观看| 国产精品欧美亚洲77777| 免费看a级黄色片| 欧美日韩视频精品一区| 下体分泌物呈黄色| 一个人免费在线观看的高清视频| 国产精品一区二区免费欧美| avwww免费| 免费不卡黄色视频| 飞空精品影院首页| 国产黄色免费在线视频| av不卡在线播放| 午夜福利免费观看在线| 久久国产精品人妻蜜桃| 久久狼人影院| 操美女的视频在线观看| 久久久久久久大尺度免费视频| 久久久久国内视频| 色老头精品视频在线观看| 亚洲九九香蕉| 99国产精品99久久久久| avwww免费| 两人在一起打扑克的视频| 精品国产国语对白av| 午夜福利,免费看| 欧美精品av麻豆av| 国产不卡av网站在线观看| svipshipincom国产片| 久久狼人影院| 老司机午夜福利在线观看视频 | 91av网站免费观看| 真人做人爱边吃奶动态| 女性生殖器流出的白浆| 久久99热这里只频精品6学生| 91精品三级在线观看| 中文字幕最新亚洲高清| 80岁老熟妇乱子伦牲交| 亚洲国产欧美在线一区| 999精品在线视频| 最近最新中文字幕大全免费视频| 亚洲精品av麻豆狂野| 免费看a级黄色片| 美女主播在线视频| 激情视频va一区二区三区| a级毛片在线看网站| 国产精品久久久久成人av| 大香蕉久久网| 怎么达到女性高潮| 国产欧美日韩一区二区三| 自拍欧美九色日韩亚洲蝌蚪91| 国产野战对白在线观看| 99久久国产精品久久久| 老司机靠b影院| 欧美亚洲 丝袜 人妻 在线| 黄色视频在线播放观看不卡| 精品国产一区二区三区四区第35| 欧美另类亚洲清纯唯美| 少妇被粗大的猛进出69影院| 中文字幕av电影在线播放| 叶爱在线成人免费视频播放| 一级黄色大片毛片| bbb黄色大片| 丁香欧美五月| 9色porny在线观看| 成在线人永久免费视频| 亚洲专区国产一区二区| 国产精品美女特级片免费视频播放器 | 午夜福利在线观看吧| 老汉色∧v一级毛片| 99热国产这里只有精品6| 午夜福利视频在线观看免费| 国产高清videossex| 99在线人妻在线中文字幕 | 丁香欧美五月| 久久久久久久久免费视频了| 99精国产麻豆久久婷婷| 一级黄色大片毛片| 无人区码免费观看不卡 | 国产一区二区 视频在线| 色94色欧美一区二区| a级毛片黄视频| 欧美成狂野欧美在线观看| 亚洲精品在线观看二区| www.熟女人妻精品国产| videosex国产| 国产精品99久久99久久久不卡| 麻豆国产av国片精品| 无遮挡黄片免费观看| av天堂久久9| 性高湖久久久久久久久免费观看| 国产精品久久久久久精品电影小说| 香蕉国产在线看| 在线观看人妻少妇| 最近最新中文字幕大全电影3 | 视频在线观看一区二区三区| 久久人人97超碰香蕉20202| 成人三级做爰电影| 人人妻人人爽人人添夜夜欢视频| 日韩免费高清中文字幕av| 丝袜人妻中文字幕| 黄片播放在线免费| 五月开心婷婷网| 色老头精品视频在线观看| 成年人黄色毛片网站| 无遮挡黄片免费观看| 最新美女视频免费是黄的| 国产男女超爽视频在线观看| 亚洲欧美日韩另类电影网站| 国产成人av教育| 国产成人系列免费观看| 人人澡人人妻人| 免费观看人在逋| 日韩一区二区三区影片| 极品人妻少妇av视频| 少妇被粗大的猛进出69影院| 啦啦啦视频在线资源免费观看| 纵有疾风起免费观看全集完整版| 12—13女人毛片做爰片一| 大码成人一级视频| 精品人妻熟女毛片av久久网站| 欧美 亚洲 国产 日韩一| 久久九九热精品免费| 色在线成人网| 精品一区二区三区av网在线观看 | 少妇猛男粗大的猛烈进出视频| 天天操日日干夜夜撸| 美女视频免费永久观看网站| 久久久久国产一级毛片高清牌| 亚洲男人天堂网一区| 高清欧美精品videossex| 亚洲五月婷婷丁香| 日韩成人在线观看一区二区三区| 天堂8中文在线网| 日本a在线网址| 丝袜在线中文字幕| 大片电影免费在线观看免费| av有码第一页| 亚洲精品一卡2卡三卡4卡5卡| 国产成人一区二区三区免费视频网站| 国产免费av片在线观看野外av| 99国产精品99久久久久| 亚洲精品自拍成人| 精品人妻1区二区| 欧美精品av麻豆av| 国内毛片毛片毛片毛片毛片| 欧美日韩黄片免| 国产成人免费观看mmmm| 国产淫语在线视频| 伦理电影免费视频| 人人妻人人爽人人添夜夜欢视频| 一级毛片女人18水好多| 欧美黄色片欧美黄色片| 黄色a级毛片大全视频| 99精品欧美一区二区三区四区| 91老司机精品| 精品人妻熟女毛片av久久网站| 日日夜夜操网爽| 久久国产精品大桥未久av| 超碰成人久久| 久久免费观看电影| 日本黄色视频三级网站网址 | 国产区一区二久久| 99re在线观看精品视频| 久久久久精品国产欧美久久久| 中文字幕人妻丝袜一区二区| 久久 成人 亚洲| 久久人妻福利社区极品人妻图片| 精品福利观看| 999久久久国产精品视频| 国产成人精品无人区| 亚洲欧美精品综合一区二区三区| 成年人黄色毛片网站| 免费在线观看影片大全网站| 日本vs欧美在线观看视频| 精品视频人人做人人爽| av天堂久久9| 一二三四社区在线视频社区8| 国产成人精品久久二区二区免费| 一个人免费在线观看的高清视频| 欧美人与性动交α欧美软件| 天天躁狠狠躁夜夜躁狠狠躁| 老鸭窝网址在线观看| 天天躁日日躁夜夜躁夜夜| 大型av网站在线播放| 免费在线观看视频国产中文字幕亚洲| 色94色欧美一区二区| 老司机深夜福利视频在线观看| 久久久久久久久久久久大奶| 精品一区二区三区视频在线观看免费 | 人人妻人人澡人人看| 亚洲欧美色中文字幕在线| 国产人伦9x9x在线观看| 美女高潮到喷水免费观看| 欧美人与性动交α欧美软件| 麻豆av在线久日| 飞空精品影院首页| 国产区一区二久久| 国产精品久久久人人做人人爽| 丁香六月欧美| 亚洲精品中文字幕一二三四区 | 久久午夜亚洲精品久久| 男女午夜视频在线观看| 久久久精品94久久精品| 女性生殖器流出的白浆| 曰老女人黄片| 久久久国产成人免费| 免费黄频网站在线观看国产|