• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation of Mg2+/Li+ Separation by Nanofiltration*

    2011-03-22 10:11:56YANGGang楊剛SHIHong史宏LIUWenqiang劉文強(qiáng)XINGWeihong邢衛(wèi)紅andXUNanping徐南平
    關(guān)鍵詞:楊剛南平

    YANG Gang (楊剛)**, SHI Hong (史宏), LIU Wenqiang (劉文強(qiáng)), XING Weihong (邢衛(wèi)紅)and XU Nanping (徐南平)

    State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China

    1 INTRODUCTION

    New technologies are urgently demanded in recent years for saving energy and reducing waste.Membrane separations have therefore been focused on,among which nanofiltration (NF) [1-3] is acknowledged as an efficient process. Such approaches were used for water softening in early days [4], and then were found to be a best choice for the treatment of process fluids. The mode is now being extended to the environmental protection area to recover valuable components. The interest herein is the NF rejections of lithium ions, which is often used for hygroscopic purpose or elsewhere (e.g. lithium battery). Actually membrane processes [5, 6] concerned this refrigeration agent, though a few ideas [7] did not seem practical yet. In nature the lithium element is basically stored in the brine. Its enrichment process is featured with evaporations, by which a variety of ions are removed through crystallizations. The work [8] on NF of the crude lithium brine was comprehensive, but the results almost led to a negative evaluation since the crude brine was too complicated. In the present industrial process it is able to evolve the lithium-containing stream into Mg2+/Li+mixture. A proper implementation of the NF technique might facilitate the removal of ions such as Mg2+with less energy consumption. In this paper, experimental investigations and theoretical predictions are given to elucidate the selective rejections of Mg2+/Li+.

    2 EXPERIMENTAL

    2.1 Chemicals and analysis

    Analytical grade NaCl, MgSO4and glucose were used for the characterization of the DK membrane.Analytical grade LiCl and MgCl2were used to make the Mg2+/Li+/Cl-solutions shown in Table 1. Their mass ratios Mg2+/Li+are around that of the crude brine in the East Taijinaier Salt Lake [8], and the lithium ion concentrations change within a limited scope.All water used was pretreated with reverse osmosis membrane and ion exchange resin with the conductivity less than 0.5 μs·cm-1. Table 2 lists the bulk diffusion coefficients and Stokes radii of the solutes, which were incorporated in the mathematical computation.The data for lithium ion were from [9], while the rest were from [10].

    Table 1 Brine compositions

    Table 2 Bulk diffusion coefficient and Stokes radii

    The cation concentrations were determined by Inductively Coupled Plasma (Shimdzu, Japan). The glucose concentrations were determined by TOC (total organic carbon) analyzer (Shimdzu, Japan).

    2.2 Membrane and apparatus

    The spiral-wound Desal DK membrane element(GE Osmonics) of nominally 8 m2membrane area was used. The parental solution was fed into the membrane element through a feeding pump and then a pressure-boosting pump. The later was equipped with a transducer for a smooth start-up and easy process adjustment. The inlet pressure and retentate flow rate were controlled with accuracy through the adjustment valve and the transducer. The retentate flow rate and the permeate flux were monitored with two electronic flowmeters, while the permeate flux records were calibrated to avoid the temperature, density and mechanical deviations. The storage tank jacket was circulated with cooling water to stabilize the feeding temperature at (35±1) °C.

    2.3 Experimental procedure

    All experiments were carried out at the cross-flow rate of 3 m3·h-1, at which the concentration polarization is negligible [11]. The temperature was kept constant at 35 °C. Both the retentate and permeate flew back to the feed tank. The constant process parameters and the relevant samples were available in the cycling. The permeate flux as well as the concentrations at both membrane sides were determined as the transmembrane pressure stepped up every 0.2 MPa from 0.8 MPa to 1.6 MPa. The membrane separation

    factor (SF) is calculated as

    3 SIMULATIONS

    Modeling of nanofiltration based on the black-box treatment or the Nernst-Planck equations were reported [12-16]. A simplified Donnan steric pore model (DSPM) [17, 18] and its new version [10] were typically impressive. Much work was reported on the improvement [19]. The endeavors partly aimed at in-depth probing fundamental aspects of the mass transfer. Unfortunately, the prediction-oriented utilization is complicated, since it is difficult to obtain the physicochemical parameters such as dielectric constant or streaming potential [20]. And, the model parameters changes with process conditions. For a solution with components of relatively high concentrations,or a real wastewater that is apt to foul the membrane,the theoretical calculation seems deviated while the empirical or semi-empirical treatment works better.On the other hand, the dielectric exclusion is weakened at a high feed concentration, which is the case for the brines in [8, 21] and this paper. Therefore, only the simplified DSPM model is used herein for the process prediction and concise evaluation for rejections of the Mg2+/Li+system. The model parameters,i.e. effective membrane pore radius (rp), effective membrane thickness (Δx/Ak) and effective membrane charge density (Xd), are obtained through the characterization experiments. With the numerical treatment procedure [22], the extended prediction is available.

    4 RESULTS AND DISCUSSION

    4.1 Separations of Mg2+/Li+ mixture

    Figure 1 Ion rejection and SF vs. permeation flux

    The ion rejection and SF of Mg2+/Li+are shown in Fig. 1. For Feed A, the Mg2+rejection increases while the Li+rejection decreases with the increase of permeation flux. A strong Donnan effect is observed.In the permeation flux range, the SF decreases from 0.49 to 0.31. The Mg2+rejection for Feed B (as well as Feed C) is similar, but the Li+rejection is different,which increases slightly only at a higher flux. Negative rejections of -40%--20% are observed. The operations for the 3 mixtures started at the same working pressure, so their beginning permeation fluxes increased with their resistant osmotic pressures. The initiate values of SF for Feeds B and C decrease. It is interesting that the starting SF for Feed B is lower than that of Feed C. This is supposed to be caused by the permeation fluxes, the ion concentrations and the ratios. The trend is evident within the flux range, suggesting the phenomena are governed not only by the Donnan exclusion.

    Normally a multi-valent anion is preferentially rejected by a negatively charged NF membrane if there exists a univalent anion. Herein the divalent and univalent cations are selectively rejected. This is encouraging from the perspective of field applications.The selection may be due to the electric properties and the geometric sizes of the ions. Other factors such as the dielectric properties, which are difficult to characterize, might also help lead to the above occurrences.

    Figure 2 Variations of SF with retentate Li+ concentration and Mg2+/Li+ ratioΔp/MPa: □ 0.8; ○ 1.0; △ 1.2; ▽ 1.4; 1.6

    The dependency of the Mg2+/Li+SFon the Li+concentration is shown in Fig. 2, where the parental Mg2+/Li+concentration ratio falls within 18-24. Under a given operating pressure,SFchanges within a narrow range with the Li+concentration or the Mg2+/Li+concentration ratio. Differently, the dependence of SF upon the operating pressure is manifest. For their single electrolyte solutions, the rejection decreases as the corresponding concentration increases, as shown in Fig. 3. It is interesting that their rejections are quite close and Li+rejection is even a little higher.The different dependencies very the electric functions that Mg2+and Li+exert at the membrane surface and inside the pore. This imply that an optimized operation is possible to obtain the Li+-enriched permeate.

    Figure 3 Rejection variations of Mg2+ and Li+Δp/MPa: □ 0.8; ○ 1.0; △ 1.2; ▽ 1.4; 1.6

    4.2 Evaluation with a simulation model

    With the retention data of the neutral solutes, the membrane pore radius (rp) and the effective membrane thickness (Δx/Ak) were calculated as 0.53 nm and 3.42 μm, respectively, through the best-fit method.This is slightly deviated from the data reported, which may be due to the different conditions that the membranes were produced and utilized. The effective membrane charge density (Xd) greatly relies on conditions such as pH and ionic strength [20, 23]. Several reports have used the adsorption isotherm of[20, 24] to relate it with the ionic strength. In this study, the constantsqandsare regressed from the rejections and fluxes and listed in Table 3. The results prove thatXdis greatly influenced by the solution composition, and even its sign is changed with Mg2+added.

    Table 3 Xd fitted with the DSPM model as function of feed characteristics

    Figure 4 gives the predicted relationship ofSFand the permeation flux. The trial withXdobtained from the other ionic systems leads to a complete failu

    frroe

    m.G

    o

    exo

    pde

    c

    rio

    mnef

    on

    r

    tsmit

    wyi tihs

    ftoh

    ue

    n

    dL

    w

    i+h/

    Meng

    2X+/dC i

    ls-

    r e

    mgirxetsusreed.When extended to a moderately broader working pressure range, the predictedSFevolves forward smoothly.The factor decreases as the permeation increases, but the extent is gradually narrower. The factor seems to

    apiTnprh epeftriehorre

    ae d

    cninhtf

    iaf

    aen

    alr

    o e

    rlfneiimjlcetericat t itisivoo

    antnlh u oa

    eoft

    fMaa

    b tgpho2eeu+a t

    0

    .rs3ei

    m1j

    e

    ./ic+

    ClTtailro

    h

    -n/

    ewN

    io

    eat

    nhf+c Ctoshol

    ue-lr uaroetgfisiotunenlgnt.

    emerged is not so clear here for Li (as instructed in F

    noig

    t.

    a2p)

    .p eSaurc

    hs

    iannc e

    e

    xMt

    re

    gm2+i t

    y

    is

    o n f

    otht

    er eDj

    eocntne

    ad

    n

    ceof

    fme

    cp

    tl e

    d

    teo

    leys.Nevertheless the trend shown here suggests a te+chnically viable membrane approach for enriching Li.

    Figure 4 DSPM predictions of SF○ experiment (Feed A); □ experiment (Feed B); △ experiment(Feed C); DSPM (Xd of Mg2+/Li+); DSPM (Xd of Na+)

    The evaluated dependencies of SF upon the retentate Mg2+/Li+ratio as well as the retentate Li+concentration are given in Fig. 5. At the given working pressure,SFis basically not sensitive to the two parameters and maintains around 0.34. The rejections for two ions change, but are in the same trend. Apart from the membrane choice, the operation pressure seems to be a significant adjustment measure for an optimized purification of Li+component. The temperature factor is still left for investigation, but its influence on the membrane pore size and charge density is limited. In most cases room temperature is recommended due to the comprehensive consideration of the membrane service life, energy consumption and operation convenience.

    Figure 5 Predicted SF vs. Mg2+/Li+ ratio and retentate Li+concentration

    4.3 Dependency of effective membrane charge density

    A typical treatment ofXdis the regression approach [10, 17, 19, 25-28], or it may be evaluated via the Gouy-Chapman double electric layer theory and experimental determination of the tangential membrane surface potential [20, 21, 29, 30]. However,Xdis an inenarrable variable [31] as it relates with membrane property, ionic adsorption and ambient pH condition.In this paper,Xdis also found dependent of the permeability, as shown in Fig. 6. An increase appears for the monovalent cation but a decrease occurs for the cation Mg2+. The contradicted trends seem to be affected by the cation valency other than the process phenomenon such as the concentration polarization.The permeate flux might affect the intrapore electrokinetic effect by its contribution to the slip plane movement of the adsorption layer. The absolute value ofXdtends to decrease as the permeate flux increases.This deserves attention in the future modeling. On the other hand,Xdvalue is intensively dependent on the cation pattern.Xdis negative for the monovalent ion but positive for the divalent ion. The trend is similar to the reports in literature [17, 28]. TheXdvariation is likely caused by the ionic adsorption that changes with the ion valency. And, theXdvalue for the Mg2+/Li+/Cl-mixture is between those for Mg2+and Li+systems. The component Mg2+preponderates for the charge density, but with the limited data, no evident linearity is found among them yet.

    Figure 6 Dependency of intrapore charge density on flux○ Ni+; △ Li+; □ Mg2+; ▽ Mg2+/Li+

    The Donnan potential at the pore entrance shown in Fig. 7 also changes with the permeation flux. The linearity is good but the slope and the intercept change with ion pattern. The positive slope for the monovalent ions and the negative one for the divalent cations show the diversion of the charge property. This is similar with the dependence of the streaming potential on the driving pressure, which is also linearly related [32].

    5 CONCLUSIONS

    A DK brand membrane was used to investigate the possibility of separating Li+from the Mg2+/Li+mixture. The prediction with the DSPM model was carried out for an extending analysis. Within the concerned concentration range, the Mg2+/Li+ratio and the Li+concentration were found basically not affecting their separation factor, while the working pressure, or the permeation flux, seemed significant. Higher driving pressure helped raising separation potential. The limitingSFof 0.31 was technically possible for richen Li+with membrane technologies. Actually, the integral membrane process design was able to facilitate a high Li+recovery at a relatively high purity. The data analysis disclosed the dependence of the intrapore membrane charge density on ion pattern, ion concentration and driving pressure force. The empirical expression ofXdfor the mixed electrolyte solution is still necessary for the probe of the separation possibility.

    NOMENCLATURE

    cconcentration, g·L-1

    Di,∞bulk diffusion coefficient, m2·s-1

    Jvvolumetric permeate flux, m·s-1

    Δppressure on both sides of the membrane

    qempirical parameter, mol·m-3

    Rrejection

    R2correlation coefficient

    rpeffective membrane pore radius, m

    rsstokes radius, m

    sempirical parameter

    SFseparation factor

    Xdeffective membrane charge density, mol·m-3

    zionic valence

    Δx/Akeffective membrane thickness, m

    0-feed side

    1 Waypa, J.J., Elimelech, M., Hering, J.G., “Arsenic removal by RO and NF membranes”,J.Am.Water Works Assoc., 89, 102 (1997).

    2 van der Bruggen, B., Vandecasteele, C., “Modelling of the retention of uncharged molecules with nanofiltration”,Water Res., 36, 1360-1368(2002).

    3 Scarpello, J. T., Nair, D., Freitas dos Santos, L. M., White, L. S.,Livingston, A. G., “The separation of homogeneous organometallic catalysts using solvent resistant nanofiltration”,J.Membr.Sci., 203,71 (2002).

    4 van der Bruggen, B., Vandecasteele, C., “Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry”,Environ.Pollut.,122, 435 (2003).

    5 Watari, K., Kobayashi, M., “Filtration method of absorptive liquid for freezer/cooling-heating device and filter cartridge”, JP. Pat.,09150040 (1997).

    6 Riffat, S.B., Su, Y.H., “A novel absorption refrigeration cycle using centrifugal reverse osmosis”,J.Inst.Energ., 74, 66-69 (2001).

    7 Xuan, B.M., “Lithium bromide absorption refrigerator with membrane separation unit for concentrating”, CN. Pat., 1645012 (2005).

    8 Wen, X.M., Ma, P.H., Zhu, C.L., He, Q., Deng, X.C., “Preliminary study on recovering lithium chloride from lithium- containing waters by nanofiltration”,Sep.Purif.Technol., 49, 230-236 (2006).

    9 Sabate, J., Labanda, J., Llorens, J., “Influence of coion and counterion size on multi-ionic solution nanofiltration”,J.Membr.Sci., 345,298-304 (2009).

    10 Bowen, W.R., Welfoot, J.S., “Modeling the performance of membrane nanofiltration-critical assessment and model development”,Chem.Eng.Sci., 57, 1121-1137 (2002).

    11 Yang, G., Xing, W.H., Xu, N.P., “Concentration polarization in spiral-wound nanofiltration membrane elements”,Desalination, 154,89-99 (2003).

    12 Levenstein, R., Hasson, D., Semiat, R., “Utilization of the Donnan effect for improving electrolyte separation with nanofiltration membranes”, J. Membr. Sci., 116, 77-92 (1996).

    13 Wang, X.L., Tsuru, T., Togoh, M., Nakao, S., Kimura, S., “The electrostatic and steric-hindrance model for the transport of charged solutes through nanofiltration membrane”, J. Membr. Sci., 135, 19-32(1997).

    14 Ismail, A.F., Hassan, A.R., “The deduction of fine structural details of asymmetric nanofiltration membranes using theoretical models”,J. Membr. Sci., 231 (1/2), 25-36 (2004).

    15 Ahmad, A.L., Chong, M.F., Bhatia, S., “Mathematical modeling and simulation of the multiple solutes system for nanofiltration process”,J. Membr. Sci., 253 (1-2), 103-115 (2005).

    16 Sabatea, J., Labandab, J., Llorensb, J., “Influence of coion and counterion size on multi-ionic solution nanofiltration”, J. Membr.Sci., 345, 298-304 (2009).

    17 Bowen, W.R., Mukhtar, H., “Characterisation and prediction of separation performance of nanofiltration membranes”, J. Membr.Sci., 112, 263-274 (1996).

    18 Bowen, W. R., Mohammad, A. W., “Diafiltration by nanofiltration:Prediction and optimization”, AIChE J., 44,1799-1812(1998).

    19 Bandini, S., Vezzani, D., “Nanofiltration modeling: the role of dielectric exclusion in membrane characterization”, Chem. Eng. Sci.,58, 3303-3326 (2003).

    20 Szymczyk, A., Fatin-Rouge, N., Fievet, P., Ramseyer, C., Vidonne.,A., “Identification of dielectric effects in nanofiltration of metallic salts”, J. Membr. Sci., 287, 102-110 (2007).

    21 Szymczyk, A., Fievet, P., “Investigating transport properties of nanofiltration membranes by means of a steric, electric and dielectric exclusion model”, J. Membr. Sci., 252, 77-88 (2005).

    22 Mohammad, A.W., Takriff, M.S., “Predicting flux and rejection of multicomponent salts mixture in nanofiltration membranes”, Desalination, 157, 105-111 (2003).

    23 Santafe-Moros, A., Gozálvez-Zafrilla, J.M., Lora-Garcia, J., “Applicability of the DSPM with dielectric exclusion to a high rejection nanofiltration membrane in the separation of nitrate solutions”, Desalination, 221, 268-276 (2008).

    24 Childress, A.E., Elimelech, M., “Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes”, J. Membr. Sci., 119, 253-268 (1996).

    25 Schaep, J., Bowen, W.R., “Modelling the retention of ionic components for different nanofiltration membranes”, Sep. Purif. Technol.,22-23, 169-179 (2001).

    26 Bowen, W.R., Cassey, B., Jones, P., Oatley, D.L., “Modelling the performance of membrane nanofiltration-application to an industrially relevant separation”, J. Membr. Sci., 242, 211-220 (2004).

    27 Hussain, A.A., Nataraj, S.K., Abashar, M.E.E., Al-Mutaz, I.S., Aminabhavi, T.M., “Prediction of physical properties of nanofiltration membranes using experiment and theoretical models”, J. Membr.Sci., 310, 321-336 (2008).

    28 Kovacsa, Z., Discacciati, M., Samhaber, W., “Modeling of batch and semi-batch membrane filtration processes”, J. Membr. Sci., 327,164-173 (2009).

    29 Szymczyk, A., Sba, M., Fievet, P., Vidonne, A., “Transport properties and electrokinetic characterization of an amphoteric nanofilter”,Langmuir, 22, 3910-3919 (2006).

    30 Szymczyk, A., Fatin-Rouge, N., Fievet, P., “Tangential streaming potential as a tool in modeling of ion transport through nanoporous membranes”, J. Colloid Interf. Sci., 309, 245-252 (2007).

    31 Sharma, R. R., Chellam, S., “Temperature and concentration effects on electrolyte transport across porous thin-film composite nanofiltration membranes: Pore transport mechanisms and energetics of permeation”, J. Colloid Interf. Sci., 298, 327-340 (2006).

    32 Fievet, P., Sba, M., Szymczyk, A., “Analysis of the pressure-induced potential arising across selective multilayer membranes”, J. Membr.Sci., 264, 1-12 (2005).

    猜你喜歡
    楊剛南平
    Simulation of gas–liquid two-phase flow in a flow-focusing microchannel with the lattice Boltzmann method
    疑點(diǎn)重重的“妻子”
    徐南平一行到晉中國家農(nóng)高區(qū)調(diào)研
    南平:婦聯(lián)干部當(dāng)好“五員”助力婦女脫貧增收
    海峽姐妹(2020年6期)2020-07-25 01:26:04
    改革開放初期,南平紡織廠女工在紡紗。
    追查
    一把鋼釘毀人生
    做人與處世(2014年8期)2014-07-17 05:40:26
    暖春
    金山(2012年5期)2012-04-29 00:44:03
    Effect of the Para-substituent of the Tridentate Pyridine-based Ru(II) Complex upon the Catalytic Activity in Transfer Hydrogenation*
    Model Study on a Submerged Catalysis/Membrane Filtration System for Phenol Hydroxylation Catalyzed by TS-1*
    亚洲片人在线观看| 午夜日韩欧美国产| 亚洲 欧美 日韩 在线 免费| 婷婷六月久久综合丁香| 51午夜福利影视在线观看| tocl精华| 国产人伦9x9x在线观看| 黄网站色视频无遮挡免费观看| 男女下面进入的视频免费午夜 | 天堂√8在线中文| 国产av精品麻豆| 中亚洲国语对白在线视频| 黄片大片在线免费观看| 天天添夜夜摸| 免费搜索国产男女视频| 久久九九热精品免费| 日本一区二区免费在线视频| 色综合欧美亚洲国产小说| 久久久久精品国产欧美久久久| 国内精品久久久久精免费| 精品国产乱子伦一区二区三区| 国产1区2区3区精品| 亚洲va日本ⅴa欧美va伊人久久| 少妇 在线观看| 亚洲国产高清在线一区二区三 | ponron亚洲| 中文字幕人妻丝袜一区二区| 欧美色视频一区免费| 制服人妻中文乱码| 身体一侧抽搐| АⅤ资源中文在线天堂| 精品国产一区二区久久| 一本综合久久免费| 久久久国产欧美日韩av| 久久久水蜜桃国产精品网| 色播亚洲综合网| 欧美人与性动交α欧美精品济南到| 日本a在线网址| 日韩大码丰满熟妇| 国内精品久久久久精免费| 亚洲国产高清在线一区二区三 | 美女高潮到喷水免费观看| 好男人在线观看高清免费视频 | 国产99白浆流出| 亚洲成人国产一区在线观看| 精品欧美国产一区二区三| 九色国产91popny在线| 午夜激情av网站| avwww免费| 男女下面插进去视频免费观看| 中出人妻视频一区二区| 777久久人妻少妇嫩草av网站| 在线观看一区二区三区| 亚洲黑人精品在线| 国产精品久久电影中文字幕| 亚洲 欧美 日韩 在线 免费| 成人免费观看视频高清| 久久久国产成人精品二区| 国产亚洲精品一区二区www| 男人舔女人的私密视频| 亚洲精品粉嫩美女一区| 97超级碰碰碰精品色视频在线观看| 午夜日韩欧美国产| 午夜影院日韩av| 免费看美女性在线毛片视频| 老司机福利观看| 欧美性长视频在线观看| 丰满的人妻完整版| 男人操女人黄网站| 在线观看舔阴道视频| 91字幕亚洲| 亚洲男人天堂网一区| 色播亚洲综合网| 99在线视频只有这里精品首页| 久久久国产成人精品二区| 日本撒尿小便嘘嘘汇集6| 91大片在线观看| 啦啦啦观看免费观看视频高清 | 亚洲成人精品中文字幕电影| 午夜福利,免费看| 亚洲人成77777在线视频| 国产成人精品无人区| 亚洲五月天丁香| 操美女的视频在线观看| 两个人看的免费小视频| 一本大道久久a久久精品| 不卡一级毛片| 日本 av在线| 色综合站精品国产| 免费看十八禁软件| 最新在线观看一区二区三区| 日韩大尺度精品在线看网址 | 国产区一区二久久| 欧美精品亚洲一区二区| 亚洲精品美女久久av网站| 午夜精品久久久久久毛片777| 亚洲 欧美一区二区三区| 97碰自拍视频| 欧美在线一区亚洲| 高潮久久久久久久久久久不卡| 身体一侧抽搐| 搡老妇女老女人老熟妇| 国产激情久久老熟女| 一级a爱视频在线免费观看| 宅男免费午夜| 精品欧美国产一区二区三| 看片在线看免费视频| 国产精品久久久久久亚洲av鲁大| 啪啪无遮挡十八禁网站| 亚洲天堂国产精品一区在线| 97碰自拍视频| 久久天躁狠狠躁夜夜2o2o| 最新美女视频免费是黄的| 精品一区二区三区视频在线观看免费| 欧美日本中文国产一区发布| 少妇的丰满在线观看| 美女国产高潮福利片在线看| 天堂动漫精品| 在线av久久热| 真人做人爱边吃奶动态| 国产午夜福利久久久久久| 窝窝影院91人妻| 国产伦人伦偷精品视频| av福利片在线| 99精品在免费线老司机午夜| 亚洲精品中文字幕在线视频| 久久天堂一区二区三区四区| 国产精品久久久人人做人人爽| 丝袜美腿诱惑在线| 免费在线观看黄色视频的| 国内精品久久久久精免费| 国产精品免费视频内射| 久久狼人影院| 男女下面插进去视频免费观看| 这个男人来自地球电影免费观看| 久久伊人香网站| 亚洲专区国产一区二区| 色综合亚洲欧美另类图片| 满18在线观看网站| 亚洲第一欧美日韩一区二区三区| 亚洲 欧美一区二区三区| 老司机在亚洲福利影院| 日本欧美视频一区| 极品教师在线免费播放| av网站免费在线观看视频| 后天国语完整版免费观看| 在线视频色国产色| 国产三级黄色录像| www.www免费av| 给我免费播放毛片高清在线观看| 色尼玛亚洲综合影院| 757午夜福利合集在线观看| 最好的美女福利视频网| 日韩三级视频一区二区三区| 午夜免费激情av| 国产激情久久老熟女| 久久精品亚洲熟妇少妇任你| 最好的美女福利视频网| 亚洲精品粉嫩美女一区| 精品欧美一区二区三区在线| 一进一出抽搐gif免费好疼| 精品国产乱码久久久久久男人| 亚洲国产精品久久男人天堂| 国产精品久久久久久亚洲av鲁大| 啪啪无遮挡十八禁网站| 精品国产国语对白av| 国产又色又爽无遮挡免费看| 后天国语完整版免费观看| 香蕉久久夜色| 国产精品二区激情视频| 中出人妻视频一区二区| 一区二区三区高清视频在线| 国产精品久久久久久人妻精品电影| 国产精品一区二区免费欧美| 波多野结衣高清无吗| 久久久久久久精品吃奶| 一区二区三区国产精品乱码| 中文字幕人成人乱码亚洲影| 国产成人av教育| 岛国在线观看网站| 亚洲片人在线观看| 久久人妻福利社区极品人妻图片| e午夜精品久久久久久久| 美国免费a级毛片| 国产真人三级小视频在线观看| 亚洲成av人片免费观看| 亚洲一区中文字幕在线| 男女下面进入的视频免费午夜 | 男女下面进入的视频免费午夜 | 久久久久久久久久久久大奶| 黄片播放在线免费| 国产一区在线观看成人免费| 日韩有码中文字幕| 亚洲中文字幕日韩| 日本a在线网址| 亚洲在线自拍视频| 精品一品国产午夜福利视频| 桃色一区二区三区在线观看| 12—13女人毛片做爰片一| 亚洲欧美一区二区三区黑人| 91精品国产国语对白视频| 国产真人三级小视频在线观看| 禁无遮挡网站| 国产乱人伦免费视频| 久久精品影院6| 成人国语在线视频| 麻豆久久精品国产亚洲av| 19禁男女啪啪无遮挡网站| 成人亚洲精品av一区二区| 精品一区二区三区视频在线观看免费| 亚洲国产精品成人综合色| 日日爽夜夜爽网站| 18禁国产床啪视频网站| 日韩一卡2卡3卡4卡2021年| av免费在线观看网站| 成人免费观看视频高清| 黄色a级毛片大全视频| 亚洲欧美日韩无卡精品| 欧美日韩福利视频一区二区| 亚洲三区欧美一区| 电影成人av| 91精品国产国语对白视频| 国产蜜桃级精品一区二区三区| 69精品国产乱码久久久| 亚洲精品一卡2卡三卡4卡5卡| 琪琪午夜伦伦电影理论片6080| 欧美中文综合在线视频| 久久国产乱子伦精品免费另类| 青草久久国产| 老司机在亚洲福利影院| 日本 欧美在线| 国产高清videossex| 久久欧美精品欧美久久欧美| 国产熟女午夜一区二区三区| 怎么达到女性高潮| 亚洲av成人不卡在线观看播放网| 一个人免费在线观看的高清视频| 久久久国产成人精品二区| 国产伦一二天堂av在线观看| 国产成人系列免费观看| 亚洲aⅴ乱码一区二区在线播放 | 宅男免费午夜| 欧美成狂野欧美在线观看| 91精品国产国语对白视频| 日本五十路高清| 亚洲精品中文字幕一二三四区| 国产又爽黄色视频| 欧美日本中文国产一区发布| 久久天躁狠狠躁夜夜2o2o| 免费久久久久久久精品成人欧美视频| 一边摸一边抽搐一进一出视频| 午夜免费成人在线视频| 大陆偷拍与自拍| 三级毛片av免费| 亚洲av片天天在线观看| 国产精品久久久久久亚洲av鲁大| 90打野战视频偷拍视频| 非洲黑人性xxxx精品又粗又长| 午夜日韩欧美国产| 久久久久久免费高清国产稀缺| 国产成年人精品一区二区| 在线观看午夜福利视频| 精品一区二区三区av网在线观看| 999久久久精品免费观看国产| 久久中文看片网| 一本久久中文字幕| 可以在线观看毛片的网站| 每晚都被弄得嗷嗷叫到高潮| 国产午夜精品久久久久久| 在线观看免费午夜福利视频| 久久国产亚洲av麻豆专区| 精品人妻1区二区| 日本免费a在线| 欧美乱妇无乱码| 亚洲在线自拍视频| 在线观看www视频免费| 国产精品免费一区二区三区在线| 大香蕉久久成人网| 多毛熟女@视频| 变态另类成人亚洲欧美熟女 | 亚洲午夜理论影院| 女人高潮潮喷娇喘18禁视频| 国产精品自产拍在线观看55亚洲| 亚洲欧美激情综合另类| 可以在线观看毛片的网站| 少妇粗大呻吟视频| 日本精品一区二区三区蜜桃| 黄色片一级片一级黄色片| 波多野结衣巨乳人妻| 777久久人妻少妇嫩草av网站| 国产免费av片在线观看野外av| 国产精品 国内视频| 国产片内射在线| 亚洲中文字幕一区二区三区有码在线看 | 中文字幕av电影在线播放| 999久久久国产精品视频| 免费在线观看完整版高清| tocl精华| 我的亚洲天堂| 每晚都被弄得嗷嗷叫到高潮| 欧美黑人精品巨大| 免费搜索国产男女视频| 精品日产1卡2卡| 成年版毛片免费区| 精品国产美女av久久久久小说| 国产精华一区二区三区| 国产成人av激情在线播放| 999精品在线视频| 女性生殖器流出的白浆| 极品人妻少妇av视频| 又黄又粗又硬又大视频| 精品国产一区二区三区四区第35| 亚洲国产精品成人综合色| 久久伊人香网站| 日韩中文字幕欧美一区二区| 黄片小视频在线播放| av福利片在线| 在线国产一区二区在线| 午夜福利18| 亚洲一码二码三码区别大吗| 免费久久久久久久精品成人欧美视频| 国产精品国产高清国产av| 国产91精品成人一区二区三区| 国产色视频综合| 嫁个100分男人电影在线观看| 可以免费在线观看a视频的电影网站| 岛国在线观看网站| 成人三级黄色视频| 99国产精品一区二区蜜桃av| 法律面前人人平等表现在哪些方面| 超碰成人久久| 亚洲第一青青草原| 国产精华一区二区三区| 久久青草综合色| 国产野战对白在线观看| 免费观看人在逋| 性欧美人与动物交配| 91在线观看av| 老熟妇仑乱视频hdxx| 天堂动漫精品| 这个男人来自地球电影免费观看| 怎么达到女性高潮| 老汉色∧v一级毛片| 国产成人系列免费观看| 两个人视频免费观看高清| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品一卡2卡三卡4卡5卡| 国产av一区二区精品久久| 欧美成人一区二区免费高清观看 | 成人国语在线视频| 国产成+人综合+亚洲专区| 午夜免费成人在线视频| 国产伦人伦偷精品视频| 欧美日韩亚洲国产一区二区在线观看| 免费观看精品视频网站| 纯流量卡能插随身wifi吗| 亚洲欧美一区二区三区黑人| 桃色一区二区三区在线观看| 久久久久久久久中文| 午夜免费成人在线视频| 午夜亚洲福利在线播放| 亚洲第一欧美日韩一区二区三区| 搞女人的毛片| 在线观看一区二区三区| 久久天躁狠狠躁夜夜2o2o| 精品第一国产精品| 久久婷婷成人综合色麻豆| 亚洲午夜理论影院| 亚洲国产精品sss在线观看| 亚洲七黄色美女视频| 最新美女视频免费是黄的| 色哟哟哟哟哟哟| 色综合站精品国产| 欧美乱妇无乱码| 午夜日韩欧美国产| 国产av在哪里看| 性色av乱码一区二区三区2| 亚洲男人的天堂狠狠| 国产成人欧美| 国产av精品麻豆| 亚洲欧美精品综合久久99| 国产精品亚洲一级av第二区| 久久久久久久午夜电影| 国产成人欧美在线观看| 超碰成人久久| 久久中文看片网| 在线观看日韩欧美| 欧美性长视频在线观看| 日韩 欧美 亚洲 中文字幕| 一级,二级,三级黄色视频| 国产人伦9x9x在线观看| 色婷婷久久久亚洲欧美| 日本 av在线| 一级片免费观看大全| 久久人人爽av亚洲精品天堂| 少妇粗大呻吟视频| 欧美在线一区亚洲| 国产aⅴ精品一区二区三区波| 午夜视频精品福利| 午夜亚洲福利在线播放| 精品日产1卡2卡| 亚洲精品中文字幕在线视频| 久久中文字幕人妻熟女| 多毛熟女@视频| 中文亚洲av片在线观看爽| 精品久久久久久久毛片微露脸| 欧美中文综合在线视频| 亚洲精品国产区一区二| 亚洲性夜色夜夜综合| 亚洲av电影不卡..在线观看| 在线观看www视频免费| 日韩欧美免费精品| 精品一区二区三区av网在线观看| 神马国产精品三级电影在线观看 | 国产伦一二天堂av在线观看| 亚洲片人在线观看| 精品欧美国产一区二区三| 国产伦一二天堂av在线观看| 国产精品久久久人人做人人爽| 香蕉国产在线看| 色婷婷久久久亚洲欧美| 老汉色av国产亚洲站长工具| 性少妇av在线| 亚洲 欧美 日韩 在线 免费| 国产伦人伦偷精品视频| 婷婷丁香在线五月| 国产亚洲精品久久久久久毛片| 色综合站精品国产| 欧美久久黑人一区二区| 大型黄色视频在线免费观看| 亚洲一码二码三码区别大吗| 成人精品一区二区免费| 久久中文字幕人妻熟女| 91精品三级在线观看| 午夜久久久在线观看| 精品一区二区三区视频在线观看免费| 免费看美女性在线毛片视频| 九色国产91popny在线| 午夜福利18| tocl精华| 手机成人av网站| 国产一区二区在线av高清观看| 国产亚洲欧美98| 亚洲中文字幕一区二区三区有码在线看 | 亚洲精品在线观看二区| 18美女黄网站色大片免费观看| 精品国产国语对白av| 精品人妻在线不人妻| 无人区码免费观看不卡| 在线观看66精品国产| 免费观看人在逋| 怎么达到女性高潮| 国产精品久久久久久精品电影 | 美女 人体艺术 gogo| 欧美国产精品va在线观看不卡| 久久香蕉国产精品| 九色国产91popny在线| 久久人人精品亚洲av| 麻豆国产av国片精品| 亚洲五月色婷婷综合| 久久中文字幕人妻熟女| 久久热在线av| 久久亚洲精品不卡| 久久草成人影院| 亚洲 国产 在线| 国产亚洲av嫩草精品影院| 超碰成人久久| 成人免费观看视频高清| 黄片播放在线免费| 国产91精品成人一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 欧美日本亚洲视频在线播放| 亚洲人成电影免费在线| 午夜两性在线视频| 国产精品 国内视频| 欧美乱码精品一区二区三区| 国产一区二区三区综合在线观看| 法律面前人人平等表现在哪些方面| 久久久国产欧美日韩av| 国产成人一区二区三区免费视频网站| 亚洲中文字幕一区二区三区有码在线看 | 国产片内射在线| 好男人电影高清在线观看| 十八禁人妻一区二区| 不卡av一区二区三区| 久久久国产精品麻豆| 亚洲情色 制服丝袜| 国产精品香港三级国产av潘金莲| 免费在线观看亚洲国产| 每晚都被弄得嗷嗷叫到高潮| 久久久久九九精品影院| 亚洲最大成人中文| 欧美日韩乱码在线| 国产精品亚洲一级av第二区| 国产免费av片在线观看野外av| 亚洲第一欧美日韩一区二区三区| av天堂在线播放| 一级作爱视频免费观看| 国产亚洲精品久久久久久毛片| 18禁美女被吸乳视频| 男男h啪啪无遮挡| 欧美黄色片欧美黄色片| 日本在线视频免费播放| 搡老岳熟女国产| av片东京热男人的天堂| 亚洲av成人不卡在线观看播放网| 国产熟女午夜一区二区三区| 一区二区三区高清视频在线| 午夜免费激情av| 亚洲五月色婷婷综合| 麻豆av在线久日| 亚洲色图av天堂| 久久亚洲真实| 手机成人av网站| 国产精品久久久久久人妻精品电影| 精品久久久精品久久久| 女生性感内裤真人,穿戴方法视频| 在线av久久热| 久久久国产欧美日韩av| 精品一区二区三区四区五区乱码| 女人被躁到高潮嗷嗷叫费观| 成人手机av| 日韩中文字幕欧美一区二区| 一个人观看的视频www高清免费观看 | 亚洲精品久久国产高清桃花| 一二三四在线观看免费中文在| 久久天躁狠狠躁夜夜2o2o| 免费无遮挡裸体视频| 亚洲精品中文字幕一二三四区| 好看av亚洲va欧美ⅴa在| 日韩三级视频一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 亚洲成av片中文字幕在线观看| 91老司机精品| 午夜a级毛片| 国产精品 欧美亚洲| 亚洲精品久久成人aⅴ小说| 美女扒开内裤让男人捅视频| 精品一品国产午夜福利视频| 99精品欧美一区二区三区四区| 校园春色视频在线观看| 波多野结衣高清无吗| tocl精华| 国产欧美日韩一区二区三区在线| 18禁裸乳无遮挡免费网站照片 | 亚洲欧美日韩高清在线视频| 长腿黑丝高跟| 久久 成人 亚洲| 国产一区二区激情短视频| 啦啦啦观看免费观看视频高清 | 两个人看的免费小视频| 国产主播在线观看一区二区| 伦理电影免费视频| 国产精品久久久久久精品电影 | 欧美最黄视频在线播放免费| 久久精品影院6| 可以在线观看毛片的网站| 色综合站精品国产| 精品久久久久久久人妻蜜臀av | 日本撒尿小便嘘嘘汇集6| 亚洲美女黄片视频| 操美女的视频在线观看| 亚洲自拍偷在线| 精品午夜福利视频在线观看一区| 99re在线观看精品视频| 成人亚洲精品av一区二区| 97人妻精品一区二区三区麻豆 | 老鸭窝网址在线观看| 久久久久国产精品人妻aⅴ院| 满18在线观看网站| 女同久久另类99精品国产91| 国产色视频综合| 久久婷婷成人综合色麻豆| 99香蕉大伊视频| 韩国精品一区二区三区| 日韩有码中文字幕| 国产精品影院久久| 在线av久久热| 国产真人三级小视频在线观看| 亚洲av电影不卡..在线观看| 国产私拍福利视频在线观看| 正在播放国产对白刺激| 美女高潮喷水抽搐中文字幕| 国产99久久九九免费精品| 亚洲无线在线观看| 女人爽到高潮嗷嗷叫在线视频| 国产伦人伦偷精品视频| 亚洲欧美精品综合一区二区三区| 国产精品 国内视频| 悠悠久久av| 日本撒尿小便嘘嘘汇集6| av欧美777| 久久热在线av| 国产精品自产拍在线观看55亚洲| 天天一区二区日本电影三级 | 欧美国产精品va在线观看不卡| 欧美在线一区亚洲| 亚洲午夜精品一区,二区,三区| 久久精品成人免费网站| 亚洲中文字幕日韩| 18禁黄网站禁片午夜丰满| 免费看a级黄色片| 欧美中文综合在线视频| 他把我摸到了高潮在线观看| 99久久国产精品久久久| 日本欧美视频一区| 欧美中文综合在线视频| 男女床上黄色一级片免费看| 一级毛片高清免费大全| 91av网站免费观看| 一级黄色大片毛片| 久久九九热精品免费| 久久久久亚洲av毛片大全| 老司机午夜十八禁免费视频| 亚洲国产精品sss在线观看|