• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simulation of gas–liquid two-phase flow in a flow-focusing microchannel with the lattice Boltzmann method

    2023-12-02 09:22:42KaiFeng馮凱GangYang楊剛andHuichenZhang張會(huì)臣
    Chinese Physics B 2023年11期
    關(guān)鍵詞:楊剛

    Kai Feng(馮凱), Gang Yang(楊剛), and Huichen Zhang(張會(huì)臣)

    Naval Architecture and Ocean Engineering College,Dalian Maritime University,Dalian 116026,China

    Keywords: two-phase flow,lattice Boltzmann method,pressure drop,flow-focusing microchannel

    1.Introduction

    Gas–liquid two-phase flow in a microchannel is of crucial importance in industrial applications.Extensive studies on the two-phase flow have been conducted.[1–3]

    The flow pattern and pressure drop affect the dynamic characteristics of two-phase flow significantly.Different flow patterns can be obtained by controlling the gas–liquid flow rate.[4]Among all the flow patterns, slug flow attracts more attention because of its broad operating conditions and applications.[5,6]The formation of a bubble is under the combined effect of inertia force, viscous force, and surface tension.The capillary number is a vital parameter that affects the generation of bubbles.[7]The length of a bubble can be measured by image observation,which is found to be proportional to the gas–liquid flow rate ratio.The pressure drop gradient can be predicted by correlations based on the homogeneous and separated flow models.[8]To achieve higher prediction accuracy,the two-phase flow pattern should be considered.[9,10]The shear-thinning characteristics of the fluid affect the flow pattern and the pressure drop.The unique flow patterns are observed in the shear-thinning fluid.[11]

    Numerical simulation gives information on the flow and pressure fields, which can supplement experimental research and explain the causes of physical phenomena.The lattice Boltzmann method (LBM) has potential applications in multiphase flow simulation because of its advantages of natural parallelism and dealing with complex boundaries.The color gradient[12]and pseudo-potential models[13]are developed to deal with the multiphase flow during the last three decades.Extensive studies have been carried out with these multiphase LBM.However, it is difficult to achieve a large density ratio because of the numerical instability.For a gas–liquid system, the density ratio is 1:800.The phase-field model is a useful tool to deal with the multiphase flow problems, which consists of the classic Navier–Stokes equations and the Cahn–Hilliard or Allen–Cahn equation.[14]With a suitable forcing scheme,the phase-field model can recover the full set of thermohydrodynamic equations for the nonideal fluids[15]and reduce the numerical dispersion.[16]Zhenget al.[17]proposed a phase-field model with a density ratio of 1:1000.In the phase-field model,two distribution functions are employed to calculate the flow field and capture the gas–liquid interface,respectively.It was developed to simulate the impact characteristics of the droplets by Maet al.[18]However,the average gas–liquid density rather than the actual gas–liquid density is used in the model to calculate the Navier–Stokes equation,resulting in a difference in the pressure results with the natural gas–liquid system.Lianget al.[19]developed a new highdensity ratio model with high numerical stability, which can reasonably simulate the gas–liquid system by setting a proper external force distribution function.

    The two-phase flow pattern can be captured, while the formation mechanism of the flow pattern is not fully understood.The two-phase pressure drop can be measured on a macroscale and predicted with empirical correlations.However, the mechanism of pressure drop needs to be clarified.The phase-field LBM involving non-Newtonian fluid has not yet been used to simulate the two-phase flow in a flowfocusing junction.This study focuses on the bubble formation and pressure drop in a flow-focusing microchannel.The effects of the gas–liquid flow rate ratio,surface tension,contact angle,and liquid rheological properties are discussed.

    2.Number method

    2.1.Phase-field LBM

    The phase-field LBM improved by Lianget al.[19]is employed to handle the gas–liquid two-phase flow.The distribution functiongi(x,t)is applied to capture the gas–liquid interface,and the evolution equation is given by

    whereuis the fluid velocity,csis the sound speed,wiare the weight factors,w=4/9,w1-4=1/9,w5-8=1/36,andeiare the discrete velocity vectors to neighboring nodes.For a twodimensional nine-velocity model,eiare given by:e=(0,0),ei= (cos[(i-1)π/2], sin[(i-1)π/2)])c, fori= 1–4, andei= (cos[(i-5)π/2+π/4], sin[(i-5)π/2)+π/4])c, fori=5–8,wherecis the lattice speed,c=δx/δt(δxandδtare the lattice spacing and time, respectively).In the phase-field model,φis the order parameter used to distinguish different fluid,which generally takes 1 and 0 in the liquid and gas bulk regions.

    The force termGi(x,t)is given by

    where the subscripts L and G are for liquid and gas phases,respectively.

    The distribution functionfi(x,t) is used for solving the flow field,and the evolution equation is written as

    whereGis body force,μφis the chemical potential,which can be calculated as

    The viscosity of a gas–liquid two-phase system is not a constant value.Linear and inverse linear interpolations of the order parameter were used to determine the viscosity at the interface.[19,20]In present simulation, both the kinematic viscosity and density jump at the interface.To ensure the continuity of the interface, a linear interpolation of the order parameter is used to calculate the dynamic viscosityμof the interface,

    2.2.LBM for non-Newtonian fluid

    The dynamic viscosity for the non-Newtonian fluid is associated with the shear rate tensor.The simplest and most extensively used power-law model is employed to calculate the viscosity

    wherekandnare the consistency coefficient and the flow index,respectively,Dαβis the strain rate tensor.The nonequilibrium part of the distribution function is used to obtain the shear rate tensor,[21,22]and the strain rate tensor can be calculated locally by

    where the subscriptsαandβare Cartesian coordinates.

    The LBM becomes unstable for small relaxation time,and has poor accuracy for large relaxation time.[20]To achieve higher calculating accuracy and stability,the truncated powerlaw model[23]is adopted to set the range of the lattice kinematic viscosity (0.001≤ν ≤3).The truncated power-law model is given by

    The viscosity of a Newtonian fluid is constant.In contrast, the viscosity of a non-Newtonian fluid is not a uniform value.To represent the viscosity of the non-Newtonian fluid,the effective kinematic viscosity (νeff) is employed, which is given by

    HereDis the channel diameter,uLis the superficial liquid velocity.

    2.3.Wetting boundary condition

    The contact angleθcis used to characterize the wettability of the surface based on Young’s equation,[24]which is calculated as

    where the subscript G,L,and S represent the gas,liquid,and solid,respectively.

    The schematic of the lattice nodes near the solid wall is shown in Fig.1.

    For discussing the three-phase contact line, the lattice nodes near the wall are divided into the fluid layer, solid boundaryy=1/2 and ghost layery=0.[25]According to the geometrical relation, the wetting boundary condition is given by[26]

    3.Validation

    The two-phase LBM and wetting boundary condition are validated by simulating the water droplets on solid surfaces with different wettability(θc=30?–150?).A circular droplet is initially arranged on the bottom surface.The gas–liquid density ratio and kinematic viscosity ratio are set to 1:800 and 13:1,respectively.To weaken the numerical diffusion,the interface widthAis 5 lattice units.For numerical stability, the mobilityMand kinematic viscosityνare set to:M=0.08,νL=0.1.For simplicity, the density of the gas phase is set to 1.The periodic boundary condition is imposed at the left and right boundaries, while the halfway bounce-back boundary condition is applied to the top and bottom boundaries.The wettability of the solid surface was approached by setting the normal component of the order parameter gradient(see Eqs.(21)–(24)).

    The simulation domains are set to 120×48,160×64,and 200×80.The corresponding initial droplet diameters are 36,48, and 60 lattice units, respectively.Numerical simulations are conducted in different simulation domains.The simulation contact angles can be evaluated byθsc=2arctan(2h/L),Landhare the spreading length and the height of the droplet,respectively.[25]The simulation contact anglesθscat different simulation domains are list in Table 1.

    Theoretical contact Simulation contact angle(θsc)angle(θtc) 120×48 160×64 200×80 30? 32.5? 32.1? 32.0?60? 61.2? 60.6? 60.6?90? 89.6? 91.0? 91.0?120? 121.? 121.0? 121.5?150? 152.1? 151.7? 152.2?

    The simulation contact angle varies slightly with the variation of the simulation domain.The simulation contact angles agree with the theoretical values,with a root mean square error of 4.3%, 3.6%, and 3.5% for the simulation domains of 120×48,160×64,and 200×80,respectively.It evidences that the wall contact angle can be well simulated by setting the wall order parameter gradient.In addition, the simulation domain of 200×80 can meet the calculation requirements.The simulation results of water drop shapes with different contact angles at the simulation domain of 200×80 are shown in Fig.2.

    In Fig.2,the red part represents a water droplet(φ=1),and the blue part represents the gas phase(φ=0).A dot can be seen in the droplet near the channel wall in Fig.2(a),while it is not a physical phenomenon.The simulation instability occurs in the initial droplet near the three-phase contact line,whenθc=30?.Thus, a small area withφ<1 is observed at the three-phase contact line during calculation.

    In our previous study,the truncated power-law model was validated by simulating the Poiseuille flow of the power-law fluids.In addition, it was employed to simulate the vortex characteristics of the non-Newtonian fluid.[27]

    4.Results and discussion

    The schematic of the flow-focusing microchannel is shown in Fig.3.The gas phase is introduced from the left inlet,and the liquid phase enters the channel from the top and bottom inlets.The two-phase flow is formed at the junction and exits the channel through the right outlet.

    For the physical gas–liquid system, the densities of the gas phase and water are 1.25 kg/m3and 1000 kg/m3, respectively,at the room temperature of 20?C.The gas–liquid density ratio is 1:800.The dynamic viscosities of the gas and liquid phases are 0.0159 mPa·s and 0.97 mPa·s, respectively.[4]The gas–liquid dynamic viscosity ratio is 1:61, and the gas–liquid kinematic viscosity ratio is 13:1 (ν=μ/ρ).In the LBM, the simulation parameters are:ρG= 1,ρL= 800,νL=0.25,νG=3.25,M=0.08,A=5,σ=30.The velocities of the top and bottom liquid inlets are both 0.005.The superficial velocity of the gas inlet is 0.02.The contact angle of the solid wall is set to 90?.The velocity boundary condition is imposed at the inlets.The convective boundary condition is adapted for the outlet.[28]

    Firstly,a grid-independence test is conducted.The widths of the microchannel are 30, 40, 50, and 60 lattice units,with corresponding simulation domains of 720×90,960×120,1200×150, and 1440×180.The dimensionless length of the bubble is used to compare the simulation results of different simulation domains,which is the ratio of the bubble length to the channel width.The dimensionless lengths of bubbles in different simulation domains are list in Table 2.

    Simulation Width of the Dimensionless width domain microchannel of the bubble 720×90 30 1.3 960×120 40 1.6 1200×150 50 1.58 1440×180 60 1.59

    When the simulation domain reaches 1200×150, the dimensionless length of the bubble remains almost unchanged as the simulation domain increases.It indicates that the simulation domain of 150×1200 is suitable for simulating the twophase contact angle problems.The width of the microchannel(D)is 50 lattice units.The lengths of the inlets(L1)are 50 lattice units,and the length of the outlet(L2)is 1100 lattice units.Each lattice space corresponds to 6μm.

    Figure 4 shows the two-phase simulation flow pattern and the pressure along the centerline of the microchannel.

    The slug bubbles are formed in the microchannel.In Fig.4, the blue part represents bubbles (φ=0), and the red part represents the liquid phase (φ=1).The liquid film can be seen between the bubble and the channel wall.Corresponding to the two-phase flow pattern,the two-phase pressure drop includes the pressure drop across the bubble and the pressure drop of the liquid slug.The pressure drop gradient of the liquid slug is constant.In the liquid slug,the pressure in front of the bubble is lower than the pressure behind the bubble.This result is consistent with the unit cell model(see Fig.5),which was employed to calculate the pressure drop of two-phase flow with the flow pattern information.[10]

    The pressure drop gradient of a unit cell is calculated by

    where (dp/dZ)Lis the pressure drop gradient of the liquid slug,pdis the pressure drop across the bubble,LLandLBare the lengths of the liquid slug and bubble,respectively.

    The flow rate ratio,surface tension,wetting property,and rheological characteristics of the liquid phase impact the flow pattern and pressure drop significantly.

    4.1.Effect of flow rate ratio

    The gas–liquid flow rate ratio is a critical parameter in the flow pattern control.The contact angle of the solid wall is set to 90?.At a fixed velocity of the liquid phase 0.01 lattice units,the variation of flow rate ratios is achieved by changing the superficial gas velocity.The range of gas–liquid flow rate ratiocis 1:1–3:1.Figure 6 shows the flow patterns at various flow rate ratios.

    The bubble lengthens with the increase in the flow rate ratio.This agrees with the experimental results.[29]With a small capillary number, the surface tension dominates the viscous force.Thus, bubble generation is mainly controlled by the squeezing regime.The liquid pressure at the junction increases gradually with the liquid flowing into the microchannel from the inlet.When the pressure reaches the cut-off value,the bubble breaks under the squeeze force.The time for reaching the cut-off pressure is constant at a fixed liquid inlet velocity.For a larger flow rate ratio,more gas flows into the forming bubble,resulting in bubble lengthening.

    The velocity of the liquid slug increases with the gas velocity, leading to the increase of the pressure drop across the bubble (see Fig.7(a)).The expansion in liquid slug velocity also results in a rise in the pressure drop gradient in the liquid slug.Consequently,the two-phase pressure drop gradient increases with the flow rate ratio,as shown in Fig.7(b).

    4.2.Effect of surface tension

    The surface tension of the fluid affects the bubble formation significantly.In the simulation, the superficial gas and liquid velocities are 0.02 and 0.01, respectively.The contact angle of the solid wall is set to 90?.The range of surface tension is 20–95.

    Figure 8 shows the formation process of a slug bubble atσ=95.The liquid film between the bubbles and the solid wall disappears.This flow pattern is named as the dry-plug flow by Heravi and Torabi.[30]The viscous force is insufficient to make the gas bubble deform.Thus,the forming bubble moves forward, occupying the cross-section of the microchannel after passing through the junction.The liquid accumulates at the intersection,leading to an expansion in the liquid pressure and the break of the forming bubble at the cross-junction.Similar flow patterns are also obtained by Yuet al.[31]and Shiet al.[32]at small capillary number.Similar to the dot in the contact angle simulation,the dots can be seen in the liquid in Fig.8(d).The simulation instability occurs at the gas–liquid interface when the bubble breaks.Therefore, the small areas withφ<1 are observed in the liquid during calculation.

    As the surface tension decreases,the capillary number increases, and the slug bubbles are formed in the microchannel atσ=50, as shown in Fig.9.The ratio of viscous force to surface tension increases, causing the deformation of the gas–liquid interface.The liquid film is formed.Therefore,the bubble can no longer occupy the channel’s cross-section after passing through the junction.The squeeze force of the liquid at the cross-junction decreases.The bubble breaks at the right side of the junction under the combined effect of the shear and squeeze forces.

    By reducing the surface tension, the capillary number is further increased.Figure 10 shows the bubble formation process in the microchannel atσ=20.front curvature increases.Consequently,the front of the bubble becomes sharper,while the rear becomes blunter with the increase inCa.

    For the dry-plug flow,equation(26)is unsuitable for calculatingpddue to the lack of liquid film.The pressure drop across a dry-plug is related to the three-phase contact line and the contact angle hysteresis.[30]Higher surface tension can hold the liquid slug together and reduce the pressure drop across the plug bubble.Consequently, as the surface tension increases,pdfirst increases and then decreases(see Fig.11(a)).

    The pressure drop gradient of the liquid slug is related to the fluid velocity and independent of the surface tension (see Fig.11(b)).Thus, the relationship between the pressure drop gradient of the unit cell and the surface tension is consistent with the curve of the pressure difference across a bubble.

    With the increase of theCa, the front of the bubble becomes sharper,while the rear becomes blunter.The variation of bubble shape depends on the pressure across the bubblepd,which is related to the surface tension.Thus, the variation of the pressure drop with the surface tension needs to be clarified.The pressure drop across a slug bubblepdincreases with the rise of the surface tension becausepdis positively associated with surface tension,[8]which is expressed as

    With the increase inpd, the Laplace pressure across the rear meniscus decreases, while that across the front meniscus increases.Therefore,the rear curvature decreases,and the

    4.3.Effect of wetting property

    The wetting property of the solid wall is characterized by the contact angle.Different contact angles (θc=30?–150?)can be obtained by adjusting the order parameter near the wall(see Eqs.(21)–(24)).The wettability affects the flow pattern and pressure drop of the two-phase flow by changing the threephase contact line.The superficial gas and liquid velocities are 0.02 and 0.01,respectively.Due to the difference in threephase contact conditions between slug flow and dry-plug flow,the effect of contact angle in these flow patterns are simulated.

    Figure 12 shows the flow pattern of slug flow(σ=50)at different contact angles.

    The stable slug flow can be seen in the microchannel for all contact angles.No obvious three-phase contact line can be seen because of the liquid film.Thus, the contact angle has little influence on the flow pattern.Becauseθchas little effect on the flow pattern,pdis hardly affected byθc(see Fig.13(a)).Asθcincreases,the drag reduction effect is more pronounced.Thus,(dp/dZ)Ldecreases with the increase inθc.As a result,(dp/dZ)TPdecreases with the increase inθc(see Fig.13(b)).

    The dry plug flow is obtained atσ=95.The flow pattern of dry-plug flow under different wall contact angles is shown in Fig.14.

    There are apparent contact lines between the gas, liquid,and solid wall.The liquid film cannot be seen anymore.Therefore, the contact angle impacts the flow pattern significantly.With the rise ofθc, the flow pattern of the bubble changed from a convex shape to a concave shape gradually, and the transformation occurred atθc=90?.

    The convex curvature of the bubble front is greater than that of the rear.However,the concave curvature of the bubble front is less than the rear.These phenomena can be explained by the pressure of a two-phase flow.The relationship between the pressure across the gas–liquid interface and the curvature is determined by the Laplace formula.For the convex shape flow pattern, the pressure in the bubble is higher than in the liquid.Because of the pressure drop along the microchannel,the pressure in the fluid in front of the bubble is less than the pressure behind the bubble.In comparison,the pressure in the bubble is almost constant.The Laplace pressure at the bubble nose is greater than at the bubble rear,so the convex curvature of the bubble nose is larger than that of the bubble rear.For the concave shape flow pattern, the pressure inside the bubble is lower than that in the liquid.The Laplace pressure at the bubble nose is less than that at the bubble rear.Thus, the concave curvature of the bubble front is less than that of the bubble rear.

    The relationships between the pressure drop gradient in the liquid slug and the pressure drop across a dry-plug bubble with the contact angle are shown in Fig.16.The contact angle hysteresis decreases with the rise inθc.Therefore,the pressure drop across a dry-plug bubble falls withθc(see Fig.15(a)).Because of the drag reduction effect of the hydrophobic surface, (dp/dZ)Ldecreases withθc.Since bothpdand(dp/dZ)Ldecrease with the rise inθc,(dp/dZ)TPdecreases with the increase inθc(see Fig.15(b)).In particular,the pressure drop of the two-phase flow in the hydrophobic surface is slightly less than the pressure drop of the singlephase liquid.

    4.4.Effect of non-Newtonian property of the liquid phase

    The non-Newtonian property of the liquid plays an essential role in the two-phase flow pattern and pressure drop.Carboxymethyl cellulose (CMC) solution shows shear-thinning characteristics,which is widely used in industry.In the simulation,the CMC solutions with concentrations of 0.1%,0.2%,and 0.3%(CMC 0.1,CMC 0.2,and CMC 0.3)are used.The physical properties of the CMC solutions are listed in Table 3.[4]

    Liquids Density Consistency Flow index n ρp (kg/m3) coefficient kp (Pa·sn)CMC 0.1 1000.8 0.086 0.63 CMC 0.2 1001.7 0.218 0.57 CMC 0.3 1002.3 0.422 0.53

    In the simulation, the flow index is set to be the same as the physical properties.However, the consistency coefficient should be set according to the shear rate and the effective viscosity.The effective viscosities of the CMC 0.1, 0.2, and 0.3 can be calculated by Eq.(19).For the superficial liquid velocity of 0.1 m/s, the effective viscosities of the CMC 0.1,0.2, and 0.3 are 4.66, 7.56, and 10.67 mPa·s.The simulation consistency coefficient of CMC solutions with different concentrations are determined according to the viscosity ratios of CMC solutions to water.Thus,the simulation consistency coefficientkof the CMC 0.1,0.2,and 0.3 are 89.33,94.67,and 100.00.The superficial gas and liquid velocities are 0.02 and 0.01,respectively.The contact angles of the solid wall are set as 60?,90?,and 120?.

    The flow patterns in different fluids atθc=90?are shown in Fig.16.

    With increased CMC solution concentration, the bubble front lengthens,and the bubble rear becomes flatter.This phenomenon has also been observed in some experiments,and it is explained to be associated with the shear-thinning characteristics of the liquid phase without detailed discussion.[4,11]In fact, it is related to the capillary number of the fluid.The effective viscosity increases with the increase in the CMC solution concentration, leading to increased capillary number.Therefore, the front of bubble turns sharper and longer, and the rear becomes flatter for a larger capillary number,which is discussed in Subsection 4.2.

    The variation of the pressure drop gradient in the liquid slug and the pressure drop across a bubble with the flow index at different contact angles are shown in Fig.17.

    The effective viscosity of the liquid phase decreases with the increase inn, resulting in the reduction ofpdand(dp/dZ)L.Consequently,(dp/dZ)TPdecreases with the flow index.This is consistent with the experimental results.[4]Compared to rheological properties, the effect ofθcon pressure drop is relatively small.Due to the absence of three-phase contact line,the contact angle has almost no effect onpd,and(dp/dZ)Lslightly decreases with the increase inθcbecause of the drag reduction in the hydrophobic surfaces.Therefore,(dp/dZ)TPdecreases with the increase inθcslightly.

    5.Conclusion

    An LBM for gas–liquid two-phase flow involving non-Newtonian fluid is developed.The two-phase flow pattern and pressure drop are analyzed with this method,considering various parameters, including flow rate ratio, surface tension,wetting property, and rheological characteristics of the liquid phase.The numerical results agree well with the experimental results.

    The bubble lengthens with a larger flow rate ratio.The flow pattern transfers from slug flow to dry-plug flow with a sufficiently small capillary number.For the slug flow,θchas little effect on the flow pattern.However,for the dry-plug flow,the front and rear meniscus transfer from convex to concave gradually with the increase inθc.The transformation occurs atθc=90?.The two-phase flow pattern depends on the Laplace pressure across the gas–liquid interface.For the non-Newtonian fluid, the rear of the bubble becomes flatter, and the front becomes sharper for a small flow index,owing to the variation of the capillary number with the flow index.It also shows that the reduced viscosity and increased contact angle are beneficial for the drag reduction of two-phase flow in microchannel.In addition, this work validates the reliability of the developed LBM for simulating the gas–liquid two-phase flow in a microchannel.This method can be utilized to simulate the multiphase problems involving non-Newtonian fluids as well.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China(Grant No.51775077).

    猜你喜歡
    楊剛
    疑點(diǎn)重重的“妻子”
    楊剛:開(kāi)國(guó)大典上的女記者
    婦女(2019年11期)2019-12-09 08:58:18
    追查
    陳永林小小說(shuō)二題
    《人民日?qǐng)?bào)》原副總編輯楊剛為什么自殺
    黨史博覽(2014年12期)2015-04-15 04:53:39
    “狼性”90后創(chuàng)業(yè)者
    一把鋼釘毀人生
    做人與處世(2014年8期)2014-07-17 05:40:26
    暖春
    金山(2012年5期)2012-04-29 00:44:03
    Effect of the Para-substituent of the Tridentate Pyridine-based Ru(II) Complex upon the Catalytic Activity in Transfer Hydrogenation*
    Investigation of Mg2+/Li+ Separation by Nanofiltration*
    国产精品久久视频播放| 精品乱码久久久久久99久播| 亚洲熟妇中文字幕五十中出| 有码 亚洲区| 日韩欧美免费精品| 很黄的视频免费| 国产av一区在线观看免费| 欧美+日韩+精品| 亚洲人成网站在线播放欧美日韩| 最新中文字幕久久久久| 天美传媒精品一区二区| 亚洲一区高清亚洲精品| 成人一区二区视频在线观看| 久久久久久九九精品二区国产| 国产精品一及| 亚洲精品影视一区二区三区av| 国产单亲对白刺激| 两性午夜刺激爽爽歪歪视频在线观看| 97人妻精品一区二区三区麻豆| 成年女人永久免费观看视频| 可以在线观看的亚洲视频| 国产aⅴ精品一区二区三区波| 少妇高潮的动态图| 亚洲美女黄片视频| 国产私拍福利视频在线观看| 床上黄色一级片| 亚洲av一区综合| 日本免费a在线| 午夜精品久久久久久毛片777| 人妻久久中文字幕网| 午夜精品一区二区三区免费看| 在线十欧美十亚洲十日本专区| 久久久久国产精品人妻aⅴ院| 中文在线观看免费www的网站| 免费在线观看亚洲国产| 狂野欧美白嫩少妇大欣赏| 国产亚洲欧美在线一区二区| 精品乱码久久久久久99久播| 亚洲美女视频黄频| 一区二区三区高清视频在线| 可以在线观看的亚洲视频| 国产视频内射| 直男gayav资源| 精品久久久久久久人妻蜜臀av| 又黄又爽又刺激的免费视频.| 非洲黑人性xxxx精品又粗又长| 最后的刺客免费高清国语| 桃色一区二区三区在线观看| 欧美最黄视频在线播放免费| 99视频精品全部免费 在线| 18禁黄网站禁片免费观看直播| 国产伦精品一区二区三区视频9| 欧美一区二区亚洲| 久久天躁狠狠躁夜夜2o2o| 中国美女看黄片| 极品教师在线免费播放| www.999成人在线观看| www日本黄色视频网| 亚洲国产精品999在线| 搡老熟女国产l中国老女人| 青草久久国产| 18禁在线播放成人免费| 美女黄网站色视频| 日韩欧美一区二区三区在线观看| 长腿黑丝高跟| av天堂中文字幕网| 亚洲第一电影网av| 简卡轻食公司| 成人亚洲精品av一区二区| 麻豆av噜噜一区二区三区| 午夜免费男女啪啪视频观看 | 亚洲成人精品中文字幕电影| 欧美成人性av电影在线观看| 日本在线视频免费播放| 全区人妻精品视频| 香蕉av资源在线| 成人无遮挡网站| 日韩欧美国产在线观看| 日韩中文字幕欧美一区二区| 亚洲精品粉嫩美女一区| 97超级碰碰碰精品色视频在线观看| 亚洲中文日韩欧美视频| 搡老岳熟女国产| 69人妻影院| 欧美成人免费av一区二区三区| 99久久九九国产精品国产免费| 男人舔女人下体高潮全视频| 成年人黄色毛片网站| 亚洲精品乱码久久久v下载方式| 亚洲专区国产一区二区| www.999成人在线观看| 精品熟女少妇八av免费久了| 亚洲成av人片在线播放无| 久久欧美精品欧美久久欧美| 亚洲七黄色美女视频| 人妻久久中文字幕网| 亚洲精品一卡2卡三卡4卡5卡| 丰满的人妻完整版| 美女cb高潮喷水在线观看| 久久久久久久亚洲中文字幕 | 国产日本99.免费观看| 欧美日本视频| 欧美bdsm另类| 毛片女人毛片| 99热这里只有是精品50| 每晚都被弄得嗷嗷叫到高潮| 国产国拍精品亚洲av在线观看| 亚洲国产色片| 午夜免费男女啪啪视频观看 | 日韩欧美 国产精品| 免费高清视频大片| 亚洲成a人片在线一区二区| 国产熟女xx| 婷婷色综合大香蕉| 美女cb高潮喷水在线观看| 美女被艹到高潮喷水动态| 欧美+亚洲+日韩+国产| 国产一区二区激情短视频| 51国产日韩欧美| 91九色精品人成在线观看| 亚洲专区中文字幕在线| 亚洲熟妇熟女久久| 高清毛片免费观看视频网站| 国产91精品成人一区二区三区| 婷婷丁香在线五月| 别揉我奶头 嗯啊视频| 亚洲成av人片免费观看| 国产成人a区在线观看| 在线观看舔阴道视频| 女同久久另类99精品国产91| 亚洲精品日韩av片在线观看| 亚洲av免费在线观看| 淫秽高清视频在线观看| 国产精品一区二区三区四区免费观看 | 亚洲欧美日韩卡通动漫| 一个人免费在线观看的高清视频| а√天堂www在线а√下载| 亚洲人与动物交配视频| 在线播放国产精品三级| av黄色大香蕉| 丁香六月欧美| 欧美日韩国产亚洲二区| 亚洲最大成人中文| 又爽又黄a免费视频| 日韩大尺度精品在线看网址| 日韩大尺度精品在线看网址| 亚洲三级黄色毛片| 亚洲第一电影网av| 成人永久免费在线观看视频| 国产毛片a区久久久久| 亚洲中文字幕一区二区三区有码在线看| 午夜福利高清视频| 亚洲最大成人中文| netflix在线观看网站| 成年女人毛片免费观看观看9| 99热6这里只有精品| 欧美色视频一区免费| 好男人在线观看高清免费视频| 特大巨黑吊av在线直播| 日日夜夜操网爽| 欧美日韩瑟瑟在线播放| 最好的美女福利视频网| 亚洲国产欧美人成| 成年人黄色毛片网站| 久久精品国产亚洲av天美| 可以在线观看毛片的网站| 亚洲 欧美 日韩 在线 免费| 美女免费视频网站| 久久久久久大精品| 精品久久久久久久末码| 首页视频小说图片口味搜索| 99热这里只有是精品50| 在线观看舔阴道视频| 一区二区三区高清视频在线| 久久精品国产清高在天天线| 嫩草影院新地址| 美女 人体艺术 gogo| 欧美成人免费av一区二区三区| 高潮久久久久久久久久久不卡| 小说图片视频综合网站| 深夜a级毛片| 欧美性猛交╳xxx乱大交人| 日本一二三区视频观看| 最近最新中文字幕大全电影3| 小说图片视频综合网站| 国产高清激情床上av| 亚洲最大成人av| 毛片一级片免费看久久久久 | 丰满的人妻完整版| 国产伦精品一区二区三区视频9| 精品久久久久久久久av| 久久精品夜夜夜夜夜久久蜜豆| 久久精品国产清高在天天线| 国产高清激情床上av| 亚洲最大成人av| 久久午夜福利片| 亚洲人成伊人成综合网2020| 亚洲三级黄色毛片| 99久久精品热视频| 国内精品久久久久久久电影| 国产精品久久久久久久电影| 制服丝袜大香蕉在线| 高清在线国产一区| 亚洲自拍偷在线| 久久久久国内视频| 特级一级黄色大片| 久久精品影院6| 久久精品国产99精品国产亚洲性色| 在线a可以看的网站| 亚洲精品粉嫩美女一区| 国产又黄又爽又无遮挡在线| 丁香欧美五月| 一级黄片播放器| 在线观看66精品国产| 成年女人永久免费观看视频| 精品久久久久久久久久久久久| 亚洲专区中文字幕在线| 免费观看的影片在线观看| netflix在线观看网站| 香蕉av资源在线| 亚洲最大成人手机在线| 天堂影院成人在线观看| 国产白丝娇喘喷水9色精品| 精品国产三级普通话版| 国产精品久久久久久人妻精品电影| 亚洲欧美日韩高清专用| 国产 一区 欧美 日韩| 国产精品一区二区免费欧美| 在线观看舔阴道视频| 成人永久免费在线观看视频| 欧美日韩综合久久久久久 | 99久久九九国产精品国产免费| 久久精品人妻少妇| 免费高清视频大片| 黄色视频,在线免费观看| 午夜精品在线福利| 色av中文字幕| 99久久精品一区二区三区| 亚洲一区二区三区不卡视频| 他把我摸到了高潮在线观看| 午夜福利成人在线免费观看| av天堂在线播放| 一区二区三区免费毛片| 又黄又爽又免费观看的视频| 亚洲狠狠婷婷综合久久图片| 高清在线国产一区| 18禁黄网站禁片免费观看直播| 成人av在线播放网站| 欧美不卡视频在线免费观看| 成人特级av手机在线观看| 精品人妻一区二区三区麻豆 | 天堂网av新在线| 久久精品国产自在天天线| 国产人妻一区二区三区在| 白带黄色成豆腐渣| 国产精品自产拍在线观看55亚洲| 一本精品99久久精品77| 国产野战对白在线观看| 午夜激情福利司机影院| 欧美一区二区精品小视频在线| 丝袜美腿在线中文| 波多野结衣巨乳人妻| 亚洲美女视频黄频| 亚洲av电影不卡..在线观看| 日本与韩国留学比较| 久久性视频一级片| 变态另类成人亚洲欧美熟女| 欧美性猛交╳xxx乱大交人| 人妻丰满熟妇av一区二区三区| 午夜福利18| 日本一二三区视频观看| 女同久久另类99精品国产91| 中亚洲国语对白在线视频| 亚洲av中文字字幕乱码综合| 少妇的逼好多水| 亚洲国产精品久久男人天堂| 午夜福利欧美成人| 欧美黄色淫秽网站| 成人av一区二区三区在线看| 男人和女人高潮做爰伦理| 99久久九九国产精品国产免费| 亚洲狠狠婷婷综合久久图片| 少妇的逼水好多| 男女之事视频高清在线观看| 久久久久免费精品人妻一区二区| 国产亚洲欧美在线一区二区| 成人美女网站在线观看视频| 久久久久久久久大av| 欧美丝袜亚洲另类 | 精品人妻1区二区| 在现免费观看毛片| 国产视频一区二区在线看| 超碰av人人做人人爽久久| 国产色婷婷99| 亚洲,欧美精品.| 色av中文字幕| 3wmmmm亚洲av在线观看| 成人鲁丝片一二三区免费| 日韩欧美 国产精品| 久久久久九九精品影院| 黄色一级大片看看| av视频在线观看入口| 中文资源天堂在线| 男女床上黄色一级片免费看| 十八禁国产超污无遮挡网站| 香蕉av资源在线| 99热这里只有精品一区| 国产真实伦视频高清在线观看 | 欧美最黄视频在线播放免费| 国产精品,欧美在线| 两人在一起打扑克的视频| 亚洲色图av天堂| 亚洲 欧美 日韩 在线 免费| 好男人电影高清在线观看| 噜噜噜噜噜久久久久久91| 少妇人妻精品综合一区二区 | 少妇熟女aⅴ在线视频| 哪里可以看免费的av片| 亚洲第一电影网av| 欧美在线黄色| 成人性生交大片免费视频hd| 国产精品亚洲一级av第二区| 69人妻影院| 波多野结衣巨乳人妻| 色吧在线观看| 又爽又黄无遮挡网站| 欧美日韩黄片免| av视频在线观看入口| 波多野结衣巨乳人妻| 婷婷六月久久综合丁香| 亚洲久久久久久中文字幕| 午夜影院日韩av| 日韩 亚洲 欧美在线| 欧美日韩瑟瑟在线播放| 观看美女的网站| 日韩欧美在线乱码| 在线免费观看的www视频| xxxwww97欧美| 免费在线观看影片大全网站| 麻豆国产av国片精品| 日韩中文字幕欧美一区二区| 久久天躁狠狠躁夜夜2o2o| 搞女人的毛片| 亚洲内射少妇av| 国产单亲对白刺激| 91午夜精品亚洲一区二区三区 | 午夜精品久久久久久毛片777| 波野结衣二区三区在线| 亚洲黑人精品在线| 国产乱人伦免费视频| 欧美一区二区亚洲| 久久久久久久久中文| 黄片小视频在线播放| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品一区av在线观看| 久久午夜亚洲精品久久| 国产精品久久久久久久电影| 99riav亚洲国产免费| 亚洲最大成人中文| 亚洲av一区综合| 天堂av国产一区二区熟女人妻| 精品一区二区免费观看| 丰满人妻熟妇乱又伦精品不卡| 午夜福利18| 非洲黑人性xxxx精品又粗又长| av在线蜜桃| 高清毛片免费观看视频网站| 成年版毛片免费区| 免费搜索国产男女视频| 国产精品一区二区三区四区免费观看 | 国产爱豆传媒在线观看| 两人在一起打扑克的视频| 欧美精品啪啪一区二区三区| 日韩欧美一区二区三区在线观看| 美女cb高潮喷水在线观看| a级一级毛片免费在线观看| 激情在线观看视频在线高清| 成人毛片a级毛片在线播放| 亚洲最大成人av| 亚洲不卡免费看| 成人毛片a级毛片在线播放| 亚洲最大成人av| 直男gayav资源| 免费看a级黄色片| 中文字幕熟女人妻在线| 桃色一区二区三区在线观看| 精品午夜福利视频在线观看一区| 伦理电影大哥的女人| 亚洲国产高清在线一区二区三| 色吧在线观看| 久久久国产成人免费| 成年版毛片免费区| 国产不卡一卡二| 亚洲精品久久国产高清桃花| 国产亚洲欧美98| 国产极品精品免费视频能看的| 性插视频无遮挡在线免费观看| 国产成+人综合+亚洲专区| АⅤ资源中文在线天堂| 日韩欧美在线二视频| 最近在线观看免费完整版| 亚洲欧美日韩高清在线视频| 亚洲精品成人久久久久久| 午夜精品在线福利| 国产精品国产高清国产av| 舔av片在线| 中文字幕高清在线视频| 99在线人妻在线中文字幕| 国产 一区 欧美 日韩| 婷婷六月久久综合丁香| 国产精品嫩草影院av在线观看 | 无人区码免费观看不卡| 又黄又爽又免费观看的视频| 精品免费久久久久久久清纯| 中文字幕久久专区| 亚洲片人在线观看| x7x7x7水蜜桃| 国内少妇人妻偷人精品xxx网站| 性色avwww在线观看| 国产单亲对白刺激| 日韩精品青青久久久久久| 男人和女人高潮做爰伦理| 黄色一级大片看看| 欧美性猛交╳xxx乱大交人| 久久精品国产亚洲av天美| 99国产极品粉嫩在线观看| 好男人在线观看高清免费视频| 亚洲精华国产精华精| 看片在线看免费视频| 久久婷婷人人爽人人干人人爱| 一级黄片播放器| 亚洲av成人不卡在线观看播放网| 俺也久久电影网| 91狼人影院| 美女黄网站色视频| 免费看日本二区| 亚洲 欧美 日韩 在线 免费| www.www免费av| 黄色日韩在线| 亚洲aⅴ乱码一区二区在线播放| 特级一级黄色大片| 精品免费久久久久久久清纯| 老司机深夜福利视频在线观看| 亚洲av第一区精品v没综合| 欧美乱色亚洲激情| 超碰av人人做人人爽久久| 成人永久免费在线观看视频| 日本免费a在线| 赤兔流量卡办理| 久久久久久国产a免费观看| 赤兔流量卡办理| 国产黄a三级三级三级人| 最新在线观看一区二区三区| 国产黄片美女视频| 嫩草影院精品99| 欧美一级a爱片免费观看看| 亚洲片人在线观看| 成人亚洲精品av一区二区| 极品教师在线视频| 国产免费男女视频| 哪里可以看免费的av片| 日本成人三级电影网站| 丰满人妻一区二区三区视频av| 尤物成人国产欧美一区二区三区| 嫩草影视91久久| x7x7x7水蜜桃| 精品国产三级普通话版| 午夜精品一区二区三区免费看| 90打野战视频偷拍视频| 欧美不卡视频在线免费观看| 日韩亚洲欧美综合| 国产男靠女视频免费网站| 99热这里只有精品一区| 久久人人爽人人爽人人片va | 成人三级黄色视频| 成熟少妇高潮喷水视频| 久久亚洲精品不卡| 亚洲一区高清亚洲精品| 不卡一级毛片| 日韩人妻高清精品专区| 欧美一区二区亚洲| 日韩欧美在线二视频| 亚洲国产精品sss在线观看| 国产69精品久久久久777片| 久久久久亚洲av毛片大全| 欧美成狂野欧美在线观看| 熟女电影av网| 俺也久久电影网| 又紧又爽又黄一区二区| 色播亚洲综合网| 国产精品国产高清国产av| 亚洲欧美日韩卡通动漫| 两性午夜刺激爽爽歪歪视频在线观看| 偷拍熟女少妇极品色| 欧美高清成人免费视频www| 久久久精品欧美日韩精品| 亚洲中文日韩欧美视频| 丰满乱子伦码专区| 国产伦精品一区二区三区四那| 有码 亚洲区| 美女被艹到高潮喷水动态| 国产三级黄色录像| 成人精品一区二区免费| 亚洲av日韩精品久久久久久密| 真人做人爱边吃奶动态| 色综合站精品国产| 国产在线男女| 嫩草影院精品99| 国产精品99久久久久久久久| 国产精品女同一区二区软件 | 美女被艹到高潮喷水动态| 亚洲无线在线观看| 成人国产综合亚洲| 啪啪无遮挡十八禁网站| 精品一区二区三区人妻视频| 午夜激情欧美在线| 亚洲精品日韩av片在线观看| 午夜精品一区二区三区免费看| 我要搜黄色片| 国产午夜福利久久久久久| 色视频www国产| 久久久成人免费电影| 小蜜桃在线观看免费完整版高清| 性插视频无遮挡在线免费观看| 日韩免费av在线播放| 亚洲久久久久久中文字幕| 麻豆国产97在线/欧美| 国产毛片a区久久久久| 欧美xxxx黑人xx丫x性爽| 国产高潮美女av| 亚洲av不卡在线观看| 天堂√8在线中文| 在线十欧美十亚洲十日本专区| 国产精品嫩草影院av在线观看 | 国产欧美日韩精品亚洲av| 噜噜噜噜噜久久久久久91| 国产激情偷乱视频一区二区| 亚洲av免费在线观看| 乱码一卡2卡4卡精品| 日韩欧美一区二区三区在线观看| 欧洲精品卡2卡3卡4卡5卡区| 九九久久精品国产亚洲av麻豆| 亚洲天堂国产精品一区在线| 美女高潮喷水抽搐中文字幕| 乱码一卡2卡4卡精品| 五月玫瑰六月丁香| 国产精品电影一区二区三区| 亚洲内射少妇av| 18+在线观看网站| 少妇裸体淫交视频免费看高清| 欧美激情国产日韩精品一区| 亚洲av熟女| 亚洲专区国产一区二区| 久久久久国内视频| 国产精品一区二区性色av| 麻豆国产av国片精品| 又粗又爽又猛毛片免费看| 桃色一区二区三区在线观看| 精品久久久久久久久亚洲 | 一级av片app| 日本 av在线| 在线播放国产精品三级| 99热只有精品国产| 日日摸夜夜添夜夜添小说| 国产一区二区在线av高清观看| 91在线观看av| 一夜夜www| 变态另类成人亚洲欧美熟女| 麻豆国产av国片精品| av天堂在线播放| 色av中文字幕| 久久久久久国产a免费观看| 欧美最新免费一区二区三区 | 国产精品一区二区性色av| 成人亚洲精品av一区二区| 国产一区二区亚洲精品在线观看| av天堂中文字幕网| 欧美3d第一页| 久久久久久久久久黄片| 黄色配什么色好看| 午夜激情欧美在线| 精品乱码久久久久久99久播| 欧美精品啪啪一区二区三区| 国产麻豆成人av免费视频| 色噜噜av男人的天堂激情| 99久久精品一区二区三区| 中国美女看黄片| 日韩欧美精品v在线| 国产精品电影一区二区三区| 欧美xxxx黑人xx丫x性爽| 午夜福利18| 精品国内亚洲2022精品成人| 国产高清有码在线观看视频| 欧美+亚洲+日韩+国产| 国产 一区 欧美 日韩| 69人妻影院| 精品欧美国产一区二区三| 一级a爱片免费观看的视频| 99精品在免费线老司机午夜| 午夜福利在线观看吧| 亚洲欧美日韩无卡精品| 黄色丝袜av网址大全| 黄色女人牲交| ponron亚洲| 别揉我奶头~嗯~啊~动态视频| 色哟哟哟哟哟哟| 无人区码免费观看不卡| 精品一区二区三区人妻视频| 亚洲五月婷婷丁香| 999久久久精品免费观看国产| 亚洲人与动物交配视频| 国产高清视频在线播放一区| 一本一本综合久久| 好男人电影高清在线观看| 老司机福利观看|