• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simulation of gas–liquid two-phase flow in a flow-focusing microchannel with the lattice Boltzmann method

    2023-12-02 09:22:42KaiFeng馮凱GangYang楊剛andHuichenZhang張會(huì)臣
    Chinese Physics B 2023年11期
    關(guān)鍵詞:楊剛

    Kai Feng(馮凱), Gang Yang(楊剛), and Huichen Zhang(張會(huì)臣)

    Naval Architecture and Ocean Engineering College,Dalian Maritime University,Dalian 116026,China

    Keywords: two-phase flow,lattice Boltzmann method,pressure drop,flow-focusing microchannel

    1.Introduction

    Gas–liquid two-phase flow in a microchannel is of crucial importance in industrial applications.Extensive studies on the two-phase flow have been conducted.[1–3]

    The flow pattern and pressure drop affect the dynamic characteristics of two-phase flow significantly.Different flow patterns can be obtained by controlling the gas–liquid flow rate.[4]Among all the flow patterns, slug flow attracts more attention because of its broad operating conditions and applications.[5,6]The formation of a bubble is under the combined effect of inertia force, viscous force, and surface tension.The capillary number is a vital parameter that affects the generation of bubbles.[7]The length of a bubble can be measured by image observation,which is found to be proportional to the gas–liquid flow rate ratio.The pressure drop gradient can be predicted by correlations based on the homogeneous and separated flow models.[8]To achieve higher prediction accuracy,the two-phase flow pattern should be considered.[9,10]The shear-thinning characteristics of the fluid affect the flow pattern and the pressure drop.The unique flow patterns are observed in the shear-thinning fluid.[11]

    Numerical simulation gives information on the flow and pressure fields, which can supplement experimental research and explain the causes of physical phenomena.The lattice Boltzmann method (LBM) has potential applications in multiphase flow simulation because of its advantages of natural parallelism and dealing with complex boundaries.The color gradient[12]and pseudo-potential models[13]are developed to deal with the multiphase flow during the last three decades.Extensive studies have been carried out with these multiphase LBM.However, it is difficult to achieve a large density ratio because of the numerical instability.For a gas–liquid system, the density ratio is 1:800.The phase-field model is a useful tool to deal with the multiphase flow problems, which consists of the classic Navier–Stokes equations and the Cahn–Hilliard or Allen–Cahn equation.[14]With a suitable forcing scheme,the phase-field model can recover the full set of thermohydrodynamic equations for the nonideal fluids[15]and reduce the numerical dispersion.[16]Zhenget al.[17]proposed a phase-field model with a density ratio of 1:1000.In the phase-field model,two distribution functions are employed to calculate the flow field and capture the gas–liquid interface,respectively.It was developed to simulate the impact characteristics of the droplets by Maet al.[18]However,the average gas–liquid density rather than the actual gas–liquid density is used in the model to calculate the Navier–Stokes equation,resulting in a difference in the pressure results with the natural gas–liquid system.Lianget al.[19]developed a new highdensity ratio model with high numerical stability, which can reasonably simulate the gas–liquid system by setting a proper external force distribution function.

    The two-phase flow pattern can be captured, while the formation mechanism of the flow pattern is not fully understood.The two-phase pressure drop can be measured on a macroscale and predicted with empirical correlations.However, the mechanism of pressure drop needs to be clarified.The phase-field LBM involving non-Newtonian fluid has not yet been used to simulate the two-phase flow in a flowfocusing junction.This study focuses on the bubble formation and pressure drop in a flow-focusing microchannel.The effects of the gas–liquid flow rate ratio,surface tension,contact angle,and liquid rheological properties are discussed.

    2.Number method

    2.1.Phase-field LBM

    The phase-field LBM improved by Lianget al.[19]is employed to handle the gas–liquid two-phase flow.The distribution functiongi(x,t)is applied to capture the gas–liquid interface,and the evolution equation is given by

    whereuis the fluid velocity,csis the sound speed,wiare the weight factors,w=4/9,w1-4=1/9,w5-8=1/36,andeiare the discrete velocity vectors to neighboring nodes.For a twodimensional nine-velocity model,eiare given by:e=(0,0),ei= (cos[(i-1)π/2], sin[(i-1)π/2)])c, fori= 1–4, andei= (cos[(i-5)π/2+π/4], sin[(i-5)π/2)+π/4])c, fori=5–8,wherecis the lattice speed,c=δx/δt(δxandδtare the lattice spacing and time, respectively).In the phase-field model,φis the order parameter used to distinguish different fluid,which generally takes 1 and 0 in the liquid and gas bulk regions.

    The force termGi(x,t)is given by

    where the subscripts L and G are for liquid and gas phases,respectively.

    The distribution functionfi(x,t) is used for solving the flow field,and the evolution equation is written as

    whereGis body force,μφis the chemical potential,which can be calculated as

    The viscosity of a gas–liquid two-phase system is not a constant value.Linear and inverse linear interpolations of the order parameter were used to determine the viscosity at the interface.[19,20]In present simulation, both the kinematic viscosity and density jump at the interface.To ensure the continuity of the interface, a linear interpolation of the order parameter is used to calculate the dynamic viscosityμof the interface,

    2.2.LBM for non-Newtonian fluid

    The dynamic viscosity for the non-Newtonian fluid is associated with the shear rate tensor.The simplest and most extensively used power-law model is employed to calculate the viscosity

    wherekandnare the consistency coefficient and the flow index,respectively,Dαβis the strain rate tensor.The nonequilibrium part of the distribution function is used to obtain the shear rate tensor,[21,22]and the strain rate tensor can be calculated locally by

    where the subscriptsαandβare Cartesian coordinates.

    The LBM becomes unstable for small relaxation time,and has poor accuracy for large relaxation time.[20]To achieve higher calculating accuracy and stability,the truncated powerlaw model[23]is adopted to set the range of the lattice kinematic viscosity (0.001≤ν ≤3).The truncated power-law model is given by

    The viscosity of a Newtonian fluid is constant.In contrast, the viscosity of a non-Newtonian fluid is not a uniform value.To represent the viscosity of the non-Newtonian fluid,the effective kinematic viscosity (νeff) is employed, which is given by

    HereDis the channel diameter,uLis the superficial liquid velocity.

    2.3.Wetting boundary condition

    The contact angleθcis used to characterize the wettability of the surface based on Young’s equation,[24]which is calculated as

    where the subscript G,L,and S represent the gas,liquid,and solid,respectively.

    The schematic of the lattice nodes near the solid wall is shown in Fig.1.

    For discussing the three-phase contact line, the lattice nodes near the wall are divided into the fluid layer, solid boundaryy=1/2 and ghost layery=0.[25]According to the geometrical relation, the wetting boundary condition is given by[26]

    3.Validation

    The two-phase LBM and wetting boundary condition are validated by simulating the water droplets on solid surfaces with different wettability(θc=30?–150?).A circular droplet is initially arranged on the bottom surface.The gas–liquid density ratio and kinematic viscosity ratio are set to 1:800 and 13:1,respectively.To weaken the numerical diffusion,the interface widthAis 5 lattice units.For numerical stability, the mobilityMand kinematic viscosityνare set to:M=0.08,νL=0.1.For simplicity, the density of the gas phase is set to 1.The periodic boundary condition is imposed at the left and right boundaries, while the halfway bounce-back boundary condition is applied to the top and bottom boundaries.The wettability of the solid surface was approached by setting the normal component of the order parameter gradient(see Eqs.(21)–(24)).

    The simulation domains are set to 120×48,160×64,and 200×80.The corresponding initial droplet diameters are 36,48, and 60 lattice units, respectively.Numerical simulations are conducted in different simulation domains.The simulation contact angles can be evaluated byθsc=2arctan(2h/L),Landhare the spreading length and the height of the droplet,respectively.[25]The simulation contact anglesθscat different simulation domains are list in Table 1.

    Theoretical contact Simulation contact angle(θsc)angle(θtc) 120×48 160×64 200×80 30? 32.5? 32.1? 32.0?60? 61.2? 60.6? 60.6?90? 89.6? 91.0? 91.0?120? 121.? 121.0? 121.5?150? 152.1? 151.7? 152.2?

    The simulation contact angle varies slightly with the variation of the simulation domain.The simulation contact angles agree with the theoretical values,with a root mean square error of 4.3%, 3.6%, and 3.5% for the simulation domains of 120×48,160×64,and 200×80,respectively.It evidences that the wall contact angle can be well simulated by setting the wall order parameter gradient.In addition, the simulation domain of 200×80 can meet the calculation requirements.The simulation results of water drop shapes with different contact angles at the simulation domain of 200×80 are shown in Fig.2.

    In Fig.2,the red part represents a water droplet(φ=1),and the blue part represents the gas phase(φ=0).A dot can be seen in the droplet near the channel wall in Fig.2(a),while it is not a physical phenomenon.The simulation instability occurs in the initial droplet near the three-phase contact line,whenθc=30?.Thus, a small area withφ<1 is observed at the three-phase contact line during calculation.

    In our previous study,the truncated power-law model was validated by simulating the Poiseuille flow of the power-law fluids.In addition, it was employed to simulate the vortex characteristics of the non-Newtonian fluid.[27]

    4.Results and discussion

    The schematic of the flow-focusing microchannel is shown in Fig.3.The gas phase is introduced from the left inlet,and the liquid phase enters the channel from the top and bottom inlets.The two-phase flow is formed at the junction and exits the channel through the right outlet.

    For the physical gas–liquid system, the densities of the gas phase and water are 1.25 kg/m3and 1000 kg/m3, respectively,at the room temperature of 20?C.The gas–liquid density ratio is 1:800.The dynamic viscosities of the gas and liquid phases are 0.0159 mPa·s and 0.97 mPa·s, respectively.[4]The gas–liquid dynamic viscosity ratio is 1:61, and the gas–liquid kinematic viscosity ratio is 13:1 (ν=μ/ρ).In the LBM, the simulation parameters are:ρG= 1,ρL= 800,νL=0.25,νG=3.25,M=0.08,A=5,σ=30.The velocities of the top and bottom liquid inlets are both 0.005.The superficial velocity of the gas inlet is 0.02.The contact angle of the solid wall is set to 90?.The velocity boundary condition is imposed at the inlets.The convective boundary condition is adapted for the outlet.[28]

    Firstly,a grid-independence test is conducted.The widths of the microchannel are 30, 40, 50, and 60 lattice units,with corresponding simulation domains of 720×90,960×120,1200×150, and 1440×180.The dimensionless length of the bubble is used to compare the simulation results of different simulation domains,which is the ratio of the bubble length to the channel width.The dimensionless lengths of bubbles in different simulation domains are list in Table 2.

    Simulation Width of the Dimensionless width domain microchannel of the bubble 720×90 30 1.3 960×120 40 1.6 1200×150 50 1.58 1440×180 60 1.59

    When the simulation domain reaches 1200×150, the dimensionless length of the bubble remains almost unchanged as the simulation domain increases.It indicates that the simulation domain of 150×1200 is suitable for simulating the twophase contact angle problems.The width of the microchannel(D)is 50 lattice units.The lengths of the inlets(L1)are 50 lattice units,and the length of the outlet(L2)is 1100 lattice units.Each lattice space corresponds to 6μm.

    Figure 4 shows the two-phase simulation flow pattern and the pressure along the centerline of the microchannel.

    The slug bubbles are formed in the microchannel.In Fig.4, the blue part represents bubbles (φ=0), and the red part represents the liquid phase (φ=1).The liquid film can be seen between the bubble and the channel wall.Corresponding to the two-phase flow pattern,the two-phase pressure drop includes the pressure drop across the bubble and the pressure drop of the liquid slug.The pressure drop gradient of the liquid slug is constant.In the liquid slug,the pressure in front of the bubble is lower than the pressure behind the bubble.This result is consistent with the unit cell model(see Fig.5),which was employed to calculate the pressure drop of two-phase flow with the flow pattern information.[10]

    The pressure drop gradient of a unit cell is calculated by

    where (dp/dZ)Lis the pressure drop gradient of the liquid slug,pdis the pressure drop across the bubble,LLandLBare the lengths of the liquid slug and bubble,respectively.

    The flow rate ratio,surface tension,wetting property,and rheological characteristics of the liquid phase impact the flow pattern and pressure drop significantly.

    4.1.Effect of flow rate ratio

    The gas–liquid flow rate ratio is a critical parameter in the flow pattern control.The contact angle of the solid wall is set to 90?.At a fixed velocity of the liquid phase 0.01 lattice units,the variation of flow rate ratios is achieved by changing the superficial gas velocity.The range of gas–liquid flow rate ratiocis 1:1–3:1.Figure 6 shows the flow patterns at various flow rate ratios.

    The bubble lengthens with the increase in the flow rate ratio.This agrees with the experimental results.[29]With a small capillary number, the surface tension dominates the viscous force.Thus, bubble generation is mainly controlled by the squeezing regime.The liquid pressure at the junction increases gradually with the liquid flowing into the microchannel from the inlet.When the pressure reaches the cut-off value,the bubble breaks under the squeeze force.The time for reaching the cut-off pressure is constant at a fixed liquid inlet velocity.For a larger flow rate ratio,more gas flows into the forming bubble,resulting in bubble lengthening.

    The velocity of the liquid slug increases with the gas velocity, leading to the increase of the pressure drop across the bubble (see Fig.7(a)).The expansion in liquid slug velocity also results in a rise in the pressure drop gradient in the liquid slug.Consequently,the two-phase pressure drop gradient increases with the flow rate ratio,as shown in Fig.7(b).

    4.2.Effect of surface tension

    The surface tension of the fluid affects the bubble formation significantly.In the simulation, the superficial gas and liquid velocities are 0.02 and 0.01, respectively.The contact angle of the solid wall is set to 90?.The range of surface tension is 20–95.

    Figure 8 shows the formation process of a slug bubble atσ=95.The liquid film between the bubbles and the solid wall disappears.This flow pattern is named as the dry-plug flow by Heravi and Torabi.[30]The viscous force is insufficient to make the gas bubble deform.Thus,the forming bubble moves forward, occupying the cross-section of the microchannel after passing through the junction.The liquid accumulates at the intersection,leading to an expansion in the liquid pressure and the break of the forming bubble at the cross-junction.Similar flow patterns are also obtained by Yuet al.[31]and Shiet al.[32]at small capillary number.Similar to the dot in the contact angle simulation,the dots can be seen in the liquid in Fig.8(d).The simulation instability occurs at the gas–liquid interface when the bubble breaks.Therefore, the small areas withφ<1 are observed in the liquid during calculation.

    As the surface tension decreases,the capillary number increases, and the slug bubbles are formed in the microchannel atσ=50, as shown in Fig.9.The ratio of viscous force to surface tension increases, causing the deformation of the gas–liquid interface.The liquid film is formed.Therefore,the bubble can no longer occupy the channel’s cross-section after passing through the junction.The squeeze force of the liquid at the cross-junction decreases.The bubble breaks at the right side of the junction under the combined effect of the shear and squeeze forces.

    By reducing the surface tension, the capillary number is further increased.Figure 10 shows the bubble formation process in the microchannel atσ=20.front curvature increases.Consequently,the front of the bubble becomes sharper,while the rear becomes blunter with the increase inCa.

    For the dry-plug flow,equation(26)is unsuitable for calculatingpddue to the lack of liquid film.The pressure drop across a dry-plug is related to the three-phase contact line and the contact angle hysteresis.[30]Higher surface tension can hold the liquid slug together and reduce the pressure drop across the plug bubble.Consequently, as the surface tension increases,pdfirst increases and then decreases(see Fig.11(a)).

    The pressure drop gradient of the liquid slug is related to the fluid velocity and independent of the surface tension (see Fig.11(b)).Thus, the relationship between the pressure drop gradient of the unit cell and the surface tension is consistent with the curve of the pressure difference across a bubble.

    With the increase of theCa, the front of the bubble becomes sharper,while the rear becomes blunter.The variation of bubble shape depends on the pressure across the bubblepd,which is related to the surface tension.Thus, the variation of the pressure drop with the surface tension needs to be clarified.The pressure drop across a slug bubblepdincreases with the rise of the surface tension becausepdis positively associated with surface tension,[8]which is expressed as

    With the increase inpd, the Laplace pressure across the rear meniscus decreases, while that across the front meniscus increases.Therefore,the rear curvature decreases,and the

    4.3.Effect of wetting property

    The wetting property of the solid wall is characterized by the contact angle.Different contact angles (θc=30?–150?)can be obtained by adjusting the order parameter near the wall(see Eqs.(21)–(24)).The wettability affects the flow pattern and pressure drop of the two-phase flow by changing the threephase contact line.The superficial gas and liquid velocities are 0.02 and 0.01,respectively.Due to the difference in threephase contact conditions between slug flow and dry-plug flow,the effect of contact angle in these flow patterns are simulated.

    Figure 12 shows the flow pattern of slug flow(σ=50)at different contact angles.

    The stable slug flow can be seen in the microchannel for all contact angles.No obvious three-phase contact line can be seen because of the liquid film.Thus, the contact angle has little influence on the flow pattern.Becauseθchas little effect on the flow pattern,pdis hardly affected byθc(see Fig.13(a)).Asθcincreases,the drag reduction effect is more pronounced.Thus,(dp/dZ)Ldecreases with the increase inθc.As a result,(dp/dZ)TPdecreases with the increase inθc(see Fig.13(b)).

    The dry plug flow is obtained atσ=95.The flow pattern of dry-plug flow under different wall contact angles is shown in Fig.14.

    There are apparent contact lines between the gas, liquid,and solid wall.The liquid film cannot be seen anymore.Therefore, the contact angle impacts the flow pattern significantly.With the rise ofθc, the flow pattern of the bubble changed from a convex shape to a concave shape gradually, and the transformation occurred atθc=90?.

    The convex curvature of the bubble front is greater than that of the rear.However,the concave curvature of the bubble front is less than the rear.These phenomena can be explained by the pressure of a two-phase flow.The relationship between the pressure across the gas–liquid interface and the curvature is determined by the Laplace formula.For the convex shape flow pattern, the pressure in the bubble is higher than in the liquid.Because of the pressure drop along the microchannel,the pressure in the fluid in front of the bubble is less than the pressure behind the bubble.In comparison,the pressure in the bubble is almost constant.The Laplace pressure at the bubble nose is greater than at the bubble rear,so the convex curvature of the bubble nose is larger than that of the bubble rear.For the concave shape flow pattern, the pressure inside the bubble is lower than that in the liquid.The Laplace pressure at the bubble nose is less than that at the bubble rear.Thus, the concave curvature of the bubble front is less than that of the bubble rear.

    The relationships between the pressure drop gradient in the liquid slug and the pressure drop across a dry-plug bubble with the contact angle are shown in Fig.16.The contact angle hysteresis decreases with the rise inθc.Therefore,the pressure drop across a dry-plug bubble falls withθc(see Fig.15(a)).Because of the drag reduction effect of the hydrophobic surface, (dp/dZ)Ldecreases withθc.Since bothpdand(dp/dZ)Ldecrease with the rise inθc,(dp/dZ)TPdecreases with the increase inθc(see Fig.15(b)).In particular,the pressure drop of the two-phase flow in the hydrophobic surface is slightly less than the pressure drop of the singlephase liquid.

    4.4.Effect of non-Newtonian property of the liquid phase

    The non-Newtonian property of the liquid plays an essential role in the two-phase flow pattern and pressure drop.Carboxymethyl cellulose (CMC) solution shows shear-thinning characteristics,which is widely used in industry.In the simulation,the CMC solutions with concentrations of 0.1%,0.2%,and 0.3%(CMC 0.1,CMC 0.2,and CMC 0.3)are used.The physical properties of the CMC solutions are listed in Table 3.[4]

    Liquids Density Consistency Flow index n ρp (kg/m3) coefficient kp (Pa·sn)CMC 0.1 1000.8 0.086 0.63 CMC 0.2 1001.7 0.218 0.57 CMC 0.3 1002.3 0.422 0.53

    In the simulation, the flow index is set to be the same as the physical properties.However, the consistency coefficient should be set according to the shear rate and the effective viscosity.The effective viscosities of the CMC 0.1, 0.2, and 0.3 can be calculated by Eq.(19).For the superficial liquid velocity of 0.1 m/s, the effective viscosities of the CMC 0.1,0.2, and 0.3 are 4.66, 7.56, and 10.67 mPa·s.The simulation consistency coefficient of CMC solutions with different concentrations are determined according to the viscosity ratios of CMC solutions to water.Thus,the simulation consistency coefficientkof the CMC 0.1,0.2,and 0.3 are 89.33,94.67,and 100.00.The superficial gas and liquid velocities are 0.02 and 0.01,respectively.The contact angles of the solid wall are set as 60?,90?,and 120?.

    The flow patterns in different fluids atθc=90?are shown in Fig.16.

    With increased CMC solution concentration, the bubble front lengthens,and the bubble rear becomes flatter.This phenomenon has also been observed in some experiments,and it is explained to be associated with the shear-thinning characteristics of the liquid phase without detailed discussion.[4,11]In fact, it is related to the capillary number of the fluid.The effective viscosity increases with the increase in the CMC solution concentration, leading to increased capillary number.Therefore, the front of bubble turns sharper and longer, and the rear becomes flatter for a larger capillary number,which is discussed in Subsection 4.2.

    The variation of the pressure drop gradient in the liquid slug and the pressure drop across a bubble with the flow index at different contact angles are shown in Fig.17.

    The effective viscosity of the liquid phase decreases with the increase inn, resulting in the reduction ofpdand(dp/dZ)L.Consequently,(dp/dZ)TPdecreases with the flow index.This is consistent with the experimental results.[4]Compared to rheological properties, the effect ofθcon pressure drop is relatively small.Due to the absence of three-phase contact line,the contact angle has almost no effect onpd,and(dp/dZ)Lslightly decreases with the increase inθcbecause of the drag reduction in the hydrophobic surfaces.Therefore,(dp/dZ)TPdecreases with the increase inθcslightly.

    5.Conclusion

    An LBM for gas–liquid two-phase flow involving non-Newtonian fluid is developed.The two-phase flow pattern and pressure drop are analyzed with this method,considering various parameters, including flow rate ratio, surface tension,wetting property, and rheological characteristics of the liquid phase.The numerical results agree well with the experimental results.

    The bubble lengthens with a larger flow rate ratio.The flow pattern transfers from slug flow to dry-plug flow with a sufficiently small capillary number.For the slug flow,θchas little effect on the flow pattern.However,for the dry-plug flow,the front and rear meniscus transfer from convex to concave gradually with the increase inθc.The transformation occurs atθc=90?.The two-phase flow pattern depends on the Laplace pressure across the gas–liquid interface.For the non-Newtonian fluid, the rear of the bubble becomes flatter, and the front becomes sharper for a small flow index,owing to the variation of the capillary number with the flow index.It also shows that the reduced viscosity and increased contact angle are beneficial for the drag reduction of two-phase flow in microchannel.In addition, this work validates the reliability of the developed LBM for simulating the gas–liquid two-phase flow in a microchannel.This method can be utilized to simulate the multiphase problems involving non-Newtonian fluids as well.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China(Grant No.51775077).

    猜你喜歡
    楊剛
    疑點(diǎn)重重的“妻子”
    楊剛:開(kāi)國(guó)大典上的女記者
    婦女(2019年11期)2019-12-09 08:58:18
    追查
    陳永林小小說(shuō)二題
    《人民日?qǐng)?bào)》原副總編輯楊剛為什么自殺
    黨史博覽(2014年12期)2015-04-15 04:53:39
    “狼性”90后創(chuàng)業(yè)者
    一把鋼釘毀人生
    做人與處世(2014年8期)2014-07-17 05:40:26
    暖春
    金山(2012年5期)2012-04-29 00:44:03
    Effect of the Para-substituent of the Tridentate Pyridine-based Ru(II) Complex upon the Catalytic Activity in Transfer Hydrogenation*
    Investigation of Mg2+/Li+ Separation by Nanofiltration*
    国产成年人精品一区二区| 国产色爽女视频免费观看| 久9热在线精品视频| 综合色av麻豆| 97超视频在线观看视频| 男女下面进入的视频免费午夜| 亚洲成人精品中文字幕电影| 少妇人妻一区二区三区视频| 一进一出抽搐gif免费好疼| 小说图片视频综合网站| 久久国产精品影院| 国产探花极品一区二区| 成人永久免费在线观看视频| 91九色精品人成在线观看| 人人妻人人看人人澡| 高潮久久久久久久久久久不卡| 国产 一区 欧美 日韩| 尤物成人国产欧美一区二区三区| 色尼玛亚洲综合影院| 蜜桃久久精品国产亚洲av| 99久久综合精品五月天人人| 免费看日本二区| 此物有八面人人有两片| 99久久九九国产精品国产免费| 熟妇人妻久久中文字幕3abv| 色综合婷婷激情| 午夜日韩欧美国产| 日韩欧美在线乱码| 99热精品在线国产| 天堂av国产一区二区熟女人妻| 中文字幕人妻熟人妻熟丝袜美 | 国产毛片a区久久久久| 激情在线观看视频在线高清| 又黄又爽又免费观看的视频| 欧美日本视频| 亚洲成av人片在线播放无| 国产激情欧美一区二区| 淫妇啪啪啪对白视频| 精品久久久久久久久久免费视频| 天堂影院成人在线观看| 级片在线观看| 久久伊人香网站| 亚洲不卡免费看| 亚洲不卡免费看| 国产精品久久久久久久久免 | 老汉色av国产亚洲站长工具| www.色视频.com| 日本熟妇午夜| 小蜜桃在线观看免费完整版高清| 亚洲欧美日韩高清在线视频| 国产精品一区二区免费欧美| 99热这里只有是精品50| 淫妇啪啪啪对白视频| 两个人看的免费小视频| 国产成人av激情在线播放| 夜夜躁狠狠躁天天躁| 国产色爽女视频免费观看| 亚洲在线自拍视频| xxx96com| 精品久久久久久久久久免费视频| 国产探花在线观看一区二区| 99热这里只有是精品50| 国产精品电影一区二区三区| 看黄色毛片网站| 日韩欧美在线乱码| 熟妇人妻久久中文字幕3abv| 亚洲最大成人中文| 欧美精品啪啪一区二区三区| 精品福利观看| 国产99白浆流出| 亚洲成人免费电影在线观看| 在线观看66精品国产| 在线观看66精品国产| 免费无遮挡裸体视频| 亚洲国产精品合色在线| 色老头精品视频在线观看| 亚洲国产精品合色在线| 又紧又爽又黄一区二区| 在线观看免费视频日本深夜| 成年女人看的毛片在线观看| av在线蜜桃| 免费在线观看影片大全网站| 久久精品人妻少妇| 亚洲欧美日韩无卡精品| 久久这里只有精品中国| www.色视频.com| 香蕉av资源在线| 在线免费观看的www视频| 床上黄色一级片| 露出奶头的视频| 深爱激情五月婷婷| 国产精品久久久久久人妻精品电影| 18美女黄网站色大片免费观看| 国产精品久久视频播放| 亚洲五月婷婷丁香| 在线观看日韩欧美| 男人的好看免费观看在线视频| 欧美xxxx黑人xx丫x性爽| 久久久色成人| 在线观看日韩欧美| 亚洲成人久久爱视频| 狂野欧美白嫩少妇大欣赏| 国产视频内射| 很黄的视频免费| 欧美一级毛片孕妇| 成人亚洲精品av一区二区| 国产成人欧美在线观看| 99久久精品国产亚洲精品| xxxwww97欧美| 欧美中文综合在线视频| 国产又黄又爽又无遮挡在线| 黑人欧美特级aaaaaa片| 天堂av国产一区二区熟女人妻| 久久精品国产综合久久久| 国产亚洲精品综合一区在线观看| netflix在线观看网站| 无限看片的www在线观看| 国产伦在线观看视频一区| 757午夜福利合集在线观看| 岛国在线观看网站| 成年女人看的毛片在线观看| 久久久久久九九精品二区国产| 婷婷精品国产亚洲av在线| 久久精品夜夜夜夜夜久久蜜豆| 一a级毛片在线观看| 亚洲av免费在线观看| a级毛片a级免费在线| 偷拍熟女少妇极品色| 精品久久久久久久末码| 久久九九热精品免费| 国产成人aa在线观看| 国产精品久久久久久久久免 | 嫩草影院精品99| 欧美xxxx黑人xx丫x性爽| 可以在线观看的亚洲视频| 99久久精品国产亚洲精品| 国产又黄又爽又无遮挡在线| 中文字幕久久专区| 国产伦在线观看视频一区| 国产精品久久久久久久电影 | 99热6这里只有精品| 内地一区二区视频在线| 在线国产一区二区在线| 欧美乱色亚洲激情| 少妇熟女aⅴ在线视频| 变态另类成人亚洲欧美熟女| 12—13女人毛片做爰片一| 精品久久久久久,| 国产高清激情床上av| 久久久久久久午夜电影| 精品免费久久久久久久清纯| 一边摸一边抽搐一进一小说| 18禁黄网站禁片午夜丰满| 免费在线观看亚洲国产| 校园春色视频在线观看| 国内精品久久久久精免费| 亚洲国产欧美网| 国产乱人伦免费视频| 老熟妇仑乱视频hdxx| 久久精品国产自在天天线| 天堂√8在线中文| 欧美黑人巨大hd| 午夜激情福利司机影院| 亚洲不卡免费看| 欧美最黄视频在线播放免费| 特级一级黄色大片| 国产精品亚洲一级av第二区| 在线观看av片永久免费下载| 国产精品香港三级国产av潘金莲| 哪里可以看免费的av片| 免费人成视频x8x8入口观看| 欧美日韩一级在线毛片| 老司机福利观看| av专区在线播放| 老熟妇乱子伦视频在线观看| 在线观看av片永久免费下载| 3wmmmm亚洲av在线观看| 波多野结衣高清作品| 午夜福利在线观看吧| 国产中年淑女户外野战色| 国产精品久久电影中文字幕| 中文字幕久久专区| 国内精品一区二区在线观看| 欧美三级亚洲精品| 婷婷精品国产亚洲av在线| 草草在线视频免费看| 亚洲18禁久久av| 欧美黄色片欧美黄色片| 亚洲精品粉嫩美女一区| 久久精品综合一区二区三区| 女人十人毛片免费观看3o分钟| 在线观看免费午夜福利视频| 国产高清videossex| 欧美绝顶高潮抽搐喷水| 在线观看免费视频日本深夜| 最好的美女福利视频网| 88av欧美| 免费搜索国产男女视频| 亚洲人成电影免费在线| 久久久国产成人精品二区| 久久久久久久亚洲中文字幕 | 99久久成人亚洲精品观看| 免费av观看视频| 欧美精品啪啪一区二区三区| 日韩欧美 国产精品| 草草在线视频免费看| or卡值多少钱| 禁无遮挡网站| 国产成人啪精品午夜网站| 国产亚洲精品av在线| 一个人看的www免费观看视频| 成人国产一区最新在线观看| 草草在线视频免费看| 乱人视频在线观看| 成年人黄色毛片网站| 熟女少妇亚洲综合色aaa.| 亚洲国产日韩欧美精品在线观看 | 露出奶头的视频| 老鸭窝网址在线观看| 老司机午夜十八禁免费视频| 久久国产精品人妻蜜桃| 99久久九九国产精品国产免费| av天堂在线播放| 亚洲精品色激情综合| 免费看美女性在线毛片视频| 丝袜美腿在线中文| 在线免费观看不下载黄p国产 | 亚洲av电影在线进入| 在线免费观看不下载黄p国产 | 午夜福利免费观看在线| 一边摸一边抽搐一进一小说| av片东京热男人的天堂| 人妻丰满熟妇av一区二区三区| 少妇高潮的动态图| 老熟妇仑乱视频hdxx| 香蕉av资源在线| 一个人观看的视频www高清免费观看| 久久久国产成人精品二区| 久久久久久久久中文| 国产高清视频在线播放一区| 国产欧美日韩一区二区三| 极品教师在线免费播放| 一级作爱视频免费观看| 国产av一区在线观看免费| 一本综合久久免费| 亚洲精品在线观看二区| 床上黄色一级片| 欧美成人一区二区免费高清观看| 国产视频内射| 在线国产一区二区在线| 免费在线观看影片大全网站| 日本 av在线| 欧美zozozo另类| 非洲黑人性xxxx精品又粗又长| av专区在线播放| 三级男女做爰猛烈吃奶摸视频| 少妇人妻一区二区三区视频| a级毛片a级免费在线| 午夜福利欧美成人| 久久精品影院6| 国产精品嫩草影院av在线观看 | 欧美激情久久久久久爽电影| 女人高潮潮喷娇喘18禁视频| 高清日韩中文字幕在线| 男女之事视频高清在线观看| 国产麻豆成人av免费视频| 看免费av毛片| 在线观看免费视频日本深夜| 亚洲美女视频黄频| 一个人免费在线观看电影| 亚洲人成伊人成综合网2020| 免费av观看视频| 国产精品久久久久久亚洲av鲁大| 19禁男女啪啪无遮挡网站| 欧美乱妇无乱码| 国产 一区 欧美 日韩| h日本视频在线播放| 国产成人系列免费观看| 久久精品综合一区二区三区| 午夜精品久久久久久毛片777| 日日摸夜夜添夜夜添小说| 国产爱豆传媒在线观看| АⅤ资源中文在线天堂| 俺也久久电影网| 亚洲国产中文字幕在线视频| 99久久九九国产精品国产免费| 国产精品av视频在线免费观看| 欧美日韩乱码在线| 午夜精品久久久久久毛片777| 亚洲人成网站高清观看| 日本黄色视频三级网站网址| 丰满人妻一区二区三区视频av | 内地一区二区视频在线| 国产精品乱码一区二三区的特点| 日韩欧美精品v在线| 色综合站精品国产| 别揉我奶头~嗯~啊~动态视频| 真人做人爱边吃奶动态| 成人国产一区最新在线观看| 国产一区二区激情短视频| 熟女人妻精品中文字幕| 小蜜桃在线观看免费完整版高清| 精品人妻偷拍中文字幕| 亚洲av日韩精品久久久久久密| 国产成人aa在线观看| 久久久久久久久中文| 日本与韩国留学比较| 叶爱在线成人免费视频播放| 久久精品国产99精品国产亚洲性色| 国产亚洲精品一区二区www| 此物有八面人人有两片| 丰满乱子伦码专区| 欧美色欧美亚洲另类二区| 国产亚洲精品一区二区www| 无遮挡黄片免费观看| 91在线精品国自产拍蜜月 | 97碰自拍视频| 国产国拍精品亚洲av在线观看 | 观看免费一级毛片| 一级黄色大片毛片| www.色视频.com| 午夜福利在线观看吧| 一级黄片播放器| 亚洲无线观看免费| 村上凉子中文字幕在线| 亚洲av电影在线进入| 成人鲁丝片一二三区免费| 两性午夜刺激爽爽歪歪视频在线观看| 国产成人系列免费观看| 天美传媒精品一区二区| 女人被狂操c到高潮| 天天一区二区日本电影三级| 九九久久精品国产亚洲av麻豆| 久久亚洲真实| 级片在线观看| 人妻夜夜爽99麻豆av| 亚洲精品色激情综合| 禁无遮挡网站| 怎么达到女性高潮| 999久久久精品免费观看国产| 波多野结衣高清作品| 麻豆成人午夜福利视频| 国产在线精品亚洲第一网站| 免费av不卡在线播放| 色综合亚洲欧美另类图片| 亚洲av免费高清在线观看| 成人欧美大片| 99国产极品粉嫩在线观看| 观看美女的网站| 精品久久久久久成人av| 中文亚洲av片在线观看爽| 国产国拍精品亚洲av在线观看 | 久久久精品大字幕| 嫩草影视91久久| 69人妻影院| 99热这里只有是精品50| 嫩草影视91久久| 欧美在线一区亚洲| 国产高清三级在线| 好男人电影高清在线观看| 国产黄色小视频在线观看| 国产久久久一区二区三区| 久久香蕉精品热| 亚洲熟妇熟女久久| 免费在线观看亚洲国产| 成人高潮视频无遮挡免费网站| 五月伊人婷婷丁香| 欧美在线一区亚洲| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲成a人片在线一区二区| 啦啦啦韩国在线观看视频| 欧美最黄视频在线播放免费| 亚洲av不卡在线观看| 亚洲欧美激情综合另类| 麻豆成人午夜福利视频| 一区二区三区免费毛片| 久久天躁狠狠躁夜夜2o2o| 亚洲天堂国产精品一区在线| 欧美日韩精品网址| 男女做爰动态图高潮gif福利片| 性色avwww在线观看| 天堂av国产一区二区熟女人妻| 有码 亚洲区| 日韩有码中文字幕| 日韩国内少妇激情av| 日韩欧美三级三区| 国产视频内射| 国产亚洲精品久久久久久毛片| 亚洲av日韩精品久久久久久密| 欧美另类亚洲清纯唯美| ponron亚洲| 69av精品久久久久久| xxx96com| 亚洲美女黄片视频| 国产亚洲av嫩草精品影院| 欧美乱码精品一区二区三区| 久久这里只有精品中国| 精品欧美国产一区二区三| netflix在线观看网站| av欧美777| 亚洲人成电影免费在线| 特级一级黄色大片| 中文字幕人妻丝袜一区二区| 在线看三级毛片| 欧美日韩精品网址| 日韩欧美三级三区| 免费在线观看成人毛片| 国语自产精品视频在线第100页| 琪琪午夜伦伦电影理论片6080| 人妻久久中文字幕网| 国产极品精品免费视频能看的| 观看美女的网站| 脱女人内裤的视频| 午夜福利欧美成人| av女优亚洲男人天堂| 亚洲av五月六月丁香网| 欧美一区二区国产精品久久精品| 尤物成人国产欧美一区二区三区| 亚洲精品在线观看二区| 最后的刺客免费高清国语| 国产成+人综合+亚洲专区| 亚洲18禁久久av| 99热这里只有精品一区| 老熟妇仑乱视频hdxx| 欧美成人a在线观看| 国产午夜精品论理片| 深夜精品福利| 欧美日韩亚洲国产一区二区在线观看| 午夜福利高清视频| 91在线精品国自产拍蜜月 | av欧美777| 在线免费观看不下载黄p国产 | 长腿黑丝高跟| 亚洲精品乱码久久久v下载方式 | 一进一出抽搐动态| 少妇高潮的动态图| 亚洲色图av天堂| svipshipincom国产片| 亚洲一区高清亚洲精品| 国产激情偷乱视频一区二区| 亚洲成a人片在线一区二区| 亚洲国产精品合色在线| 黄片小视频在线播放| 狂野欧美激情性xxxx| 欧美激情久久久久久爽电影| 哪里可以看免费的av片| 美女免费视频网站| 精华霜和精华液先用哪个| 69av精品久久久久久| 日本在线视频免费播放| 亚洲一区二区三区色噜噜| 中文字幕熟女人妻在线| 桃红色精品国产亚洲av| 免费一级毛片在线播放高清视频| 亚洲精品一区av在线观看| 日韩高清综合在线| av专区在线播放| 成人三级黄色视频| 岛国在线免费视频观看| 亚洲精品乱码久久久v下载方式 | 99国产精品一区二区蜜桃av| 欧美大码av| 亚洲乱码一区二区免费版| 在线观看午夜福利视频| netflix在线观看网站| 男人舔女人下体高潮全视频| 国产真实乱freesex| 天天一区二区日本电影三级| 丰满人妻一区二区三区视频av | 亚洲在线自拍视频| 久久国产乱子伦精品免费另类| 午夜福利视频1000在线观看| 国产亚洲精品一区二区www| 一进一出好大好爽视频| xxxwww97欧美| 日本黄色视频三级网站网址| 一二三四社区在线视频社区8| 久久精品国产99精品国产亚洲性色| 亚洲专区国产一区二区| 中文字幕人妻丝袜一区二区| 女人被狂操c到高潮| 色哟哟哟哟哟哟| 欧美成人性av电影在线观看| 免费在线观看日本一区| 日本 av在线| 1024手机看黄色片| 国产精品亚洲美女久久久| 丰满人妻一区二区三区视频av | 日日摸夜夜添夜夜添小说| 最新中文字幕久久久久| tocl精华| 麻豆一二三区av精品| 黄色女人牲交| 美女高潮的动态| 成年女人看的毛片在线观看| 男女之事视频高清在线观看| 美女被艹到高潮喷水动态| 久久亚洲精品不卡| 美女 人体艺术 gogo| 夜夜看夜夜爽夜夜摸| 天美传媒精品一区二区| 可以在线观看毛片的网站| 国内揄拍国产精品人妻在线| 一级黄片播放器| 亚洲 欧美 日韩 在线 免费| 免费大片18禁| 精品国内亚洲2022精品成人| av欧美777| 一级黄片播放器| 国产极品精品免费视频能看的| 香蕉丝袜av| 高潮久久久久久久久久久不卡| 草草在线视频免费看| e午夜精品久久久久久久| 中文亚洲av片在线观看爽| 国产精品精品国产色婷婷| 国产成人av激情在线播放| 久久精品夜夜夜夜夜久久蜜豆| 99热6这里只有精品| 九九在线视频观看精品| 搡老妇女老女人老熟妇| 中文字幕久久专区| 少妇丰满av| 成年免费大片在线观看| 午夜两性在线视频| 两个人视频免费观看高清| 美女被艹到高潮喷水动态| 丰满人妻一区二区三区视频av | 99热精品在线国产| 丰满人妻一区二区三区视频av | 99精品在免费线老司机午夜| 亚洲美女视频黄频| 欧美3d第一页| 亚洲专区中文字幕在线| 男插女下体视频免费在线播放| 99久久九九国产精品国产免费| 国产一区二区三区在线臀色熟女| 亚洲在线自拍视频| 欧美bdsm另类| 久99久视频精品免费| 精品一区二区三区人妻视频| 给我免费播放毛片高清在线观看| 少妇高潮的动态图| 天美传媒精品一区二区| 亚洲国产欧美网| 变态另类丝袜制服| 制服人妻中文乱码| 久久精品国产清高在天天线| 观看免费一级毛片| 一进一出好大好爽视频| x7x7x7水蜜桃| 国产极品精品免费视频能看的| 嫩草影院入口| 亚洲最大成人中文| 欧美性感艳星| 色综合欧美亚洲国产小说| 每晚都被弄得嗷嗷叫到高潮| 久久精品91无色码中文字幕| 国产精品一区二区三区四区免费观看 | 老司机午夜福利在线观看视频| 午夜福利在线在线| 可以在线观看的亚洲视频| 不卡一级毛片| 午夜福利视频1000在线观看| 老司机在亚洲福利影院| 90打野战视频偷拍视频| 人人妻人人看人人澡| 女生性感内裤真人,穿戴方法视频| 国产高清三级在线| 一级a爱片免费观看的视频| e午夜精品久久久久久久| 亚洲精品一区av在线观看| 亚洲人成伊人成综合网2020| 国产精品综合久久久久久久免费| 给我免费播放毛片高清在线观看| 中文亚洲av片在线观看爽| 国产精品 国内视频| 欧美激情久久久久久爽电影| 国产高清有码在线观看视频| 一个人看视频在线观看www免费 | 色尼玛亚洲综合影院| 国产一区二区在线观看日韩 | 麻豆一二三区av精品| 久久久久久久午夜电影| 在线国产一区二区在线| 乱人视频在线观看| 欧美高清成人免费视频www| 亚洲熟妇熟女久久| 国产探花在线观看一区二区| 一二三四社区在线视频社区8| 国产色婷婷99| 老汉色av国产亚洲站长工具| 亚洲在线观看片| 久久香蕉国产精品| 中文字幕av在线有码专区| or卡值多少钱| 国产伦一二天堂av在线观看| 亚洲七黄色美女视频| 色老头精品视频在线观看| 欧美成人a在线观看| 黄色日韩在线| 天天躁日日操中文字幕| av福利片在线观看| 日韩高清综合在线| 国产高潮美女av| 在线观看免费午夜福利视频| 最好的美女福利视频网| 国产精品久久久久久久久免 | 成人国产综合亚洲| 国产精品久久视频播放| 国产午夜福利久久久久久| 午夜精品久久久久久毛片777| 亚洲专区中文字幕在线| 老司机午夜十八禁免费视频| 丁香欧美五月|