• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Coercivity mechanism of La–Nd–Fe–B lms with Y spacer layer

    2024-03-25 09:30:48JunMa馬俊XiaoTianZhao趙曉天WeiLiu劉偉YangLi李陽LongLiu劉龍XinGuoZhao趙新國andZhiDongZhang張志東
    Chinese Physics B 2024年3期
    關(guān)鍵詞:馬俊李陽劉偉

    Jun Ma(馬俊), Xiao-Tian Zhao(趙曉天), Wei Liu(劉偉), Yang Li(李陽), Long Liu(劉龍),Xin-Guo Zhao(趙新國), and Zhi-Dong Zhang(張志東)

    1Shenyang National Laboratory for Materials Science,Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China

    2School of Materials Science and Engineering,University of Science and Technology of China,Shenyang 110016,China

    Keywords: La-Nd-(Y)-Fe-B films,magnetization reversal mechanisms,coercivity,multilayers

    1.Introduction

    The rare earth (RE) permanent magnet materials have been widely used in energy and information fields,[1-3]thus,it has caused a large amount of consumption of Pr, Nd and heavy RE,accompanied by the enrichment of high-abundance RE such as La/Ce/Y.[4,5]To make more efficient use of RE resources and reduce costs, high-abundance RE elements are gradually applied to the permanent magnet industry.[6,7]

    However, the intrinsic magnetic properties of the main phase RE2Fe14B with high abundance of RE elements are far inferior to those of Pr2Fe14B and Nd2Fe14B.[8]For the Y element,within a certain range,the Y addition can improve the coercivity and the thermal stability of the magnet.[6,9]However, the excessive Y addition can lead to a significant attenuation of magnetic properties.[10]In magnetic films, tuning the magnetic properties can be achieved by constructing different multilayers structures.By introducing Nd/Nd-Cu/Ta interlayer into Nd-Fe-B multilayer films, the grain orientation and coupling state are improved to obtain high magnetic properties.[11-14]For the La-Nd-Fe-B system,the corresponding La-substituted Nd permanent magnet block is fabricated,and the results show that high saturation magnetization can be retained.[15]The isotropic films are also prepared,[16]the out-of-plane(OOP)preferred orientation thin film remains to be studied.For Y element,the main phase formation energy of Y is lower than that of La and Nd,[17]and it is more inclined to enter the main phase.[18]The effect of Y element on phase formation,structure,and magnetization reversal mechanism in La-Nd-Fe-B films remains to be further explored.

    In this study,out-of-plane preferred orientation magnetic films of La-Nd-(Y)-Fe-B films were prepared by magnetron sputtering.The effects of a Y spacer layer on the phase formation,magnetic properties and magnetization reversal of La-Nd-(Y)-Fe-B films were investigated systematically.

    2.Experiments and methods

    Nominal composition (La0.3Nd0.7)16Fe72B12was chosen as the experimental target component and prepared by powder metallurgy.The sources materials used in the target are commercial with a purity of 99.99%.All the films were prepared by direct current (DC) magnetron sputtering.The films structures are as follows:Si (001)/Ta (40 nm)/(La0.3Nd0.7)16Fe72B12(150 nm)/Y(xnm)/(La0.3Nd0.6)16Fe72B12(150 nm)/Ta (40 nm),xis the thickness of Y, which is 0 nm, 10 nm, 20 nm, and 50 nm respectively.The four samples are named Y0, Y10, Y20, and Y50.Ta, as a buffer layer and covering layer, is a commercial target with a 99.95% purity.The base vacuum was 1.5×10-5Pa, and the sputtering atmosphere was Ar, and the pressure was maintained at 0.11 Pa.The sputtering rates of (La0.3Nd0.7)16Fe72B12and Ta targets were 4.72 A/s and 1.58 A/s, respectively.The substrate was heated and maintained at 500°C,and after depositing the Ta covering layer of 40 nm, the final films were obtained by annealing at 650°C for 20 min.

    The magnetic hysteresis loops,the data for the micromagnetic analysis and FORC were all obtained by a superconducting quantum interferometer device (SQUID) (Quantum Design,San Diego,CA,USA).X-ray diffractometer(XRD)with Cuα1 radiation(λ=0.154056 nm)was applied to analyze the phases composition(Rigaku Smartlab D/Max 260).A ZEISS SUPRA 55 SAPPHIRE field-emission scanning electron microscope(FESEM)was used to analyze the element distribution.

    3.Results and discussion

    Figure 1 shows the hysteresis loops in the in-plane (IP)and OOP directions at 300 K.As the thickness of the spacer layer increases, theJvalues first decrease and then increase in the IP and OOP directions.The maximumJis 1.099 T of Y50 in the OOP direction.For the maximum magnetic energy product((BH)max),it also shows that as the thickness of the Y spacer layer increases,the value decreases first and then increases.The (BH)maxof Y10 is 7.02 MGOe, and those of the other three samples are all about 12 MGOe.The(BH)maxof Y0 and Y50 are basically the same.With increasing thickness of the Y spacer layer,the coercivities at 300 K are 1.14 T,1.36 T,0.952 T,and 0.614 T,respectively.Y10 has the maximum coercivity of 1.36 T, which is 20% higher than that of Y0(1.14 T).It can be seen that the Y spacer layer with different thickness has an effect on the coercivity of La-Nd-Fe-B films.For the four samples, there is perpendicular magnetic anisotropy (PMA) by comparing the difference OOP and IP loops.

    Fig.1.Hysteresis loops of(a)Y0,(b)Y10,(c)Y20,and(d)Y50 samples in out-of-plane and in-plane directions at 300 K.

    Figure 2 shows the demagnetization curves, coercivity,and saturation magnetization of the films at different temperatures.For Y10,the coercivity is 2.48 T at 150 K and 0.938 T at 380 K, which is higher than that of other samples at the same temperature.This also shows that a suitable thickness of Y spacer layer can improve the coercivity of La-Nd-Fe-B at temperature range of 150 K-380 K.Additionally, with increasing Y thickness, the saturation magnetization and remanence first decrease and then increase, which needs to be further explained.Meanwhile, the enhancement mechanism of coercivity remains to be further elaborated.

    Fig.2.Demagnetization curves from 150 K to 380 K of(a)Y0, (b)Y10, (c)Y20, (d)Y50,(e)variation of coercivity, and(f)saturation magnetization and remanence with different thicknesses of Y spacer layer at different temperatures.

    To explore the existing state of Y spacer layer in the film and its in uence on the phase formation of samples,the XRD patterns, SEM images, and the corresponding EDX mapping of Y element are shown in Fig.3.The diffraction peaks of the films are mainly from tetragonal RE2Fe14B phase.Due to the large atomic radius of La,[19]the main phase RE2Fe14B is instability, the La-B phase still presents in Fig.3(a).With increasing thickness of the spacer layer, the diffraction peak strength of La-B phase reaches a maximum at Y10, and then gradually decreases.The XRD data are used to semiquantitatively calculate the phase in the film,the results show that the proportion of La-B phase in the four samples increases first and then decreases with increasing thickness of the Y spacer layer, which corresponds to the trend of the saturation magnetization in Fig.2(f).The diffraction intensity of peak (006) has been consistently weakened after increasing the spacer layer thickness.On the one hand,the excessive RE will weaken the growth ofc-axis texture.[20]On the other hand,with increasing thickness of the Y spacer layer,Y further diffuses and the misaligned grains increase.The angles corresponding to the characteristic peaks(004),(105)and(006)of RE2Fe14B increase firstly and then decrease, the corresponding lattice size decreases first and then increases.By inspecting the relevant lattice parameterc/ashown in Fig.3(c),combined with the distribution of Y element in Figs.3(d)-3(f), it is concluded that the Y spacer layer diffuses and participates in the phase formation of the films.With the addition of Y spacer layer, in the initial stage, since Y has a smaller main phase formation energy than La, Y tends to replace La and participates in the formation of the main phase.Since La is replaced by Y, more La-B phases are formed.With further increasing the thickness of the Y spacer layer,more Y participates in the formation of the main phase.Due to the shrinkage effect of lanthanide elements,the atomic radius of Y is smaller than that of La,the lattice size is reduced,and the stability of the main phase is increased,so that La can further participate in the formation of the main phase,which is similar to the results of La-Ce co-doping in Nd2Fe14B,[21]corresponding to the decrease of the proportion of La-B phase.In conclusion,the Y spacer layer can participate in the formation of the main phase without significantly changing thec-axis orientation of the film, and plays an important role in regulating the formation of the La-B phase.

    Fig.3.(a)XRD patterns of Y0, Y10, Y20, and Y50, (b)enlarged XRD patterns for(004), (105)and(006)characteristic peaks of RE2Fe14B,(c)the dependence of lattice parameter c/a of 2:14:1 tetragonal phase on thickness of Y spacer layer,(d)-(f)the cross-sectional SEM images of different Y spacer layer thicknesses and the corresponding EDX mapping of the element Y taken from the white rectangular region.

    In order to better understand the effect of Y spacer layer on the coercivity,the coercivity mechanism is fitted by micromagnetic theory[23,24]using the magnetic parameters in Fig.2 and the parameters in related reports.For the micromagnetic theory, when the coercivity mechanism is dominated by nucleation mechanism,it can be handled with the following formula:

    whereHc,Ha,Neff, andMsare coercivity, anisotropy field,effective local demagnetization factor, and saturation magnetization,respectively.The data ofHaof La2Fe14B,Nd2Fe14B,and Y2Fe14B are obtained from related reports.[8]And the anisotropy fields are averaged based on the atomic ratio of RE elements in the targets.Neffdefined as the local effective demagnetization factor is a microstructural coefficient,which describes the demagnetization effect of grain surfaces and volume charges.αis the microstructure parameter in the actual magnet,α=αKαφ; the coefficientαφis related to the crystal grains deviating from thec-axis,expressing the decrease in the nucleation field caused by misaligned crystal grains;αKis related to the non-uniform defect region,indicating a decrease in the nucleation field due to the grain damage on the surface of the magnet and the imperfect internal grain.αKandαφcan be expressed by the following formulas:

    whereφis the angle between the external field and thec-axis,δB, ΔK,A, andr0are defined as the width of Bloch domain wall,the reduction of magneto-crystalline anisotropy constant in defect region,the exchange constant,and the half width of the planar defect region, respectively.In micromagnetic theory, whenαK>0.3, the coercivity mechanism should be a nucleation mechanism;whenαK<0.3,the coercivity may be determined by pinning mechanism or by nucleation mechanism.Typically,the nucleation mechanism is considered in the following two situations:[23,25]considering the uniform magnetization inversion, the results are shown in Figs.4(a)-4(d),however the fitting magnetic parameters are not within a reasonable range (0<αK<1), and the linear fitting interval is narrow.Considering that the magnetic particles are strongly coupled and the anisotropy axis is not strictly along thec-axis,one reversed magnetic moment would lead to the joint reversal of the surrounding magnetic moments,based on this case,αφ=αminφ, the fitting results are demonstrated in Figs.4(e)-4(h).The values ofαKare 0.761, 0.770, 0.732, and 0.523,respectively, indicating that the nucleation mechanism is the dominant mechanism of the coercivity of the four films.At the same time,the values ofNeffobtained by fitting are 1.41,1.33,1.29, and 0.923.For Y10, the values ofαKandNefftogether make it obtain high coercivity.Therefore, the fit parameters are in a reasonable range, with a linear temperature range of 200 K-380 K,the coercivity in the four films is dominated by nucleation mechanism.In short, the coercivity mechanisms are deeply dominated by the nucleation mechanism.Moreover,with increasing thickness of the Y spacer layer,αKfirst increases and then decreases, whileNeffis decreasing, which together make the coercivity of Y10 greater than that of Y0.

    Fig.4.(a)-(d)Plots of Hc/Ms versus Ha/Ms for Y0,Y10,Y20,and Y50 for testing the nucleation mechanism where the magnetization process is uniform,(e)-(h)the plots of Hc/Ms versus αminφ Ha/Ms to test the nucleation mechanism taking the in uence of misaligned grains into account.

    For FORC method, the magnetization of the sample is first saturated, then the external magnetic field is reduced to the reversal field (Hr), and then the field measurement is carried out fromHrto saturation field.In this way, hundreds of minor loops can be obtained to form the FORC diagram.And the magnetization isM(H,Hr)(H ≥Hr), whereHis the applied magnetic field.The FORC distribution parameter is defined as[26-28]

    The magnetization reversal processes of the films are further studied by the FORC method.Figure 5 shows the corresponding FORC graph of the four samples at 300 K.The left side of the graph shows the normalized FORC, and the graphs in the middle are the corresponding contour graphs in their own graphics.The distribution ofρ=0 indicates that the magnetization process is reversible.The distribution ofρ ?=0 indicates that the magnetization process is irreversible.[29]All the samples start irreversible magnetization process from their corresponding point 1; andρreaches a maximum at point 2;at point 3,ρgradually goes to the plane ofρ=0.Y10 has the largest initial field of the irreversible inversion in the four samples, which is-0.75 T, indicating that its magnetic moment is not easily reversed.In all films, the non-zero tailing pairs appear in the magnetic field after point 3, corresponding to the characteristics of nucleation mechanism,[30]which is consistent with the previous fitting results by the micromagnetic theory.

    FORC method can be used to characterize the magnetic interaction and coercivity distribution by transforming the coordinate system as follows:

    In this coordinate system, the distribution of peak alongμ0Hc>0 represents the distribution of coercivity,without considering the interaction between particles.And theμ0Hurepresents the distribution of mean interaction filed.[31]Along the direction ofμ0Huaxis,whenρmaxis distributed in the positive direction ofμ0Hu,the average interaction is dipole interaction,otherwise, it is the exchange interaction.The related results are shown in Figs.6(i)-6(l), and the distribution of coercivity also corresponds to the coercivity at room temperature in Fig.1.In Y10, the coercivity distribution of the film is more concentrated.For the magnetic interaction between particles,the positions ofρmaxshow that dipole interaction dominates in all the samples,which increases firstly and then decreases,and Y10 has the largest dipole interaction, indicating that the exchange interaction in the film also correspondingly reduces and therefore the coercivity of Y10 increases.So, the high dipole interaction of the Y10 sample can serve as a new reason to explain its high coercivity.

    Fig.5.(a)-(d) FORCs (normalized to 1) along out-of-plane direction of the four films, (e)-(h) corresponding contour plots distribution in theμ0Hr-μ0H coordination,and(i)-(l)FORCs distribution in theμ0Hb-μ0Hc coordination of films Y0,Y10,Y20,and Y50,respectively.

    4.Conclusion

    In summary,in La-Nd-Fe-B films,with increasing thickness of the Y spacer layer, Y can regulate the formation of La-B phase.Combined with the results of micromagnetic fitting and FORC, it can be determined that all the samples are dominated by the nucleation mechanism.Magnetic interactions in the thin films are also dominated by the dipole interaction.Due to thec-axis preferred orientation,good magnetic microstructure parameters and dipole interaction,Y10 has the highest coercivity at 150 K-380 K.All the results are beneficial for understanding the coercivity mechanism and magnetization process of permanent magnets with Y.

    Acknowledgments

    Project supported by the National Key Research and Development Program of China (Grant No.2021YFB3500303)and the National Natural Science Foundation of China(Grant Nos.52031014 and 51971219).

    猜你喜歡
    馬俊李陽劉偉
    天竺取經(jīng)之二
    金秋(2021年24期)2021-12-01 11:15:21
    特殊的考卷
    李陽 讓品茶成為視覺藝術(shù)
    海峽姐妹(2020年11期)2021-01-18 06:16:06
    For the fish
    劉偉誤交損友
    分手多情
    測 量
    長江叢刊(2018年16期)2018-11-14 19:04:05
    劉偉(劉冠儒)
    開在心頭的花
    小小說月刊(2017年1期)2017-01-13 17:53:46
    且行且珍惜
    欧美日韩精品网址| 国产欧美日韩一区二区精品| 国产精品自产拍在线观看55亚洲 | 乱人伦中国视频| 在线永久观看黄色视频| 亚洲,欧美精品.| 久久国产精品大桥未久av| 91成年电影在线观看| 亚洲av日韩精品久久久久久密| 中文字幕人妻丝袜一区二区| 亚洲中文av在线| 国产av精品麻豆| 狠狠狠狠99中文字幕| 亚洲人成电影观看| 免费不卡黄色视频| 丰满人妻熟妇乱又伦精品不卡| 亚洲色图综合在线观看| 国产精品久久久久成人av| 丝袜美足系列| 9191精品国产免费久久| 黄片播放在线免费| 黑人操中国人逼视频| av免费在线观看网站| 老熟妇仑乱视频hdxx| 亚洲第一av免费看| 欧美黄色片欧美黄色片| 黑丝袜美女国产一区| 电影成人av| av福利片在线| 777米奇影视久久| 十分钟在线观看高清视频www| 丝袜人妻中文字幕| 国产精品久久久久久精品电影小说| 中文字幕高清在线视频| 国产成人欧美在线观看 | 精品亚洲成a人片在线观看| 一区二区三区国产精品乱码| av片东京热男人的天堂| 亚洲国产av影院在线观看| 最近最新中文字幕大全免费视频| 美女高潮到喷水免费观看| 国产欧美日韩一区二区三| 久久国产精品男人的天堂亚洲| 国产视频一区二区在线看| 女人爽到高潮嗷嗷叫在线视频| 我的亚洲天堂| 日韩一卡2卡3卡4卡2021年| 69精品国产乱码久久久| 日韩有码中文字幕| 夜夜夜夜夜久久久久| 中文字幕人妻熟女乱码| 一夜夜www| 电影成人av| 黄色视频,在线免费观看| 国产男女超爽视频在线观看| 黄色视频不卡| 日韩欧美免费精品| 国产免费现黄频在线看| 一进一出好大好爽视频| 国产免费av片在线观看野外av| 国产精品香港三级国产av潘金莲| 欧美av亚洲av综合av国产av| 亚洲精品在线观看二区| 精品视频人人做人人爽| 欧美黑人精品巨大| 午夜精品国产一区二区电影| 久久久精品94久久精品| 人妻久久中文字幕网| 亚洲精品自拍成人| 久久国产精品大桥未久av| 人成视频在线观看免费观看| 高清毛片免费观看视频网站 | 成人精品一区二区免费| 国产成人一区二区三区免费视频网站| 最近最新中文字幕大全免费视频| 久9热在线精品视频| 免费看十八禁软件| 桃红色精品国产亚洲av| 在线看a的网站| 这个男人来自地球电影免费观看| 操美女的视频在线观看| 美女扒开内裤让男人捅视频| 亚洲色图综合在线观看| 久久 成人 亚洲| 99久久99久久久精品蜜桃| 国产老妇伦熟女老妇高清| 色综合婷婷激情| 精品少妇一区二区三区视频日本电影| 欧美日韩亚洲高清精品| 黄网站色视频无遮挡免费观看| 一级a爱视频在线免费观看| 亚洲五月色婷婷综合| 欧美国产精品va在线观看不卡| 久久国产精品人妻蜜桃| 丝袜人妻中文字幕| 最新的欧美精品一区二区| 欧美日韩成人在线一区二区| 桃红色精品国产亚洲av| 在线观看免费日韩欧美大片| 欧美日韩成人在线一区二区| 精品国产超薄肉色丝袜足j| 亚洲五月色婷婷综合| 日韩一区二区三区影片| av免费在线观看网站| 免费日韩欧美在线观看| 在线十欧美十亚洲十日本专区| 色综合婷婷激情| 国产成人精品久久二区二区免费| 亚洲欧美日韩高清在线视频 | 欧美一级毛片孕妇| 操美女的视频在线观看| 色婷婷av一区二区三区视频| 亚洲伊人久久精品综合| 久久这里只有精品19| 最近最新中文字幕大全免费视频| 欧美日韩亚洲综合一区二区三区_| 国产精品二区激情视频| 国产高清视频在线播放一区| 久久国产精品影院| 麻豆成人av在线观看| 国产精品免费视频内射| 757午夜福利合集在线观看| 亚洲专区字幕在线| netflix在线观看网站| 天天躁日日躁夜夜躁夜夜| 亚洲午夜理论影院| 男男h啪啪无遮挡| 99国产精品99久久久久| 国产精品98久久久久久宅男小说| 精品亚洲乱码少妇综合久久| 国产精品二区激情视频| 久久精品91无色码中文字幕| 成人三级做爰电影| 成人永久免费在线观看视频 | 欧美激情 高清一区二区三区| 高清黄色对白视频在线免费看| 操出白浆在线播放| 丰满迷人的少妇在线观看| 看免费av毛片| 国产精品亚洲一级av第二区| 日韩视频在线欧美| 99国产综合亚洲精品| 人人妻人人澡人人看| 9色porny在线观看| 变态另类成人亚洲欧美熟女 | 18禁国产床啪视频网站| 天天操日日干夜夜撸| 两人在一起打扑克的视频| 欧美精品av麻豆av| a级毛片黄视频| 国产精品98久久久久久宅男小说| tube8黄色片| 成人亚洲精品一区在线观看| 黄片大片在线免费观看| av网站在线播放免费| 热re99久久国产66热| 亚洲中文字幕日韩| 国产精品影院久久| 91av网站免费观看| 国产精品秋霞免费鲁丝片| 国产av国产精品国产| 天堂俺去俺来也www色官网| 午夜福利乱码中文字幕| 亚洲av欧美aⅴ国产| 日韩中文字幕视频在线看片| 美女午夜性视频免费| 老汉色av国产亚洲站长工具| 十八禁人妻一区二区| 欧美中文综合在线视频| 9热在线视频观看99| 欧美av亚洲av综合av国产av| 黄色视频,在线免费观看| 久久午夜亚洲精品久久| 久久影院123| 久热爱精品视频在线9| 精品国产一区二区三区四区第35| 俄罗斯特黄特色一大片| 极品人妻少妇av视频| 久久 成人 亚洲| 久久婷婷成人综合色麻豆| 热99久久久久精品小说推荐| 久久精品国产亚洲av高清一级| 两人在一起打扑克的视频| 男男h啪啪无遮挡| 少妇粗大呻吟视频| 日韩欧美三级三区| 国产成人一区二区三区免费视频网站| 欧美大码av| 欧美日韩av久久| 国产日韩欧美亚洲二区| av在线播放免费不卡| 天天操日日干夜夜撸| 精品国产乱码久久久久久小说| 黄色怎么调成土黄色| 久久婷婷成人综合色麻豆| 亚洲精品美女久久久久99蜜臀| 国产色视频综合| 精品一区二区三区av网在线观看 | 久久久精品免费免费高清| 天堂中文最新版在线下载| 黄色片一级片一级黄色片| 9色porny在线观看| a级毛片黄视频| 亚洲精品美女久久久久99蜜臀| 亚洲色图综合在线观看| 亚洲中文日韩欧美视频| 在线 av 中文字幕| 美女视频免费永久观看网站| 少妇精品久久久久久久| 久热这里只有精品99| 80岁老熟妇乱子伦牲交| 精品乱码久久久久久99久播| 五月开心婷婷网| 免费在线观看完整版高清| 黄片小视频在线播放| 国产三级黄色录像| 久久中文字幕人妻熟女| 亚洲精品美女久久久久99蜜臀| 老司机影院毛片| av网站免费在线观看视频| 黄色视频不卡| 国产av精品麻豆| 久久免费观看电影| 99热网站在线观看| 中文字幕av电影在线播放| 在线亚洲精品国产二区图片欧美| 91精品三级在线观看| 久久精品亚洲av国产电影网| 正在播放国产对白刺激| 亚洲欧美精品综合一区二区三区| 精品一区二区三卡| 纵有疾风起免费观看全集完整版| 极品人妻少妇av视频| 国产精品亚洲av一区麻豆| 老司机亚洲免费影院| 久热爱精品视频在线9| 老熟女久久久| 免费观看人在逋| 成人国产av品久久久| 免费av中文字幕在线| 成年版毛片免费区| 一区福利在线观看| 电影成人av| 国产人伦9x9x在线观看| 国产精品亚洲一级av第二区| 美女高潮喷水抽搐中文字幕| 精品国产乱码久久久久久小说| 男男h啪啪无遮挡| 亚洲专区中文字幕在线| 欧美日本中文国产一区发布| 99精品久久久久人妻精品| 脱女人内裤的视频| 老熟女久久久| 黄频高清免费视频| 人妻久久中文字幕网| 一二三四在线观看免费中文在| 欧美变态另类bdsm刘玥| 又大又爽又粗| 精品少妇久久久久久888优播| 免费在线观看影片大全网站| 视频区欧美日本亚洲| 国产一区二区在线观看av| 99久久99久久久精品蜜桃| 丝袜喷水一区| 亚洲av欧美aⅴ国产| 国产高清videossex| 欧美成人午夜精品| 十八禁网站网址无遮挡| 女警被强在线播放| 不卡av一区二区三区| 久久国产精品男人的天堂亚洲| 99国产精品一区二区蜜桃av | 久久精品91无色码中文字幕| 国产精品一区二区免费欧美| 嫩草影视91久久| 亚洲精品久久成人aⅴ小说| 午夜老司机福利片| 在线观看www视频免费| 午夜福利在线免费观看网站| 亚洲天堂av无毛| 一个人免费在线观看的高清视频| 久久精品国产亚洲av高清一级| 亚洲精品中文字幕在线视频| 精品国产超薄肉色丝袜足j| 精品一区二区三卡| 99精品欧美一区二区三区四区| 国产精品九九99| 精品免费久久久久久久清纯 | 日韩精品免费视频一区二区三区| 又大又爽又粗| 成年女人毛片免费观看观看9 | 每晚都被弄得嗷嗷叫到高潮| 女人久久www免费人成看片| 久久精品国产99精品国产亚洲性色 | 天堂动漫精品| 久久这里只有精品19| 色婷婷久久久亚洲欧美| 一区福利在线观看| 欧美一级毛片孕妇| 精品国产超薄肉色丝袜足j| 99精国产麻豆久久婷婷| 国产97色在线日韩免费| 国产深夜福利视频在线观看| 交换朋友夫妻互换小说| 亚洲 欧美一区二区三区| 成人av一区二区三区在线看| 国产一区二区三区在线臀色熟女 | 99精品欧美一区二区三区四区| 国产男女内射视频| 久久国产精品影院| 成人亚洲精品一区在线观看| 99精品在免费线老司机午夜| 丝袜喷水一区| 亚洲av国产av综合av卡| 夫妻午夜视频| 精品福利观看| 在线永久观看黄色视频| 午夜精品久久久久久毛片777| 久久精品亚洲精品国产色婷小说| 国产不卡av网站在线观看| 日本一区二区免费在线视频| 老司机亚洲免费影院| 美女高潮喷水抽搐中文字幕| 日韩大片免费观看网站| 日本黄色视频三级网站网址 | 亚洲精品粉嫩美女一区| 麻豆av在线久日| 9色porny在线观看| 极品少妇高潮喷水抽搐| 国产成人影院久久av| 国产免费视频播放在线视频| 国产淫语在线视频| 国产av又大| 又黄又粗又硬又大视频| 韩国精品一区二区三区| 国产精品二区激情视频| 亚洲国产欧美在线一区| 超碰97精品在线观看| 99精国产麻豆久久婷婷| 亚洲情色 制服丝袜| 国产精品98久久久久久宅男小说| 久久久久精品人妻al黑| 欧美一级毛片孕妇| 欧美日韩亚洲高清精品| 天天操日日干夜夜撸| 亚洲 欧美一区二区三区| 久久国产精品男人的天堂亚洲| 亚洲九九香蕉| 免费av中文字幕在线| 国产在线一区二区三区精| 久久久久久久久久久久大奶| 少妇猛男粗大的猛烈进出视频| 国产一区有黄有色的免费视频| a在线观看视频网站| 精品高清国产在线一区| 国产av一区二区精品久久| 精品熟女少妇八av免费久了| 美女国产高潮福利片在线看| 19禁男女啪啪无遮挡网站| 欧美另类亚洲清纯唯美| 欧美日韩亚洲高清精品| 国产精品 国内视频| 精品午夜福利视频在线观看一区 | 午夜福利一区二区在线看| 欧美日韩福利视频一区二区| 亚洲午夜精品一区,二区,三区| 国产精品九九99| √禁漫天堂资源中文www| 午夜精品国产一区二区电影| 久久久久久久精品吃奶| 丰满迷人的少妇在线观看| 精品乱码久久久久久99久播| 亚洲成国产人片在线观看| 超碰97精品在线观看| 在线看a的网站| 丁香六月欧美| 国产一卡二卡三卡精品| 桃花免费在线播放| 少妇 在线观看| 欧美激情高清一区二区三区| 国精品久久久久久国模美| 精品一区二区三卡| 99久久精品国产亚洲精品| 动漫黄色视频在线观看| 肉色欧美久久久久久久蜜桃| 怎么达到女性高潮| 国产淫语在线视频| 18禁黄网站禁片午夜丰满| 水蜜桃什么品种好| 欧美日韩亚洲综合一区二区三区_| 国产一区二区 视频在线| 搡老岳熟女国产| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品免费视频内射| 亚洲av美国av| 桃花免费在线播放| 少妇粗大呻吟视频| 日韩大码丰满熟妇| 热99国产精品久久久久久7| 99精品欧美一区二区三区四区| av网站在线播放免费| 欧美 日韩 精品 国产| 天天操日日干夜夜撸| 国产免费视频播放在线视频| 亚洲精品一二三| 操美女的视频在线观看| 91字幕亚洲| 精品国产乱码久久久久久男人| 伦理电影免费视频| av线在线观看网站| 亚洲天堂av无毛| 国产精品电影一区二区三区 | 欧美 日韩 精品 国产| 精品福利永久在线观看| 亚洲午夜理论影院| 国产精品二区激情视频| 熟女少妇亚洲综合色aaa.| 亚洲中文字幕日韩| 久久亚洲真实| 99九九在线精品视频| 美女高潮喷水抽搐中文字幕| 国产亚洲欧美精品永久| 黄色成人免费大全| 国产精品一区二区在线观看99| 在线播放国产精品三级| 亚洲欧美色中文字幕在线| 精品熟女少妇八av免费久了| 亚洲五月色婷婷综合| 肉色欧美久久久久久久蜜桃| 亚洲国产欧美网| kizo精华| 一进一出抽搐动态| 老汉色∧v一级毛片| 午夜福利在线观看吧| 美国免费a级毛片| 精品人妻熟女毛片av久久网站| 欧美一级毛片孕妇| 国产日韩欧美亚洲二区| 国产亚洲精品久久久久5区| 丰满人妻熟妇乱又伦精品不卡| 啦啦啦免费观看视频1| 无人区码免费观看不卡 | 亚洲伊人色综图| 成年动漫av网址| 国产aⅴ精品一区二区三区波| 国产精品香港三级国产av潘金莲| av天堂久久9| 成年人免费黄色播放视频| 在线观看舔阴道视频| 男女下面插进去视频免费观看| 侵犯人妻中文字幕一二三四区| 一区二区三区精品91| 悠悠久久av| 免费不卡黄色视频| 久久精品国产亚洲av香蕉五月 | 久久国产精品影院| 男人操女人黄网站| 97人妻天天添夜夜摸| 99精国产麻豆久久婷婷| 久久 成人 亚洲| 欧美黄色片欧美黄色片| 午夜两性在线视频| 精品人妻熟女毛片av久久网站| 狂野欧美激情性xxxx| 一区二区三区激情视频| 国产成人精品在线电影| 欧美精品一区二区免费开放| 国产精品 欧美亚洲| 亚洲精品在线美女| 色94色欧美一区二区| 一级片'在线观看视频| 建设人人有责人人尽责人人享有的| 欧美黑人欧美精品刺激| 国产成人精品在线电影| 大片电影免费在线观看免费| 少妇猛男粗大的猛烈进出视频| 9热在线视频观看99| 中文字幕人妻丝袜一区二区| 色尼玛亚洲综合影院| 不卡一级毛片| 波多野结衣av一区二区av| 国产成+人综合+亚洲专区| 国产91精品成人一区二区三区 | av片东京热男人的天堂| 国产精品1区2区在线观看. | 看免费av毛片| 91字幕亚洲| 亚洲国产精品一区二区三区在线| 黄色怎么调成土黄色| 一区二区日韩欧美中文字幕| 麻豆国产av国片精品| 国产av国产精品国产| 捣出白浆h1v1| av片东京热男人的天堂| 久久国产精品影院| videosex国产| 婷婷丁香在线五月| 在线观看www视频免费| 国产在线视频一区二区| 中文字幕色久视频| 在线亚洲精品国产二区图片欧美| 狠狠狠狠99中文字幕| 最新美女视频免费是黄的| 日韩中文字幕欧美一区二区| 黄色视频,在线免费观看| √禁漫天堂资源中文www| 成人av一区二区三区在线看| 极品教师在线免费播放| 操出白浆在线播放| 国产成+人综合+亚洲专区| 欧美黑人欧美精品刺激| 亚洲国产欧美在线一区| 欧美亚洲日本最大视频资源| 国产精品.久久久| 一级毛片电影观看| 亚洲五月色婷婷综合| 久久国产精品大桥未久av| 一级毛片电影观看| 久久婷婷成人综合色麻豆| 精品国产乱码久久久久久小说| 怎么达到女性高潮| 国产一区二区激情短视频| 中文字幕av电影在线播放| 国产午夜精品久久久久久| 黄色怎么调成土黄色| 99在线人妻在线中文字幕 | 国产亚洲欧美精品永久| 国产成人系列免费观看| 国产区一区二久久| 精品人妻1区二区| 极品人妻少妇av视频| 亚洲精品在线观看二区| 国产成人欧美在线观看 | 另类亚洲欧美激情| 黄色丝袜av网址大全| 捣出白浆h1v1| 黑人欧美特级aaaaaa片| 亚洲,欧美精品.| 午夜免费鲁丝| 国产欧美日韩精品亚洲av| 黄色毛片三级朝国网站| 视频区欧美日本亚洲| 成人永久免费在线观看视频 | 国产精品免费视频内射| 免费看十八禁软件| 国产亚洲av高清不卡| 国产av又大| 亚洲全国av大片| 多毛熟女@视频| 水蜜桃什么品种好| 久久精品人人爽人人爽视色| 91精品国产国语对白视频| 亚洲九九香蕉| 色视频在线一区二区三区| 久久精品aⅴ一区二区三区四区| 精品国产乱码久久久久久小说| 国产在视频线精品| 无遮挡黄片免费观看| 十八禁人妻一区二区| 午夜激情av网站| 夜夜爽天天搞| 999久久久精品免费观看国产| 亚洲人成伊人成综合网2020| 国产真人三级小视频在线观看| 亚洲综合色网址| 午夜福利乱码中文字幕| 91老司机精品| 欧美激情极品国产一区二区三区| 成人影院久久| 成人亚洲精品一区在线观看| 色婷婷久久久亚洲欧美| 国产成人精品在线电影| 老司机深夜福利视频在线观看| 大型av网站在线播放| 一级黄色大片毛片| 一边摸一边抽搐一进一小说 | 一区二区日韩欧美中文字幕| 国产国语露脸激情在线看| 精品少妇一区二区三区视频日本电影| 亚洲国产精品一区二区三区在线| 99久久99久久久精品蜜桃| 深夜精品福利| 欧美精品av麻豆av| 少妇被粗大的猛进出69影院| tocl精华| 精品亚洲乱码少妇综合久久| 老司机福利观看| 久久国产精品男人的天堂亚洲| 法律面前人人平等表现在哪些方面| 欧美激情 高清一区二区三区| 窝窝影院91人妻| 免费观看人在逋| 精品少妇一区二区三区视频日本电影| 国产色视频综合| 久久久久久人人人人人| 成人国语在线视频| 国产精品免费一区二区三区在线 | 国产在线免费精品| 中文字幕最新亚洲高清| 亚洲av成人不卡在线观看播放网| 一级片免费观看大全| 手机成人av网站| 国产不卡av网站在线观看| 国产高清国产精品国产三级| av欧美777| 精品久久蜜臀av无| 91字幕亚洲| 99国产精品一区二区蜜桃av | 每晚都被弄得嗷嗷叫到高潮| 久久天堂一区二区三区四区| 69精品国产乱码久久久| 动漫黄色视频在线观看| 一级,二级,三级黄色视频| 99九九在线精品视频| 国产主播在线观看一区二区|