• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    14族雜環(huán)戊二烯分子(硅、鍺、錫)的電子結(jié)構(gòu)與光譜性質(zhì)

    2010-12-11 09:10:38鄧春梅牛英利帥志剛
    物理化學(xué)學(xué)報(bào) 2010年4期
    關(guān)鍵詞:環(huán)戊二烯性質(zhì)光譜

    鄧春梅 牛英利 彭 謙,* 帥志剛,2,*

    (1中國(guó)科學(xué)院化學(xué)研究所,北京分子科學(xué)國(guó)家實(shí)驗(yàn)室,有機(jī)固體院重點(diǎn)實(shí)驗(yàn)室,北京 100190; 2清華大學(xué)化學(xué)系,北京 100084)

    14族雜環(huán)戊二烯分子(硅、鍺、錫)的電子結(jié)構(gòu)與光譜性質(zhì)

    鄧春梅1牛英利1彭 謙1,*帥志剛1,2,*

    (1中國(guó)科學(xué)院化學(xué)研究所,北京分子科學(xué)國(guó)家實(shí)驗(yàn)室,有機(jī)固體院重點(diǎn)實(shí)驗(yàn)室,北京 100190;2清華大學(xué)化學(xué)系,北京 100084)

    14族雜原子取代的雜環(huán)戊二烯分子具有獨(dú)特的光譜性質(zhì),成為發(fā)光材料的明星分子.為了更深層次地理解硅、鍺、錫雜環(huán)戊二烯分子的光譜性質(zhì),本文從理論上計(jì)算了它們的電子結(jié)構(gòu)及其吸收和發(fā)射光譜.分別采用密度泛函理論(DFT)和含時(shí)密度泛函理論(TD-DFT),優(yōu)化了硅、鍺、錫雜環(huán)戊二烯分子基態(tài)和第一激發(fā)態(tài)的平衡構(gòu)型,計(jì)算了電子結(jié)構(gòu)和振動(dòng)性質(zhì).在此基礎(chǔ)上,運(yùn)用振動(dòng)關(guān)聯(lián)函數(shù)公式計(jì)算了吸收光譜和發(fā)射光譜.得到的吸收光譜和發(fā)射光譜,特別是發(fā)射光譜的半峰寬與現(xiàn)有的實(shí)驗(yàn)值吻合很好.通過分析結(jié)構(gòu)和光譜性質(zhì)的關(guān)系,指出光譜的性質(zhì)主要取決于苯環(huán)轉(zhuǎn)動(dòng)對(duì)應(yīng)的低頻振動(dòng)模式和中心環(huán)C—C鍵的伸縮振動(dòng)對(duì)應(yīng)的高頻振動(dòng)模式.

    密度泛函理論;14族雜環(huán)戊二烯;振動(dòng)關(guān)聯(lián)函數(shù);光吸收;光發(fā)射

    Since the discovery of organic light-emitting device(OLED) by Tang and VanSlyke[1],there has been increasing interest in developing highly efficient OLED devices because of their great potential efficient in display,solid-state lighting,and other applications.One of the major current subjects in this field is the development of efficient light-emitting materials.

    Group-14 metalloles,silicon-,germanium-,or tin-containing metallacyclopentadienes were first synthesized by Leavitt[2-3]and Braye[4]et al.in 1959-1961.The general structure is of the following form:

    where R1and R2could be alkyl,aryl,halides,a second ring,or one or both may be missing.They are so called metalloles due to the metallic nature of the elements M=Si,Ge,Sn.Recently, much attention has been paid to these systems because of their unusual electronic structure[5-6]and exotic aggregation induced emission photophysical characteristics[7]that have made them intriguing candidates for OLEDs.

    In general,aggregation quenches luminescence because of either charge transfer or energy transfer or Davydov splitting where dark state becomes the lowest-lying excited state.In contrast,siloles exhibit aggregation enhanced luminescence.Siloles have a quite low-lying LUMO(the lowest unoccupied molecular orbital)level,which is ascribed to the σ*-π*conjugation in the ring,that is,the orbital interaction between the σ*orbital of the two exocyclic σ bonds on the silicon atom and the π*orbital of the butadiene structure[8-9].Siloles exhibit high electron affinity and large electron mobility,which has been employed both as electron-transporting and light-emitting layers for organic electronics[10-11].A recent study showed that the electron mobility of a silole based compound was as much as 100 times higher than that of tris(8-hydroxyquinolinato)aluminum(Alq3),which is widely used as an electron-transport material in OLED[12].Since the intriguing phenomenon,the aggregation-induced emission (AIE),was reported by Tang et al.in 2001[13],a series of silole molecules have been found to exhibit the exotic phenomena and used as excellent light-emitting materials for OLED[14].Recently, germoles and stannoles become subjects of great interest since they display the very similar unusual optical properties as the siloles[5-7].

    We have first attempted to understand the AIE phenomena by investigatingtheexcitedstatevibroniccoupling[15-16].Wefoundthe couplings arising from low-frequency nuclear motion contribute the most to the non-radiative decay process.We then developed a fully analytic vibration-correlation function formalism for the internal conversion rate process by considering the multimode mixing(Duschinsky rotation effects).And we further went beyond the“promoting mode”approximation by presenting a formalism which includes all the vibrational modes in the electronic couplings prefactor[17].Eventually,we found that the vibrationcorrelation function formalism can give a comprehensive description for both the radiative and non-radiative decay rates as well as for the optical absorption and emission spectra.

    In this work,we present a computational study on the optical absorption and emission spectra for three metalloles,namely, siloles,germoles,and stannoles by using density functional theory(DFT)[18]and time-dependent density functional theory(TDDFT)[19-21]to generate essential electronic and vibrational structures which are eventually coupled with the vibration-correlation function formalism for the optical spectra.For simplicity,these group-14 hexaphenylmetalloles will be referred to the group-14 elements and the substituents:MPh6(M=Si,Ge,Sn).Finally,we will compare the first-principles results with the experiments.

    1 Methodology

    The absorption spectrum,defined as the rate of energy absorption by a single molecule per unit radiant energy flux,is given by the expression

    The emission spectrum in photon counting experiments,defined as the differential rate of photon emission due to a single molecule,is

    where,Ψiνiand Ψfνfare the molecular wave functions and μ is the electric dipole moment.is the Boltzmann distribution function for the initial state vibronic manifold.c represents the velocity of light and ω represents the vibration frequency.Eif=Ei-Efis the energy difference between the initial and final electronic states.andare the total vibrational energy of the molecule in the initial and final electronic states,respectively.

    In the Born-Oppenheimer adiabatic approximation,the wave function of each state can be expressed as a product of the electronic wave function and the wave function for nuclear motion.

    μfi=〈Φf|μ|Φi〉,is the electric transition dipole moment,and can be expanded in a Taylor series in the normal coordinates.

    For the strongly allowed transitions,the emission is usually dominated by the zero-order term,i.e.,the first term of Eq.(4). While for the weakly allowed or dipole-forbidden transitions, the Herzberg-Teller approximation corresponding to the second term should also be considered.In this paper,we will just consider the zero-order term because the transition between the ground state and the lowest excited state is strongly allowed for all the metalloles,even though our formalism is general.

    Applying Fourier transformation,δ(ω)=Then Eqs. (1-2)can be written asis a vibration correlation function of absorption spectrum.(t,T)has the same form as(t,T)with only different initial and final electronic states.

    In order to get the fully analytic formalism of Eqs.(5-6),the path integral formula of harmonic oscillator is adopted to derive the Franck-Condon integrals[22-23].Then the final analytic solution of the correlation function could be obtained as

    where ai,af,and E are N×N matrices,K is 2N×2N matrix,andare N×1 and 2N×1 matrices,respectively.The details of the correlation function are derived in Ref.[24].

    2 Computational details

    The molecular equilibrium geometries for the ground state (S0)were optimized at the level of DFT.And the TD-DFT was applied to optimize the first singlet excited state(S1)of the compounds.The B3LYP functional[25]and def2-SV(P)basis set[26]were used,and the effective core potential(ECP)was employed for Sn atom,in particular.There was no symmetric constrain on the geometric optimization.At the equilibrium geometries,the vibration frequencies and the normal modes of S0electronic states were calculated by analytic second derivative calculations,and the ones for S1electronic states were obtained by numerical differentiation of analytic energy gradients.These electronic structure calculations were carried out by using TURBOMOLE 6.0 program package[18,27].Based on the electronic structure information,considering the displaced and distortion of potential energy surface,the absorption and emission spectra of MPh6(M=Si,Ge, Sn)were investigated by means of a home-made program which is described in the Methodology section.

    Fig.1 General structure of the group-14 metalloles MPh6 (M=Si,Ge,Sn)

    3 Results and discussion

    3.1 Ground and excited state geometries

    The molecular equilibrium geometries for the S0based on the geometries obtained from the X-ray crystal data[7]were optimized at the level of DFT.The molecular structure is depicted in Fig.1.The selected bond lengths,bond angels,and dihedral anglesofbothS0andS1inMPh6(M=Si,Ge,Sn)arelistedinTable1.

    From Table 1,we can find that all three compounds havesimilar conformations in ground state.The three metalloles all have planar central metallol moieties.As for the geometries of the central metallole rings,the heavier metalloles have the longer M—C bond lengths,accompanied with the smaller C2MC5 angles,apparently due to the larger atomic radii of the heavier central group-14 elements.The angles between the phenyl substituents on the diene and the central metallol plane vary from 36.4°to 61.5°,which indicate the two adjacent phenyl rings could not be coplanar with the metallol rings because of the steric hindrance.The substituent phenyl rings give the molecule a propeller-like shape.

    Table 1 Selected important bond lengths,bond angles,and dihedral angles of MPh6(M=Si,Ge,Sn)in the ground state and the first singlet excited state

    When going from the ground state S0to the first singlet excited state S1,two important geometric modifications should be noted: (1)the bonds C2—C3,C4—C5 are elongated,whereas bonds C3—C4,C2—C20,C5—C50,M—C2,and M—C5 are shortened;(2)the dihedral angles of the phenyl rings at 2 and 5 positions to the central metallole ring dramatically decrease.For these phenomena,the detailed explanation will be given in the next section.

    3.2 Molecular orbital calculations

    In order to characterize the optical and electronic properties,it is useful to examine the highest occupied molecular orbital (HOMO),the lowest unoccupied molecular orbital(LUMO), and the energy gaps between HOMO and LUMO(Egap).To gain insight into the influence of the heteroatoms in the group-14 metallols on the molecular orbitals,the plots of HOMO and LUMO for group-14 metallols are showed in Fig.2.The calculated HOMO and LUMO energies and the energy gaps are given in Table 2.

    As shown in Fig.2,the HOMO and LUMO for all the three compounds displayed qualitatively similar iso-surfaces.The HOMO orbitals resemble the HOMO for cis-butadiene,with some additional contributions from the local HOMO of 2,5-phenyl groups and a lesser extent 3,4-phenyl groups.The LUMO orbitals are similar to the LUMO of butadiene with additional in-phase contributions from a M-Ph σ*orbital and from the local LUMO of the 2,3,4,5-pheneyl groups.Based on the orbitals distribution,we could presume that HOMO levels for these three molecules will be insensitive to the heteroatom while the LUMOlevels will have relations with the heteroatom.The computed data(Table 2)have confirmed this guess.There are slightly increases in the order of SiPh6<GePh6<SnPh6both for the LUMO level and the HOMO-LUMO energy gap.The adiabatic excited energy(Ea)between the ground state and the first singlet excited state are also listed in Table 2,and display the same trend as Egap.

    Table 2Calculated HOMO and LUMO energies,HOMOLUMO energy gaps(Egap),and the adiabatic excited energy (Ea)for MPh6(M=Si,Ge,Sn)

    In general,the HOMO orbitals exhibit bonding character and the LUMO orbitals antibonding character.Since the first singlet excited state corresponds almost exclusively to the excitation from the HOMO to the LUMO in all the studied compounds,we could predict the differences of the bond lengths between the S0and S1from MO nodal patterns.For example,the HOMO orbitals of the studied molecules are bonding across the C2—C3, and C4—C5 bonds,whereas the LUMO orbitals have nodes in these regions.The calculated results in Table 1 are in agreement with this anticipated elongation of these bonds.On the contrary, the HOMO orbitals have nodes across the C3—C4,C2—C20, C5—C50,M—C2,and M—C5 bonds,while the LUMO orbitals are bonding in these regions.Therefore,the bond lengths of these bonds become considerably shorter in the excited state as discussed in the previous section.

    3.3 Absorption and emission spectra

    Based on the electronic structure information,the absorption from S0to S1and emission from S1to S0spectra for the three compounds are calculated and depicted in Fig.3(a,b).And the comparison between the calculated absorption and emission spectra and the experimental ones[10]of SiPh6are shown in Fig.4. In addition,the maximum absorption and emission peak positions,the full width at the half maximum(FWHM),and the available corresponding experimental data of each molecule are listed in Table 3.

    Fig.2 Calculated HOMO and LUMO for the group-14 metalloles MPh6(M=Si,Ge,Sn)

    Compared with the experimental data,lower excited energies are always obtained by using TD-DFT method due to the limitation of inherent electron self-interaction in DFT methodologies. Furthermore,the experimental data are detected in the acetonitrile solution,while the computed data are obtained in gas phase by employing a single molecule.Therefore,when compared with the experimental data,both the absorption and emission spectra exhibit red shifts(seen in Table 3).And in Fig.4,in order to compare the lineshape of the calculated spectra with the experimental ones[10],we move the calculated spectra to the higher energy scale(3102 cm-1in absorption spectra and 1883 cm-1in emimission spectra)to make sure the maximum peaks overlap. From Fig.4,it can be seen that the lineshapes of the calculated spectra,which stem from the coupling between electronic excited state and the vibration mode,agree excellently with the experimental ones.These indicate that our thermal vibration correlation function method works well for the MPh6molecules. For the absorption spectrum,it is need to note that the transition only from S0to S1is calculated,while in the experimental measure the absorption spectrum includes the transition not only from S0to S1but also from S0to the second singlet excited state S2.

    Fig.3 Absorption(a)and emission(b)spectra of the group-14 metalloles MPh6(M=Si,Ge,Sn)

    Fig.4 Comparisons of the calculated absorption(a)and emission(b)spectra of SiPh6with the experimental ones

    Table 3 The maximum peaks(λ)and full widths at the half maximum(FWHM)of absorption and emission spectra

    Due to the distortion effect of harmonic potential energy surface,i.e.,different frequencies for the ground and the first singlet excited states,a mirror image relation does not appear between the absorption and emission spectra.For absorption spectra,we find that these three molecules have similar lineshapes,and the FWHM of the absorption spectra have a slight increase in the order of SiPh6<GePh6<SnPh6.For emission spectra,the emission maximum wavelength of GePh6is the shortest(529 nm)while thoseofSiPh6andSnPh6arecomparableto each other(547 vs 549 nm),this trend agrees well with the experimental results[76],and the FWHM of the emission spectra also have a slight increase in the order of SiPh6<GePh6<SnPh6.For SiPh6,the FWHM of the calculated emission spectra is in excellent agreement with the experimental one[10](3861 vs 3847 cm-1).

    From the schematic descriptions of displaced and distortion potential energy surfaces of two electronic states in Fig.5,it is very easy to understand that the characteristics of absorption or emission spectra are determined completely by the adiabatic excited energy between two electronic states(discussed in the last section),molecular reorganization energy of the finial state,and the photon distribution(ni=1/(e?ωi/kT-1))of the initial state.Here the temperature effect is not discussed and all the spectra are calculated at 300 K,so we will focus on the analysis of the molecular reorganization energies in the following.

    Fig.5 Schematic description of displaced and distortion potential energy surfaceEv1and Ev2represents the vertical excited energy under the geometry structure of the first singlet excited state and that of ground state,respectively.Ereorg.1and Ereorg.2are the reorganization energy of the ground state and the first excited state, respectively.

    For a normal mode i,its reorganization energy Ereorg.iis the productofthe Huang-Rhys factorof the normal mode and the corresponding vibration energyand thetotalreorganizationenergyisthesumof

    Table 4 and Table 5 give the selected vibration frequencies (cm-1)with important reorganization energies of these three molecules in the first excited and the ground states.For the absorption spectra,the data in Table 4 tell us that for the three compounds the main contributors to the reorganization energies with large values always appear in the high frequency modes(with frequencies 1240-1550 cm-1)and the low frequency ones(with frequencies ca 60 and 90 cm-1).And for emission spectra,as shown in Table 5,the modes with the high frequency(ca 1519 and1565cm-1)andlowfrequency(≤70 cm-1)contribute the most to the reorganization energies for these three molecules.To both absorptionand emission spectra,the former(high frequency modes)are assigned to the single-bond and double-bond stretching vibrations of carbon-carbon related to the central metallole ring, and the latter(low frequency modes)belong to the rotation motions of free phenyl rings at 2 and 5 positions of central metallole ring.

    We further project the reorganization energies onto the internal coordinates of the molecules.In general,the potential energy surface can be expanded with internal coordinates around the equilibrium geometry.

    where V0is the potential energy at the equilibrium geometry,siand sjrepresent the variation of redundant internal coordinates from the equilibrium geometry,and Fi,jis expansion coefficient. Let′s set V0=0 as the zero point of the potential energy surface. Then,

    where,

    It should be noted that Viincludes the contribution,fromthei-thinternalcoordinateandthecouplingterm,from the i-th and j-th internal coordinates.

    Table 4 Selected vibration frequencies(ωe)of the first excited state and the reorganization energies(Ereorg.2)of the group-14 metalloles MPh6(M=Si,Ge,Sn)

    Table 5 Selected vibration frequencies(ωg)of the ground state and reorganization energies(Ereorg.1)of the group-14 metalloles MPh6(M=Si,Ge,Sn)

    Table 6 Component of reorganization energy in the selected internal coordinate representation

    Selected internal coordinates with large component of reorganization energy are listed in Table 6.The data in Table 6 tells us that it is very obvious that the contribution to the reorganization energy mainly come from the stretching vibration of these bonds (C2—C3,C3—C4,C4—C5,C2—C20,C5—C50)and the rotation motions of the free aromatic rings at the 2 and 5 positions of central ring,which is fully consistent with the structure change from the ground to the excited state,discussed in Section 3.1. Nevertheless,all the data demonstrates that there are no noticeable contribution to the optical properties directly coming from the heavy elements Si,Ge,and Sn.

    4 Conclusions

    The electronic structures and spectra properties of a series of group-14 metalloles,from silole to stannole,have been studied with vibration correlation functions method coupled with DFT and TD-DFT computations.The HOMO′s and LUMO′s for all the three compounds are found to dominate the electronic excited state and to possess qualitatively similar isosurfaces.The three molecules have similarly optical lineshapes,while the full width at the half maximum(FWHM)of both the absorption and emission spectra have slightly increases in the order SiPh6<GePh6<SnPh6.Both the lineshapes of the calculated optical absorption and emission spectra,especially the FWHM for all the compounds at room temperature,were in good agreement with the available experiments.The excited state vibronic couplings are revealed by projecting the reorganization energies into both normal mode and internal coordinate components.Both the lowfrequency modes assigned to rotation motion of the free aromatic rings and the high-frequency modes from carboncarbon stretching motions are found to contribute importantly to the optical spectra features such as the bandwidth broadening.

    Acknowledgment:Itisourgreathonorwiththisworktocelebrate the 100th anniversary of College of Chemistry and Molecular Engineering,Peking University,the 100 years full with glory.Fruitful discussions with Professors Eli Pollak(Department of Chemical Physics,The Weizmann Institute of Science),Jiushu Shao(Department of Chemistry,Beijing Normal University),and Qiang Shi(Institute of Chemistry,Chinese Academy of Sciences)are greatly acknowledged.

    1 Tang,C.W.;VanSlyke,S.A.Appl.Phys.Lett.,1987,51:913

    2 Leavitt,F.C.;Manuel,T.A.;Johnson,F.J.Am.Chem.Soc.,1959, 81:3163

    3 Leavitt,F.C.;Manuel,T.A.;Johnson,F.;Matternas,L.U.; Lehman,D.S.J.Am.Chem.Soc.,1960,82:5099

    4 Braye,E.H.;Hubel,W.;Caplier,I.J.Am.Chem.Soc.,1961,83: 4406

    5 Yamaguchi,S.;Itami,Y.;Tamao,K.Organometallics,1998,17: 4910

    6 Yamaguchi,S.;Endo,T.;Uchida,M.;Izumizawa,T.;Furukawa, K.;Tamao,K.Chem.Eur.J.,2000,6:1683

    7 (a)Ferman,J.;Kakareka,J.P.;Klooster,W.T.;Mullin,J.L.; Quattrucci,J.;Ricci,J.S.;Tracy,H.J.;Vining,W.J.;Wallace,S. Inorg.Chem.,1999,38:2464 (b)Tracy,H.J.;Mullin,J.L.;Klooster,W.T.;Martin,J.A.;Haug, J.;Wallace,S.;Rudloe,I.;Watts,K.Inorg.Chem.,2005,44:2003 (c)Mullin,J.L.;Tracy,H.J.;Ford,J.R.;Keenan,S.R.;Fridman, F.J.Inorg.Organomet.Polym.Mater.,2007,17:201

    8 Khabashesku,V.N.;Balaji,V.;Boganov,S.E.;Nefedov,O.M.; Michl,J.J.Am.Chem.Soc.,1994,116:320

    9 Tamao,K.;Yamaguchi,S.Pure Appl.Chem.,1996,68:139

    10 Zhan,X.;Risko,C.;Amy,F.;Chan,C.;Zhao,W.;Barlow,S.; Kahn,A.;Bredas,J.L.;Marder,S.J.Am.Chem.Soc.,2005,127: 9021

    11 Chen,J.;Law,C.C.W.;Lam,J.W.Y.;Dong,Y.;Lo,S.M.F.; Williams,I.D.;Zhu,D.;Tang,B.Z.Chem.Mater.,2003,15: 1535

    12 Murata,H.;Malliaras,G.G.;Uchida,M.;Shen,Y.;Kafafi,Z.H. Chem.Phys.Lett.,2001,339:161

    13 Luo,J.D.;Xie,Z.L.;Lam,J.W.Y.;Cheng,L.;Chen,H.Y.;Qiu, C.F.;Kwok,H.S.;Zhan,X.W.;Liu,Y.Q.;Zhu,D.B.;Tang,B. Z.Chem.Commun.,2001:1740

    14 Hong,Y.;Lam,J.W.Y.;Tang,B.Z.Chem.Commum.,2009: 4332

    15 Yu,G.;Yin,S.W.;Liu,Y.Q.;Chen,J.S.;Xu,X.J.;Sun,X.B.; Ma,D.G.;Zhan,X.W.;Peng,Q.;Shuai,Z.G.;Tang,B.Z.;Zhu, D.B.;Fang,W.H.;Luo,Y.J.Am.Chem.Soc.,2005,127:6335

    16 Yin,S.W.;Peng,Q.;Shuai,Z.G.;Fang,W.H.;Wang,Y.H.;Luo, Y.Phys.Rev.B,2006,73:205409

    17 Niu,Y.;Peng,Q.;Shuai,Z.G.Sci.China Ser.B-Chem.,2008,51: 1153

    18 Treutler,O.;Ahlrichs,R.J.Chem.Phys.,1995,102:346

    19 Bauernschmitt,R.;Ahlrichs,R.Chem.Phys.Lett.,1996,256:454

    20 Bauernschmitt,R.;H?ser,M.;Treutler,O.;Ahlrichs,R.Chem. Phys.Lett.,1997,264:573

    21 Grimme,S.;Furche,F.;Ahlrichs,R.Chem.Phys.Lett.,2002,361: 321

    22 (a)He,Y.;Pollak,E.J.Phys.Chem.A,2001,105:10961 (b)He,Y.;Pollak,E.J.Chem.Phys.,2002,116:6088

    23 (a)Ianconescu,R.;Pollak,E.J.Phys.Chem.A,2004,108:7778 (b)Tatchen,J.;Pollak,E.J.Chem.Phys.,2008,128:164303

    24 Peng,Q.;Niu,Y.L.;Deng,C.M.;Shuai,Z.G.Chem.Phys.,2010, accepted

    25 Becke,A.D.J.Chem.Phys.,1993,98:1372

    26 (a)Schafer,A.;Horn,H.;Ahlrichs,R.J.Chem.Phys.,1992,97: 2571 (b)Weigend,F.;Ahlrichs,R.Phys.Chem.Chem.Phys.,2005,7: 3297

    27 Ahlrichs,R.;Baer,M.;Haeser,M.;Horn,H.;Koelmel,C.Chem. Phys.Lett.,1989,162:165

    December 16,2009;Revised:January 25,2010;Published on Web:February 25,2010.

    Electronic Structures and Spectroscopic Properties of Group-14 Metalloles MPh6(M=Si,Ge,Sn)

    DENG Chun-Mei1NIU Ying-Li1PENG Qian1,*SHUAI Zhi-Gang1,2,*
    (1Key Laboratory of Organic Solids,Beijing National Laboratory for Molecular Sciences,Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190,P.R.China;2Department of Chemistry,Tsinghua University,Beijing 100084,P.R.China)

    Group-14 metalloles possess interesting optical properties and are promising molecules for light-emitting materials.We present a theoretical study of the electronic structures and the optical spectra from silole to stannole to gain insight into their optical properties.The optimized equilibrium geometries and the electronic and vibrational structures for the ground state(S0)and the first singlet excited state(S1)were calculated using density functional theory (DFT)andtime-dependentdensity functional theory(TD-DFT),respectively.The optical absorption and emission spectra were calculated using the thermal vibration correlation function formalism.The lineshapes of the calculated optical absorption and emission spectra,especially the full width at half maximum for all the compounds at room temperature, were found to be in good agreement with the available experimental data.Low-frequency modes that are assigned to the rotation motion of free aromatic rings and the high-frequency modes related to the stretching vibration of carboncarbon bonds contribute greatly to the optical features such as the bandwidth of the optical line-shapes.

    Density functional theory; Group-14 metalloles; Vibration correlation function; Optical absorption; Light emission

    *Corresponding authors.Email:qpeng@iccas.ac.cn,zgshuai@tsinghua.edu.cn;Tel/Fax:+86-10-62797689.

    The project was supported by the National Natural Science Foundation of China(90921007)and National Key Basic Research Program of China(973) (2009CB623600).

    國(guó)家自然科學(xué)基金重大項(xiàng)目(90921007)和國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃項(xiàng)目(973)(2009CB623600)資助

    帥志剛,北京大學(xué)化學(xué)與分子工程學(xué)院兼職教授.

    O641

    猜你喜歡
    環(huán)戊二烯性質(zhì)光譜
    基于三維Saab變換的高光譜圖像壓縮方法
    隨機(jī)變量的分布列性質(zhì)的應(yīng)用
    完全平方數(shù)的性質(zhì)及其應(yīng)用
    九點(diǎn)圓的性質(zhì)和應(yīng)用
    厲害了,我的性質(zhì)
    星載近紅外高光譜CO2遙感進(jìn)展
    聚砜包覆雙環(huán)戊二烯微膠囊的制備
    甲基環(huán)戊二烯的合成研究
    苦味酸與牛血清蛋白相互作用的光譜研究
    基于2-苯基-1H-1,3,7,8-四-氮雜環(huán)戊二烯并[l]菲的Pb(Ⅱ)、Co(Ⅱ)配合物的晶體結(jié)構(gòu)與發(fā)光
    欧美日韩一区二区视频在线观看视频在线| 纵有疾风起免费观看全集完整版| 日本-黄色视频高清免费观看| 日本黄大片高清| 成人毛片a级毛片在线播放| 成人毛片a级毛片在线播放| 日本与韩国留学比较| 精品一区二区三区四区五区乱码 | 99热6这里只有精品| 又黄又爽又刺激的免费视频.| 成人免费观看视频高清| 亚洲av成人精品一二三区| 久久99热这里只频精品6学生| 久久人人爽人人片av| 又黄又爽又刺激的免费视频.| 精品国产一区二区三区久久久樱花| 久久久久精品久久久久真实原创| 国产av国产精品国产| 少妇 在线观看| 久久婷婷青草| freevideosex欧美| 国产综合精华液| 99久国产av精品国产电影| 十八禁高潮呻吟视频| 国产成人精品福利久久| 亚洲熟女精品中文字幕| 制服人妻中文乱码| 亚洲欧美日韩另类电影网站| 亚洲国产精品999| 视频在线观看一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 色网站视频免费| 少妇人妻 视频| 日日爽夜夜爽网站| 男人舔女人的私密视频| 久久国产精品大桥未久av| 免费播放大片免费观看视频在线观看| 久久国产亚洲av麻豆专区| 超碰97精品在线观看| 国产毛片在线视频| 国产一区二区在线观看日韩| 亚洲欧美日韩卡通动漫| 高清毛片免费看| 国产一区二区三区综合在线观看 | 十八禁高潮呻吟视频| 久久女婷五月综合色啪小说| 最近最新中文字幕免费大全7| 18禁在线无遮挡免费观看视频| 亚洲精品国产av蜜桃| 久久精品国产亚洲av涩爱| 国产黄频视频在线观看| 黄色毛片三级朝国网站| 久久久a久久爽久久v久久| 大陆偷拍与自拍| 一区二区av电影网| 亚洲高清免费不卡视频| 国产精品麻豆人妻色哟哟久久| 欧美日韩一区二区视频在线观看视频在线| 有码 亚洲区| 五月天丁香电影| 天天影视国产精品| 日韩一本色道免费dvd| 色哟哟·www| 9热在线视频观看99| 免费人成在线观看视频色| 国产女主播在线喷水免费视频网站| xxx大片免费视频| 五月天丁香电影| 成年女人在线观看亚洲视频| 黄片无遮挡物在线观看| 青青草视频在线视频观看| 黄网站色视频无遮挡免费观看| 18+在线观看网站| 汤姆久久久久久久影院中文字幕| 黄色怎么调成土黄色| 国产一级毛片在线| 国产男女超爽视频在线观看| 亚洲内射少妇av| 国产精品一区www在线观看| 人妻 亚洲 视频| 日韩av在线免费看完整版不卡| 丰满乱子伦码专区| 最近2019中文字幕mv第一页| 80岁老熟妇乱子伦牲交| 国产精品成人在线| 好男人视频免费观看在线| 久久精品国产鲁丝片午夜精品| 夫妻性生交免费视频一级片| 国产男女内射视频| 99热6这里只有精品| 色5月婷婷丁香| 国产熟女午夜一区二区三区| 精品久久久精品久久久| 男女无遮挡免费网站观看| 男女啪啪激烈高潮av片| 观看美女的网站| 久热久热在线精品观看| 国产白丝娇喘喷水9色精品| 菩萨蛮人人尽说江南好唐韦庄| 美女内射精品一级片tv| 91成人精品电影| 久久99一区二区三区| 一级毛片电影观看| 欧美3d第一页| 色网站视频免费| 大码成人一级视频| 欧美3d第一页| 日本免费在线观看一区| 国产精品免费大片| 亚洲国产欧美日韩在线播放| 精品熟女少妇av免费看| 国产片内射在线| 久久久精品区二区三区| 女性生殖器流出的白浆| 午夜久久久在线观看| 97精品久久久久久久久久精品| 亚洲国产精品999| 99香蕉大伊视频| 大片免费播放器 马上看| 精品亚洲成国产av| 成人毛片60女人毛片免费| 97在线视频观看| 亚洲四区av| 国产69精品久久久久777片| 十八禁高潮呻吟视频| 九草在线视频观看| 日韩一本色道免费dvd| 亚洲一级一片aⅴ在线观看| av在线播放精品| 在线观看免费高清a一片| 美女福利国产在线| 一级毛片我不卡| 亚洲精品456在线播放app| 秋霞伦理黄片| 你懂的网址亚洲精品在线观看| 国产 一区精品| 男女边吃奶边做爰视频| 咕卡用的链子| 欧美 日韩 精品 国产| 少妇被粗大的猛进出69影院 | 各种免费的搞黄视频| 久久 成人 亚洲| 秋霞在线观看毛片| 少妇高潮的动态图| 精品久久国产蜜桃| 九九爱精品视频在线观看| 日本免费在线观看一区| 亚洲精品国产色婷婷电影| 丰满饥渴人妻一区二区三| 亚洲精品美女久久av网站| 日韩制服骚丝袜av| 国产精品国产三级国产专区5o| 国产在线视频一区二区| 久久久久视频综合| 丝袜在线中文字幕| 最近中文字幕2019免费版| 午夜激情久久久久久久| 欧美成人午夜精品| 中文字幕另类日韩欧美亚洲嫩草| 国产高清国产精品国产三级| 精品亚洲成a人片在线观看| 美女大奶头黄色视频| 免费大片18禁| 涩涩av久久男人的天堂| 男人操女人黄网站| 亚洲,欧美,日韩| 国产国语露脸激情在线看| 高清欧美精品videossex| 午夜免费男女啪啪视频观看| 色婷婷av一区二区三区视频| 9热在线视频观看99| 亚洲在久久综合| 亚洲av.av天堂| 国产成人aa在线观看| 国产毛片在线视频| 制服诱惑二区| 亚洲精品久久午夜乱码| h视频一区二区三区| 久久精品人人爽人人爽视色| 最近最新中文字幕免费大全7| 一级片'在线观看视频| 久久久久精品性色| 亚洲欧美成人精品一区二区| 久久久亚洲精品成人影院| 国产男人的电影天堂91| 中文字幕精品免费在线观看视频 | 丝袜人妻中文字幕| 欧美国产精品一级二级三级| 国产精品久久久久久av不卡| 亚洲精品中文字幕在线视频| 亚洲国产精品999| 中文欧美无线码| 国产高清国产精品国产三级| 老司机亚洲免费影院| 久久精品国产鲁丝片午夜精品| 亚洲精品美女久久久久99蜜臀 | 日韩三级伦理在线观看| 欧美人与性动交α欧美软件 | 各种免费的搞黄视频| 亚洲欧美清纯卡通| 久久精品国产a三级三级三级| 亚洲精品美女久久久久99蜜臀 | 搡老乐熟女国产| av不卡在线播放| 国产色爽女视频免费观看| 国产精品一区二区在线观看99| 26uuu在线亚洲综合色| 免费观看无遮挡的男女| 国产亚洲一区二区精品| 亚洲精华国产精华液的使用体验| av.在线天堂| 日韩中文字幕视频在线看片| 丰满少妇做爰视频| 久久精品国产鲁丝片午夜精品| 久久久久久久久久人人人人人人| 人人妻人人澡人人看| 精品第一国产精品| 一级黄片播放器| 午夜视频国产福利| 交换朋友夫妻互换小说| 在线观看三级黄色| 国产片特级美女逼逼视频| 国产亚洲精品第一综合不卡 | 99久久综合免费| 中文字幕免费在线视频6| 国产毛片在线视频| 蜜臀久久99精品久久宅男| 男女边吃奶边做爰视频| 国产片特级美女逼逼视频| 免费少妇av软件| 国产成人精品在线电影| 美女主播在线视频| 国产综合精华液| 韩国高清视频一区二区三区| 欧美激情极品国产一区二区三区 | 香蕉精品网在线| 在线精品无人区一区二区三| 国产黄频视频在线观看| 成人漫画全彩无遮挡| 国产日韩欧美视频二区| 国产伦理片在线播放av一区| 日本与韩国留学比较| 青青草视频在线视频观看| 国产一级毛片在线| 成年人免费黄色播放视频| 国产国语露脸激情在线看| 咕卡用的链子| 亚洲国产看品久久| 精品福利永久在线观看| 97在线视频观看| 国产日韩欧美视频二区| 尾随美女入室| 黄片无遮挡物在线观看| 久久精品久久精品一区二区三区| 蜜桃国产av成人99| 国产探花极品一区二区| 五月伊人婷婷丁香| 精品少妇内射三级| 欧美精品高潮呻吟av久久| 中文天堂在线官网| 男女高潮啪啪啪动态图| 国产乱来视频区| 亚洲,欧美,日韩| 69精品国产乱码久久久| 午夜免费鲁丝| 黑人巨大精品欧美一区二区蜜桃 | 在线观看免费高清a一片| 男女午夜视频在线观看 | 免费日韩欧美在线观看| 成人综合一区亚洲| 久久久亚洲精品成人影院| 亚洲av电影在线观看一区二区三区| 人妻系列 视频| 免费大片黄手机在线观看| www.色视频.com| 高清欧美精品videossex| 成年女人在线观看亚洲视频| 亚洲精品久久久久久婷婷小说| 视频中文字幕在线观看| 欧美丝袜亚洲另类| 色94色欧美一区二区| 在线观看三级黄色| 丰满饥渴人妻一区二区三| 精品酒店卫生间| 桃花免费在线播放| 99久国产av精品国产电影| 日韩精品免费视频一区二区三区 | 久久人人爽av亚洲精品天堂| 国产精品久久久久久久久免| 中文字幕另类日韩欧美亚洲嫩草| 高清黄色对白视频在线免费看| 美女主播在线视频| 9191精品国产免费久久| h视频一区二区三区| 91aial.com中文字幕在线观看| 青青草视频在线视频观看| 免费黄网站久久成人精品| 天堂中文最新版在线下载| 两个人看的免费小视频| 熟妇人妻不卡中文字幕| 精品国产露脸久久av麻豆| 亚洲内射少妇av| 亚洲国产成人一精品久久久| 你懂的网址亚洲精品在线观看| 日本猛色少妇xxxxx猛交久久| 99热这里只有是精品在线观看| 欧美日本中文国产一区发布| 日韩制服骚丝袜av| 在线 av 中文字幕| 亚洲国产精品999| 精品久久久久久电影网| 久久国内精品自在自线图片| 考比视频在线观看| 波多野结衣一区麻豆| 国产免费一区二区三区四区乱码| 午夜福利视频在线观看免费| 男的添女的下面高潮视频| 久久99热这里只频精品6学生| 国产高清三级在线| 永久网站在线| 亚洲欧洲精品一区二区精品久久久 | 亚洲图色成人| 免费观看av网站的网址| 夫妻午夜视频| 性色av一级| 欧美最新免费一区二区三区| 最近最新中文字幕免费大全7| 欧美日韩av久久| 久久久久久久久久成人| 91精品伊人久久大香线蕉| av电影中文网址| 亚洲丝袜综合中文字幕| 26uuu在线亚洲综合色| 大香蕉97超碰在线| 18+在线观看网站| 草草在线视频免费看| 一本大道久久a久久精品| 考比视频在线观看| 精品一区二区三区四区五区乱码 | 男人爽女人下面视频在线观看| 97超碰精品成人国产| 少妇人妻久久综合中文| 麻豆乱淫一区二区| 老司机影院毛片| 一边亲一边摸免费视频| 婷婷成人精品国产| 黑丝袜美女国产一区| 日韩三级伦理在线观看| 激情视频va一区二区三区| 亚洲经典国产精华液单| √禁漫天堂资源中文www| 美女视频免费永久观看网站| 精品国产露脸久久av麻豆| 久久热在线av| 伊人久久国产一区二区| 成人毛片a级毛片在线播放| 久久99热这里只频精品6学生| 又黄又爽又刺激的免费视频.| 汤姆久久久久久久影院中文字幕| 精品少妇久久久久久888优播| 久久久久久久亚洲中文字幕| 成人黄色视频免费在线看| 婷婷色综合www| 成人午夜精彩视频在线观看| 最新中文字幕久久久久| 少妇人妻精品综合一区二区| 少妇高潮的动态图| 午夜激情久久久久久久| 久久久久久久大尺度免费视频| 国产成人精品久久久久久| 天堂8中文在线网| 熟妇人妻不卡中文字幕| 你懂的网址亚洲精品在线观看| 久久热在线av| 国产日韩欧美在线精品| av免费观看日本| av女优亚洲男人天堂| 九草在线视频观看| 国国产精品蜜臀av免费| 午夜精品国产一区二区电影| 伦理电影大哥的女人| 国产视频首页在线观看| av在线app专区| 国产黄色免费在线视频| 国产免费一区二区三区四区乱码| 18+在线观看网站| 黑人高潮一二区| 18禁动态无遮挡网站| 男的添女的下面高潮视频| 男男h啪啪无遮挡| 久久毛片免费看一区二区三区| 色婷婷av一区二区三区视频| 国产日韩欧美视频二区| 欧美日韩一区二区视频在线观看视频在线| 久久久精品94久久精品| 高清毛片免费看| 男女啪啪激烈高潮av片| 午夜91福利影院| 熟女av电影| 日韩制服骚丝袜av| 秋霞在线观看毛片| 美女脱内裤让男人舔精品视频| av天堂久久9| 精品亚洲成a人片在线观看| av播播在线观看一区| av女优亚洲男人天堂| 国产精品.久久久| av一本久久久久| 日日啪夜夜爽| 一区二区三区精品91| 亚洲精品av麻豆狂野| 欧美xxxx性猛交bbbb| 在线精品无人区一区二区三| 欧美日韩精品成人综合77777| 久久久久久久精品精品| 成年女人在线观看亚洲视频| 亚洲国产精品专区欧美| 欧美3d第一页| 亚洲精品自拍成人| 日韩免费高清中文字幕av| 少妇的逼水好多| 在线观看三级黄色| 天堂俺去俺来也www色官网| 天堂中文最新版在线下载| 午夜福利视频精品| 久久亚洲国产成人精品v| 久久久久久伊人网av| 亚洲av综合色区一区| 国产精品一区www在线观看| 看十八女毛片水多多多| 久久影院123| 精品一区二区三卡| 极品人妻少妇av视频| 国产亚洲一区二区精品| 免费观看在线日韩| 国产免费视频播放在线视频| 国产伦理片在线播放av一区| 18禁裸乳无遮挡动漫免费视频| 亚洲国产成人一精品久久久| 美女大奶头黄色视频| 成人无遮挡网站| 久久久久精品人妻al黑| 97在线视频观看| 国产精品麻豆人妻色哟哟久久| 极品人妻少妇av视频| 亚洲国产欧美日韩在线播放| 国产永久视频网站| 亚洲综合精品二区| 日韩,欧美,国产一区二区三区| 国产片内射在线| 国产色婷婷99| 少妇人妻久久综合中文| 晚上一个人看的免费电影| 亚洲av中文av极速乱| 精品一区二区三区视频在线| 国产男女超爽视频在线观看| 久久99热这里只频精品6学生| 午夜免费男女啪啪视频观看| 久久久久视频综合| 国产在线一区二区三区精| 一本大道久久a久久精品| 精品人妻一区二区三区麻豆| 久久精品久久久久久噜噜老黄| 激情视频va一区二区三区| 伊人亚洲综合成人网| 热99国产精品久久久久久7| 成人亚洲精品一区在线观看| 久久人人爽av亚洲精品天堂| 精品人妻在线不人妻| 一本—道久久a久久精品蜜桃钙片| 在线亚洲精品国产二区图片欧美| av播播在线观看一区| 欧美成人午夜精品| 91午夜精品亚洲一区二区三区| 国产精品嫩草影院av在线观看| 熟女电影av网| 美女内射精品一级片tv| 欧美激情极品国产一区二区三区 | 国产xxxxx性猛交| 中国三级夫妇交换| 国产乱人偷精品视频| 国产欧美日韩综合在线一区二区| 黄网站色视频无遮挡免费观看| 男女边摸边吃奶| 中文乱码字字幕精品一区二区三区| 欧美xxⅹ黑人| 久久精品国产综合久久久 | 久久国产亚洲av麻豆专区| 国产探花极品一区二区| 两个人看的免费小视频| 久久毛片免费看一区二区三区| 夫妻午夜视频| 男人添女人高潮全过程视频| 黑人高潮一二区| 国产日韩欧美亚洲二区| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕免费在线视频6| 欧美日韩精品成人综合77777| 天堂俺去俺来也www色官网| 国产极品天堂在线| 少妇 在线观看| 婷婷色麻豆天堂久久| 青春草国产在线视频| 国产极品天堂在线| 99热全是精品| 18在线观看网站| 国产精品久久久久久精品电影小说| 最近最新中文字幕大全免费视频 | 丝袜喷水一区| 亚洲国产精品专区欧美| videos熟女内射| 色婷婷av一区二区三区视频| 精品亚洲成a人片在线观看| 又大又黄又爽视频免费| 老熟女久久久| 精品久久久久久电影网| 极品少妇高潮喷水抽搐| 亚洲av男天堂| av在线老鸭窝| 精品久久久久久电影网| 国产亚洲精品第一综合不卡 | 国产精品久久久av美女十八| 国产一区亚洲一区在线观看| 午夜影院在线不卡| 2018国产大陆天天弄谢| 久久精品aⅴ一区二区三区四区 | 成人毛片a级毛片在线播放| 亚洲精品日本国产第一区| 午夜福利在线观看免费完整高清在| 99久国产av精品国产电影| 亚洲第一区二区三区不卡| 中文乱码字字幕精品一区二区三区| 22中文网久久字幕| 少妇熟女欧美另类| 国产黄频视频在线观看| 少妇 在线观看| 亚洲av中文av极速乱| 国产无遮挡羞羞视频在线观看| 如日韩欧美国产精品一区二区三区| 国产无遮挡羞羞视频在线观看| 国产 一区精品| 久久久久久久大尺度免费视频| 26uuu在线亚洲综合色| 九九爱精品视频在线观看| 亚洲av成人精品一二三区| 久久久久久久国产电影| 亚洲欧洲国产日韩| 亚洲国产精品国产精品| 亚洲一级一片aⅴ在线观看| 亚洲第一av免费看| 亚洲国产欧美在线一区| 日韩一区二区视频免费看| 男女国产视频网站| 国产成人一区二区在线| 久久精品久久精品一区二区三区| 久久亚洲国产成人精品v| 日本爱情动作片www.在线观看| 久久精品人人爽人人爽视色| 好男人视频免费观看在线| 免费观看在线日韩| a级毛片黄视频| 2022亚洲国产成人精品| 晚上一个人看的免费电影| 久久精品久久久久久噜噜老黄| 亚洲伊人色综图| 亚洲国产欧美在线一区| 国产成人精品一,二区| 精品久久国产蜜桃| 97超碰精品成人国产| av一本久久久久| 97超碰精品成人国产| av国产精品久久久久影院| 波野结衣二区三区在线| 99久久精品国产国产毛片| 天天操日日干夜夜撸| 欧美日韩av久久| 亚洲精品日韩在线中文字幕| 欧美亚洲日本最大视频资源| 少妇被粗大猛烈的视频| 亚洲av在线观看美女高潮| av又黄又爽大尺度在线免费看| 亚洲丝袜综合中文字幕| 9色porny在线观看| 久久久国产精品麻豆| 国产精品久久久久成人av| 国产永久视频网站| 蜜桃国产av成人99| 精品一区二区免费观看| 美女中出高潮动态图| 制服人妻中文乱码| 黄色配什么色好看| 最后的刺客免费高清国语| 成人毛片a级毛片在线播放| 国产精品一二三区在线看| 亚洲美女黄色视频免费看| 久久久久久人人人人人| 国产成人免费观看mmmm| 久久国产精品男人的天堂亚洲 | 午夜福利乱码中文字幕| 精品第一国产精品| 久久久国产精品麻豆| 国产精品久久久久成人av| 纵有疾风起免费观看全集完整版| 日韩 亚洲 欧美在线| 黄片无遮挡物在线观看| 丝瓜视频免费看黄片| 各种免费的搞黄视频| 赤兔流量卡办理| 亚洲精品av麻豆狂野| 免费观看在线日韩| 51国产日韩欧美| 最黄视频免费看| 国产高清三级在线| av一本久久久久| 国产在线免费精品|