• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    寬帶隙p區(qū)金屬氧化物/氫氧化物對苯的光催化降解

    2010-03-06 04:44:30李朝暉付賢智
    物理化學(xué)學(xué)報(bào) 2010年4期
    關(guān)鍵詞:省部氫氧化物福州大學(xué)

    李朝暉 劉 平 付賢智

    (福州大學(xué)光催化研究所,省部共建國家重點(diǎn)實(shí)驗(yàn)室培育基地,福州 350002)

    Benzene has severe health and environmental consequences due to its high toxicity and confirmed carcinogenicity[1-3].A recent study has shown that a long-term exposure to a very low levels (volume fraction less than 1×10-6)of benzene can reduce blood cell counts in human being.Workers exposed to benzene fumes, runintoanincreasedriskofleukemiaandbone-marrowtoxicity[4]. Benzene is also ubiquitous as an air pollutant from cigarette smoke,gasoline vapors,paint,industrial exhaust gases,and automobile emissions.The benzene pollution has already become one of the main environmental problems facing humanity. Therefore,the development of an efficient,cost-effective and environmentally sustainable technology in treating benzene and its derivatives is indispensable.

    Semiconductor photocatalysis for environmental remediation has received increasingly interest since it is environmentally friendly,capable of performing at room temperature and can treat organic pollutants at extremely low concentrations[5-13].The photocatalytic reactions occur over the semiconductor photocatalysts are initiated by the photo-generated electrons and holes that are captured subsequently by the surface adsorbed species. The capture of photo-generated charge carriers induce the formation of very reactive radicals such as O-·20,O·2,HO·2,HO·and so on,leading to the final decomposition of organic pollutants[6].

    Due to its high stability,non-toxicity,cheapness as well as its appropriate electronic band positions capable of oxidizing most organic pollutants,titanium dioxide(TiO2)has become the most widely used semiconductor photocatalyst in heterogeneous photocatalysis.Although TiO2-based photocatalytic oxidation(PCO) has been established to be one of the most promising technologies for the environment remediation and has been successful in treating a wide variety of volatile organic compounds(VOCs), PCO meets with limited success in the treatment of aromatic compounds like benzene due to the deactivation of TiO2resulted from the accumulation of the stable reaction intermediates on the surface[14-15].Loading of noble metals like Pt,Pd,or Rh over TiO2has been used to enhance its performance for photocatalytic oxidation of benzene in gas phase.However,these noble-metalloaded TiO2photocatalysts suffer from the problem of stability due to the oxidation of the noble metal nanoparticles on the surface of TiO2[16-18].Adding sufficient amount of H2O in the reaction feed gas can improve the efficiency of TiO2photocatalyst toward the complete oxidization of benzene to a certain degree[19-20].Our recent studies have also demonstrated that the introduction of magnetic field[21]or H2[22-23]into the photochemical reaction system can greatly improve the efficiency of Pt/TiO2for the photodecomposition of benzene at room temperature.However,it is not easy to realize such a complicated hybrid system for photocatalytic air purification.Therefore the development of photocatalysts with high performance for benzene degradation is indispensable in view of the application of photocatalysis for benzene treatment,yet it remains a great challenge till now.

    Recently,a series of wide band gap p-block metal oxides/hydroxides with superior performance for photocatalytic degradation of benzene have been developed in our institute[24-29].These wide band gap p-block metal oxides/hydroxides are a series of promising photocatalysts for benzene degradation.The preparations of these p-block metal oxides/hydroxides,their photocatalytic activity and mechanism for benzene degradation as well as the structure-activity relationship are summarized in this review.

    1 Preparations and photocatalytic activity for benzene degradation

    1.1 Binary p-block metal oxides/hydroxides β-Ga2O3, In(OH)3and InOOH

    Porous binary gallium oxide β-Ga2O3can be prepared via the hydrolysis of gallium nitrate in ammonia solution followed by a heat treatment at 600℃[24].The XRD pattern of the as-prepared β-Ga2O3is shown in Fig.1.The as-prepared β-Ga2O3exhibits stepwise adsorption and desorption(type IV isotherm)in the N2-sorption isotherm,indicative of a porous solid.The BET specific surface area is 80 m2·g-1and the average pore size is 7.3 nm with a narrow distribution of pore size for the as-prepared β-Ga2O3.With a band gap of 4.7 eV,β-Ga2O3can be excited with 254 nm UV irradiation.The as-prepared β-Ga2O3is highly photoactive for mineralizing benzene and its derivatives like toluene and ethylbenzene to CO2under 254 nm UV irradiation.For an initial benzene concentration of 450 μL·L-1,β-Ga2O3shows a high conversion rate of 42%and can maintain its reactivity during the prolonged operation of 80 h.In the meantime about 1070 μL·L-1of CO2can be produced over β-Ga2O3,indicating that 95%of benzene converted has been mineralized to CO2over β-Ga2O3(Fig.2)[24].

    Binary p-block metal hydroxide In(OH)3also shows high photocatalytic performance for benzene degradation under 254 nm UV irradiation.Porous In(OH)3can be prepared by hydrolysis of In(NO3)3in an aqueous solution of ammonium followed by a thermal treatment at 120℃.The BET specific surface area for the as-prepared In(OH)3is 120 m2·g-1.For an initial benzene concentration of 1300 μL·L-1,the conversion of benzene and the mineralization rate over In(OH)3can maintain at 25%and 40%,respectively,even after 30 h photocatalytic reaction(Fig.3)[25].

    Fig.1 X-ray diffraction(XRD)pattern of the as-synthesized Ga2O3sample[24]

    Fig.2 (a)Conversion of C6H6and(b)the amount of produced CO2over the Ga2O3as a function of reaction time(t)with TiO2(P25)as a reference[24]

    Oxyhydroxide InOOH can be prepared via a facile solvothermal process from In(NO3)3in a water/ethylenediamine(1∶6)solution.The XRD pattern of the as-prepared InOOH is shown in Fig.4.The average particle size is about 20 nm and the BET specific surface area is about 55 m2·g-1for the as-prepared InOOH. With a band gap energy of 3.7 eV,InOOH can be excited by 300 nm UV irradiation.For an initial benzene concentration of 260 μL·L-1,the conversion of benzene over InOOH can reach 7.5%.In addition,the amount of the produced CO2is about 50 μL·L-1,corresponding to a benzene mineralization ratio of more than 50%.The photocatalytic activity can be maintained for more than 30 h,during which no noticeable deactivation is observed(Fig.5)[26].

    1.2 Ternary p-block metal semiconductors Sr2Sb2O7, ZnGa2O4and Zn2GeO4

    Besides the binary p-block metal oxides/hydroxides,the photocatalytic activity for benzene degradation can also be found over ternary p-block metal oxides with more diversified composition and structure.

    Nanocrystalline Sr2Sb2O7prepared via a facile hydrothermal method is found to show high activity for benzene degradation. AlthoughSr2Sb2O7preparedviaaconventionalsolidstatereaction method(Sr2Sb2O7(SSR))has been reported to be a photocatalyst for water splitting[30]and the degradation of organic dyes[31],it shows very low activity for benzene degradation due to its low specific surface area.To extend its application for photocatalytic degradation of benzene,we developed for the first time a facile method in the preparation of nanocrystalline Sr2Sb2O7directly from commercial Sb2O5.The XRD patterns of the obtained products under different pH values are shown in Fig.6.It is found that the reaction pH plays an important role in the final product and only under highly basic condition can nanocrystalline Sr2Sb2O7be obtained.The hydrothermal prepared nanocrystalline Sr2Sb2O7consists entirely of small particles with average size at around 6 nm and has a relatively large BET specific surface area of about 24.8 m2·g-1,much higher than Sr2Sb2O7prepared via the solid state reaction(1.4 m2·g-1).The N2-sorption isotherm indicates that the as-prepared Sr2Sb2O7is a mesoporous solid with a narrow distribution of pore size at ca 4.0 nm.The as-prepared nanocrystalline Sr2Sb2O7show high photocatalytic performance for the degradation of benzene.For an initial ben-zene concentration of 220 μL·L-1,the conversion of benzene is about 24%and more than 160 μL·L-1of CO2is produced in the meantime,corresponding to a high mineralization ratio of about 50%.Both the conversion ratio and the mineral-ization ratio are higher than those over solid state prepared Sr2Sb2O7(4%,30 μL· L-1).The high conversion and mineralization ratio can be maintained for more than 40 h,during which no obvious deactivation is observed(Fig.7)[27].

    Fig.3 Photocatalytic oxidation conversion of henzene(A) and production of CO2(B)over the catalyst in dry O2[25](a)In(OH)3,(b)TiO2;curve(c)was a control experiment with In(OH)3without irradiation,and(d)was a control experiment without In(OH)3under 254 nm irradiation;the initial benzene volume fraction:1300 μL·L-1

    Fig.4 XRD pattern of the as-prepared InOOH[26]

    Fig.5 (A)Conversion of benzene and(B)the amount of produced CO2over InOOH and P25 for decomposing benzene as a function of reaction time under UV illumination(λ=300 nm)[26]

    Fig.6 XRD pattern of the samples prepared at 180℃for 48 h with different pH values[27](●)Sr1.36Sb2O6,(*)SrSb2O6,(▼)Sr2Sb2O7

    Fig.7 Conversion of C6H6and the amount of produced CO2 over the Sr2Sb2O7(180℃,48 h,[OH-]=2 mol·L-1)as a function of reaction time,with TiO2(P25)and Sr2Sb2O7(SSR)as references[27](■)(●)(▲)the conversion of C6H6over the Sr2Sb2O7,TiO2,and Sr2Sb2O7(SSR) respectively;(□)(○)(Δ)the amount of produced CO2over the Sr2Sb2O7,TiO2, and Sr2Sb2O7(SSR)respectively;Sr2Sb2O7(SSR)refers to the sample prepared via a solid state reaction.

    Nanocrystalline ZnGa2O4with a specific surface area of about 36.7 m2·g-1can be prepared via a co-precipitation method from Zn(NO3)2and Ga(NO3)3followed by a heat treatment at 600℃. The XRD pattern of the as-prepared ZnGa2O4is shown Fig.8. For an initial benzene concentration of 220 μL·L-1,the conversion of benzene over the thus-prepared ZnGa2O4is about 12.0% and more than 100 μL·L-1of CO2can be produced,corresponding to a mineralization ratio of about 63%(Fig.9)[28].With an aim at enhancing its activity,ZnGa2O4with an extremely high specific surface area of 201 m2·g-1has been prepared from Zn(NO3)2and Ga(NO3)3via a hydrothermal treatment at 80℃.The increase of the specific surface area leads to a significant enhancement of the photocatalytic activity for benzene degradation.The conversion ratio of benzene can be increased to as high as 41%and the produced CO2can reach 500 μL·L-1for an initial benzene concentration of 300 μL·L-1,which is much higher than Pt/TiO2(Fig.10)[32].

    Another ternary p-block metal oxides with high photocatalytic performance for benzene degradation is Zn2GeO4.Nanorods of Zn2GeO4can be prepared from GeO2and Zn(Ac)2under the assistance of surfactant cetyltrimethylammonium bromide(CTAB) via a facile hydrothermal method and the XRD pattern is shown in Fig.11.The SEM images reveal that the as-prepared sample contains a large quantity of nanorods 20-50 nm in width and 150-600nminlength(Fig.12).Under254nmUVirradiations,for an initial benzene concentration of 300 μL·L-1,the benzene conversion and CO2concentration over the as-prepared Zn2GeO4nanorods can be maintained steady at ca 21%and ca 280 μL·L-1, respectively,which corresponding to a high mineralization ratio of ca 75%(Fig.13)[29].

    Fig.8 XRD pattern of the nanocrystalline ZnGa2O4[28]

    Fig.9 Conversion of C6H6and the amount of produced CO2 over the nanocrystalline ZnGa2O4as a function of reaction time,with TiO2(P25)as references[28](▲)(●)the conversion of C6H6over the ZnGa2O4and TiO2respectively, (Δ)(○)the amount of produced CO2over the ZnGa2O4and TiO2respectively

    2 Structure-activity relationship

    Fig.10 Photocatalytic conversion of benzene(a)and the amount of produced CO2(b)over ZnGa2O4hydrothermal prepared under 80,120,160,200℃,TiO2and Pt/TiO2[32]

    Fig.11 XRD patterns of Zn2GeO4nanorods and bulk Zn2GeO4particles[29]

    The band gap,crystallinity,and the specific surface area are important factors that can influence the photocatalytic activity of the semiconductor photocatalysts.However,the activity of some p-block metal oxide photocatalysts can not be simply explained in terms of the above factors.A study on three crystalline phase of Ga2O3reveals that the intrinsic crystallographic structure,especially the geometric structure of the M—O polyhedron(M=pblock metal)can influence the photocatalytic activity of these wide band gap semiconductors as well[33].The crystal structure of α-Ga2O3and β-Ga2O3(Fig.14)and the calculations using the crystallographic data regarding the atom positions reveal that α-Ga2O3is constituted only by distorted octahedron GaO6with a dipole moment of 14.0×10-30C·m,while β-Ga2O3contains both distorted GaO6octahedron(7.3×10-30C·m)and GaO4tetrahedron(2.3×10-30C·m).It is believed that the dipole moment induced by the distorted polyhedron can create a local electric field inside the distorted polyhedron,which can promote the separation of the photo-generated electron-hole pairs[34].Although both α-Ga2O3and β-Ga2O3contain distorted polyhedron in their structure,α-Ga2O3contains only distorted octahedron,while β-Ga2O3has both heavily distorted octahedron and tetrahedron in its structure.The coexistence of two different kinds of electric fields might have synergic effects in promoting the separation of photoexcited electron-hole pairs.Therefore,α-Ga2O3shows a lower photocatalytic activity than β-Ga2O3(Table 1).This promo-moting effect is confirmed by the time-resolved photoluminescence(PL)measurements.The PL measurements reveal that the lifetime of the photogenerated electron-hole pairs on β-Ga2O3is longer than that on α-Ga2O3(Fig.15 and Table 2).The existence of the relationship between the geometric structure and the photocatalytic activity among these semiconductor photocatalysts provides some guideline in our development of new wide band gap p-block metal semiconductor photocatalysts.

    Fig.12 Structural characterization and general morphologies of Zn2GeO4nanorods[29](a)SEM image,(b)TEM image,(c)TEM image of a Zn2GeO4nanorod, (d)HRTEM image of area e1 in(c),(e)enlarged image of area f1 in(d), (f)SAED pattern recorded along the zone axis[110]of the Zn2GeO4nanorods

    Fig.13 (a)Photocatalytic conversion of benzene and(b)amount of produced CO2in the stream over the Zn2GeO4nanorods against the reaction time,with TiO2(Degussa P25)as a reference catalyst[29]

    Fig.14 Three-dimensional crystal structures of α-Ga2O3and β-Ga2O3with a unit cell[33]

    3 Mechanism for benzene degradation

    All the above mentioned wide band gap p-block metal oxides/ hydroxides show high stability for benzene degradation,while TiO2deactivate very quickly.Their obvious different behavior implies that these p-block metal oxides/hydroxides and TiO2may have different routes in the photocatalytic degradation of benzene.

    Generally,it is believed that the degradation of benzene over TiO2under dry air proceeds preferentially via a direct-hole-oxidation route.Such a direct-hole-oxidation process would pro-duce benzene cationic radical,which react further with an incoming benzene molecule,leading to the polymerization of benzene on the catalyst surface and the deactivation of TiO2during the degradation of benzene[35].The deposition of the stable intermediates can be confirmed by the color change of TiO2from the original white to dark brown after the photocatalytic reaction.In addition to this,the FT-IR spectrum of used TiO2indicates the formation of the stable intermediates by showing three new peaks at 1483,1686,and 1711 cm-1(Fig.16).On the contrary,no color change has been observed after photocatalytic benzene degradation for the p-block metal oxides/hydroxides, like InOOH.Besides this,no new peaks appear on the FT-IR spectrum over these p-block metal oxides/hydroxides,indicating that no stable intermediates have been deposited on the surface of these photocatalysts(Fig.16).All these phenomena imply that the degradation of benzene over these p-block metal oxides/hydroxides may proceed preferentially via the HO·radical route.Photocatalysts proceed via the HO·radical degradation route may have long term stability since the HO·radical route could significantly suppress the polymerization of benzene on the catalyst surface.

    Table 1 Hydrocarbon removal rate and CO2production rate over different photocatalysts[33]

    Fig.15 Photoluminescence decay curves of the gallium oxide catalysts[33]

    Table 2 Lifetimes(τ)and relative amplitudes of timeresolved photoluminescence of the gallium oxide catalysts at 77 K[33]

    The generation of HO·radicals over these p-block metal oxides/hydroxides is credible since they all have proper band structure.The calculations of their band position based on the following equation:ECB=X-Ec-0.5Egis-0.4 V(vs NHE)[36]reveal that the edge of their conduction band are all negative than that of E°(O2/O-·20)(-0.33 V vs NHE),while the edge of their valence band(EVB)are positive than that of E°(HO·/OH-)(2.38 V vs NHE)[37].These suggest that the photogenerated electrons on these p-block metal oxides/hydroxides can reduce O2to give O-·20, while the photogenerated holes can oxidize OH-to give HO· when illuminated.The ESR spin-trap with DMPO technique confirmed the production of both O-·20and HO·over all these pblock metal oxides/hydroxides.In addition to this,it is observed that the intensities of the signal corresponding to the DMPOHO·radical produced over the p-block metal oxides/hydroxides (for example,InOOH)are much stronger than those over P25 (Fig.17).This indicates that under similar condition,more HO· radicals can be produced over irradiated p-block metal oxides/ hydroxides than over P25[26].This again confirms the above assumption that the degradation of benzene over p-block metal oxides/hydroxides may proceeds preferentially via the HO·radical route,while that over P25 may proceed via the direct-hole oxidation route.

    Fig.16 FT-IR spectra of used and fresh P25 and InOOH(inset)[26]

    Fig.17 DMPO spin-trapping ESR spectra(a)in aqueous dispersion for DMPO-·OH and(b)in methanol dispersion for DMPO-O-·20[26]

    The degradation preferentially via the HO·radical route over these p-block metal oxides/hydroxides can be attributed to their peculiar structure.The intrinsic wide band gap of these p-block metal oxides/hydroxides endow the photogenerated holes with strong oxidation ability and make them thermodynamically more favorable to react with chemi-adsorbed H2O or the surface hydroxyl group to produce HO·radicals.On the other hand,the highly dispersive conduction band due to the hybridizations of the orbitals usually observed over these p-block metal oxides/ hydroxides can promote the mobility of the photoexcited electrons,leading to enhanced charge separation.All these characteristics are favorable for the generation of the HO·radicals over these p-block metal oxides/hydroxides when illuminated. Therefore the degradation of benzene over these p-block metal oxides/hydroxides can proceed preferentially via HO·radical route and hence a high stability is observed.

    The possible benzene degradation mechanism over these wide band gap p-block metal oxides/hydroxides is illustrated in Scheme 1.When illuminated,these p-block metal oxides/hydroxides can be efficiently excited to create electron-hole pairs. The photogenerated electrons and holes are long-lived enough to react with adsorbed H2O or surface hydroxyl group to produce HO·radicals.Since the water content in the feed gas is maintained at such a low level(<5 μL·L-1),H2O involved in the genera tion of the HO·radicals must come from the photocatalytic reaction itself.The photocatalytic degradation of benzene over these p-block metal oxides/hydroxides can proceed preferentially via the HO·radical.In this way,no polymerized intermedistes can be deposited and these p-block metal oxides/ hydroxides can maintain a clean surface and a higher stability in the photodegradation of benzene.

    Scheme 1 Possible mechanism of the photocatalytic degradation of benzene over wide band gap p-block metal oxides/hydroxides

    4 Conclusions and outlook

    Wide band gap p-block metal oxides/hydroxides can be a promising new generation of photocatalysts for benzene degradation.Their superior photocatalytic performance for benzene degradation may be attributed to their peculiar structures and their mechanism different from TiO2in the degradation of benzene.A limitation for the application of these wide band gap pblock metal oxides/hydroxides in the practical environmental remediation is their wide band gap since they can only adsorb the UV energy,which account for only ca 4%of the solar energy. Since the ultimate goal of photocatalysis is to use the solar light, the application of the photocatalysis of these wide band gap semiconductors in the visible light region is important.The extension of the adsorption of these wide band gap semiconductors to the visible light region is still going on in our laboratory.

    1 Hudak,A.;Ungvary,G.Toxicology,1978,11:55

    2 Caprino,L.;Togna,G.I.Environ.Health Perspect.,1998,106: 115

    3 Bird,M.G.;Greim,H.;Snyder,R.;Rice,J.M.Chem.-Biol. Interact.,2005,153:1

    4 Lan,Q.;Zhang,L.;Li,G.;Vermeulen,R.V.;Weinberg,R.S.; Dosemeci,M.;Rappaport,S.M.;Shen,M.;Alter,B.P.;Wu,Y.; Kopp,W.;Waidyanatha,S.;Rabkin,C.;Guo,W.;Chanock,S.; Hayes,R.B.;Linet,M.;Kim,S.;Yin,S.;Rothman,N.;Smith,M. T.Science,2004,306:1774

    5 Mills,A.;Davies,R.H.;Worsley,D.Chem.Soc.Rev.,1993,22: 417

    6 Hoffman,M.R.;Martin,S.T.;Choi,W.;Bahnemann,D.W. Chem.Rev.,1995,95:69

    7 Fujishima,A.;Rao,T.N.;Tryk,D.A.J.Photochem.Photobiol.C, 2000,1:1

    8 Linsebigler,L.;Lu,G.;Yates Jr.,J.T.Chem.Rev.,1995,95:735

    9 Fujishima,A.;Hashimoto,K.;Watanabe,T.Photocatalysis fundamentals and applications.1st ed.Tokyo:BKC,1999

    10 Kaneko,M.;Okura,I.Photocatalysis,science and technology, Berlin:Springer,2002

    11 Serpone,N.;Pelizzetti,E.Photocatalysis:fundamentals and applications.New York:Wiley,1989

    12 Ollis,D.F.;Al-Ekabi,H.Photocatalytic purification and treatment of water and air.Amsterdam:Elsevier,1993

    13 Fox,M.A.;Dulay,M.T.Chem.Rev.,1993,93:341

    14 Mendez-Roman,R.;Cardona-Martinez,N.Catal.Today,1998, 40:353

    15 Martra,G.;Coluccia,S.;Marchese,L.;Augugliaro,V.;Loddo,V.; Palmisano,L.;Schiavello,M.Catal.Today,1999,53:695

    16 Fu,X.Z.;Zeltner,W.A.;Anderson,M.C.Appl.Catal.B: Environ.,1995,6:209

    17 Einaga,H.;Futamura,S.;Ibusuki,T.Environ.Sci.Technol.,2001, 35:1880

    18 Einaga,H.;Futamura,S.;Ibusuki,T.Environ.Sci.Technol.,2004, 38:285

    19 Sitkiewitz,S.;Heller,A.New J.Chem.,1996,20:233

    20 Einaga,H.;Futamura,S.;Ibusuki,T.Phys.Chem.Chem.Phys., 1999,1:4903

    21 Zhang,W.;Wang,X.X.;Fu,X.Z.Chem.Commun.,2003:2196

    22 Chen,Y.L.;Li,D.Z.;Wang,X.C.;Wang,X.X.;Fu,X.Z.Chem. Commun.,2004:2304

    23 Chen,Y.L.;Li,D.Z.;Wang,X.C.;Wang,X.X.;Fu,X.Z.New J. Chem.,2005,29:1514

    24 Hou,Y.D.;Wang,X.C.;Wu,L.;Ding,Z.X.;Fu,X.Z.Environ. Sci.Technol.,2006,40:5799

    25 Yan,T.J.;Long,J.L.;Chen,Y.S.;Wang,X.X.;Li,D.Z.;Fu,X. Z.C.R.Chim.,2008,11:101

    26 Li,Z.H.;Xie,Z.P.;Zhang,Y.F.;Wu,L.;Wang,X.X.;Fu,X.Z. J.Phys.Chem.C,2007,111:18348

    27 Xue,H.;Li,Z.H.;Wu,L.;Ding,Z.X;Wang,X.X.;Fu,X.Z. J.Phys.Chem.C,2008,112:5850

    28 Chen,X.;Xue,H.;Li,Z.H.;Wu,L.;Wang,X.X.;Fu,X.Z. J.Phys.Chem.C,2008,112:20393

    29 Huang,J.H.;Wang,X.C.;Hou,Y.D.;Chen,X.F.;Wu,L.;Fu,X. Z.Environ.Sci.Technol.,2008,42:7387

    30 Sato,J.;Saito,N.;Nishiyama,H.;Inoue,Y.J.Photochem. Photobio.A:Chem.,2002,148:85

    31 Lin,X.P.;Huang,F.Q.;Wang,W.D.;Wang Y.M.;Xia,Y.J.; Shi,J.L.Appl.Catal.A:Gen.,2006,313:218

    32 Zhang,X.;Huang,J.;Ding,K.;Hou,Y.;Wang,X.;Fu,X.Environ. Sci.Technol.,2009,43:5947

    33 Hou,Y.;Wu,L.;Wang,X.;Ding,Z.;Li,Z.;Fu,X.J.Catal., 2007,250:12

    34 Sato,J.;Kobayashi,H.;Inoue,Y.J.Phys.Chem.B,2003,107: 7970

    35 d′Hennezel,O.;Pichat,P.;Ollis,D.F.J.Photochem.Photobiol.A: Chem,1998,118:197

    36 Butler,M.A.;Ginley,D.S.J.Electrochem.Soc.,1978,125:228

    37 Bard,A.J.;Parsons,R.;Jordan,J.Standard potentials in aqueous solution.New York:Marcel Dekker,1985

    猜你喜歡
    省部氫氧化物福州大學(xué)
    福州大學(xué)馬克思主義學(xué)院
    福州大學(xué)繼續(xù)教育學(xué)院
    重型機(jī)械裝備省部共建協(xié)同創(chuàng)新中心簡介
    陜西中藥資源產(chǎn)業(yè)化省部共建協(xié)同創(chuàng)新中心
    黑龍江省人民政府辦公廳關(guān)于印發(fā)黑龍江省合理膳食行動(dòng)省部合作項(xiàng)目實(shí)施方案的通知
    4個(gè)涉煤省部共建協(xié)同創(chuàng)新中心獲認(rèn)定
    中國煤炭(2019年10期)2019-01-19 08:52:17
    福州大學(xué)喜迎建校60周年
    層狀雙氫氧化物處理工業(yè)廢水的研究進(jìn)展
    氫氧化物鹽插層材料的制備和表征
    層狀雙氫氧化物表面負(fù)載TiO2的光催化性能
    狂野欧美激情性xxxx在线观看| 美女xxoo啪啪120秒动态图| 亚洲av福利一区| av又黄又爽大尺度在线免费看| 男女边吃奶边做爰视频| 久久影院123| 欧美zozozo另类| 亚洲婷婷狠狠爱综合网| 亚洲高清免费不卡视频| 国产精品熟女久久久久浪| 国产精品嫩草影院av在线观看| 99热全是精品| 熟妇人妻不卡中文字幕| 国产亚洲av片在线观看秒播厂| 欧美一级a爱片免费观看看| 国产成人午夜福利电影在线观看| 国产毛片a区久久久久| 久久久久久久久久人人人人人人| 永久免费av网站大全| 国产黄色免费在线视频| 日韩欧美 国产精品| 国产午夜精品久久久久久一区二区三区| 国内揄拍国产精品人妻在线| 亚洲国产欧美在线一区| 国产精品女同一区二区软件| 国产黄片视频在线免费观看| 免费观看性生交大片5| 亚洲国产精品成人综合色| 大香蕉97超碰在线| 老司机影院成人| 99热6这里只有精品| 中文字幕制服av| 免费黄频网站在线观看国产| 国产伦精品一区二区三区四那| 国产精品不卡视频一区二区| 色综合色国产| 在线看a的网站| 国产乱人视频| 国产一区二区在线观看日韩| 日韩大片免费观看网站| 亚洲国产欧美人成| 久久精品久久精品一区二区三区| 最后的刺客免费高清国语| 国产精品久久久久久精品电影小说 | 看免费成人av毛片| 成人亚洲欧美一区二区av| 国产爱豆传媒在线观看| 亚洲成人中文字幕在线播放| 免费不卡的大黄色大毛片视频在线观看| 日本猛色少妇xxxxx猛交久久| 国产综合精华液| 97热精品久久久久久| 国产黄色视频一区二区在线观看| 极品教师在线视频| 欧美一级a爱片免费观看看| 人妻一区二区av| 色网站视频免费| 亚洲精品自拍成人| 日韩不卡一区二区三区视频在线| 久久人人爽人人爽人人片va| 亚洲色图综合在线观看| 简卡轻食公司| 18禁动态无遮挡网站| 天堂网av新在线| 国产毛片在线视频| 国产熟女欧美一区二区| 久久国产乱子免费精品| 99久久精品热视频| 亚洲国产欧美人成| 欧美xxxx黑人xx丫x性爽| 少妇 在线观看| 免费黄网站久久成人精品| 丝袜喷水一区| av在线亚洲专区| 国产av码专区亚洲av| av在线观看视频网站免费| 国产成人免费观看mmmm| av在线天堂中文字幕| 久久久久九九精品影院| 麻豆乱淫一区二区| 亚洲天堂国产精品一区在线| 午夜免费男女啪啪视频观看| 五月开心婷婷网| 日韩一本色道免费dvd| 3wmmmm亚洲av在线观看| 国产男女内射视频| 国产av不卡久久| 视频中文字幕在线观看| 婷婷色综合www| 干丝袜人妻中文字幕| 久久久久久久久久久丰满| 成人午夜精彩视频在线观看| .国产精品久久| 国产精品99久久99久久久不卡 | 美女高潮的动态| 成人美女网站在线观看视频| 色5月婷婷丁香| 麻豆久久精品国产亚洲av| 3wmmmm亚洲av在线观看| 国产一区二区亚洲精品在线观看| 卡戴珊不雅视频在线播放| 少妇熟女欧美另类| 久久精品国产a三级三级三级| 80岁老熟妇乱子伦牲交| 国产男女超爽视频在线观看| freevideosex欧美| 亚洲欧洲国产日韩| 欧美另类一区| 亚洲综合精品二区| 男人狂女人下面高潮的视频| 亚洲三级黄色毛片| 精品酒店卫生间| 亚洲av中文av极速乱| 99久久中文字幕三级久久日本| av在线天堂中文字幕| 亚洲av免费高清在线观看| 欧美 日韩 精品 国产| 可以在线观看毛片的网站| 国产精品.久久久| 亚洲精品自拍成人| 日韩三级伦理在线观看| 国产高清有码在线观看视频| 51国产日韩欧美| 久久精品国产鲁丝片午夜精品| kizo精华| 两个人的视频大全免费| 亚洲欧美成人综合另类久久久| 狂野欧美激情性xxxx在线观看| 国内精品宾馆在线| 成人亚洲精品av一区二区| 亚洲三级黄色毛片| 看十八女毛片水多多多| 街头女战士在线观看网站| 大码成人一级视频| 丝袜美腿在线中文| 干丝袜人妻中文字幕| 久热这里只有精品99| 看十八女毛片水多多多| 黄片无遮挡物在线观看| 国产黄a三级三级三级人| 能在线免费看毛片的网站| 男人狂女人下面高潮的视频| 少妇的逼水好多| 免费观看在线日韩| eeuss影院久久| 听说在线观看完整版免费高清| 免费观看的影片在线观看| 男人狂女人下面高潮的视频| 午夜免费男女啪啪视频观看| 国内精品美女久久久久久| 日韩制服骚丝袜av| 日本爱情动作片www.在线观看| 国精品久久久久久国模美| 丰满少妇做爰视频| 亚洲精品成人av观看孕妇| 日本三级黄在线观看| 欧美人与善性xxx| 街头女战士在线观看网站| 舔av片在线| 国产精品一区www在线观看| 美女视频免费永久观看网站| 免费人成在线观看视频色| www.av在线官网国产| 成人毛片a级毛片在线播放| 国产 一区精品| 精品久久久久久久久av| 久久久久网色| 亚洲精华国产精华液的使用体验| 亚洲一区二区三区欧美精品 | 伦理电影大哥的女人| av免费在线看不卡| 国产乱来视频区| 大香蕉久久网| 国产黄a三级三级三级人| 国产一级毛片在线| 在线看a的网站| 欧美一区二区亚洲| 久久久久久久久久久丰满| 1000部很黄的大片| 久久6这里有精品| 在线观看人妻少妇| 美女主播在线视频| 午夜激情福利司机影院| 日本免费在线观看一区| 久久人人爽av亚洲精品天堂 | 国产有黄有色有爽视频| 精品久久久久久久久av| 新久久久久国产一级毛片| 91午夜精品亚洲一区二区三区| 嫩草影院新地址| 老女人水多毛片| 午夜福利在线在线| 好男人在线观看高清免费视频| 日韩成人伦理影院| 最近最新中文字幕免费大全7| 男人爽女人下面视频在线观看| 免费看不卡的av| 又大又黄又爽视频免费| 亚洲精品影视一区二区三区av| 精品一区二区三卡| 搡女人真爽免费视频火全软件| 黄色视频在线播放观看不卡| 九九在线视频观看精品| 91在线精品国自产拍蜜月| 极品少妇高潮喷水抽搐| 男人舔奶头视频| 王馨瑶露胸无遮挡在线观看| 一个人看视频在线观看www免费| 亚洲av男天堂| 蜜桃亚洲精品一区二区三区| 人妻夜夜爽99麻豆av| 国精品久久久久久国模美| 欧美97在线视频| eeuss影院久久| 国产人妻一区二区三区在| 伊人久久精品亚洲午夜| 一级毛片电影观看| 久久久a久久爽久久v久久| 国产极品天堂在线| 久久久色成人| .国产精品久久| 人妻少妇偷人精品九色| 日韩国内少妇激情av| 久久久国产一区二区| 亚洲精品国产av蜜桃| 全区人妻精品视频| 日韩成人av中文字幕在线观看| 精品久久久噜噜| 亚洲成人中文字幕在线播放| 免费在线观看成人毛片| 欧美区成人在线视频| 嫩草影院精品99| 99久久人妻综合| av在线蜜桃| 一区二区三区四区激情视频| 国产又色又爽无遮挡免| www.色视频.com| 久久99热6这里只有精品| 国产男女超爽视频在线观看| 日本爱情动作片www.在线观看| 欧美97在线视频| 99热国产这里只有精品6| 老司机影院成人| 白带黄色成豆腐渣| 欧美一区二区亚洲| 青春草视频在线免费观看| 精品国产乱码久久久久久小说| 国产精品99久久99久久久不卡 | 青青草视频在线视频观看| 国产高清三级在线| 国产精品av视频在线免费观看| 麻豆乱淫一区二区| 久久久亚洲精品成人影院| 大片免费播放器 马上看| 国产伦理片在线播放av一区| 亚洲欧洲日产国产| 国产色爽女视频免费观看| 少妇人妻一区二区三区视频| 免费在线观看成人毛片| 日韩人妻高清精品专区| 2021少妇久久久久久久久久久| 久久鲁丝午夜福利片| 久久精品综合一区二区三区| 男女无遮挡免费网站观看| 国内揄拍国产精品人妻在线| 欧美日韩亚洲高清精品| 深夜a级毛片| 下体分泌物呈黄色| 寂寞人妻少妇视频99o| 嫩草影院入口| 精品酒店卫生间| 亚洲av电影在线观看一区二区三区 | 欧美日韩在线观看h| 国产老妇伦熟女老妇高清| .国产精品久久| 日韩成人av中文字幕在线观看| 午夜精品一区二区三区免费看| 国产精品成人在线| 丝袜美腿在线中文| 熟妇人妻不卡中文字幕| 老司机影院毛片| 亚洲精品乱久久久久久| 99热6这里只有精品| 日韩在线高清观看一区二区三区| 国产亚洲5aaaaa淫片| 久久99热这里只频精品6学生| 亚洲国产精品国产精品| 成年女人看的毛片在线观看| 亚洲av免费在线观看| 国产人妻一区二区三区在| 尾随美女入室| 久久精品国产自在天天线| 日韩免费高清中文字幕av| 可以在线观看毛片的网站| 国产精品偷伦视频观看了| 国精品久久久久久国模美| 亚洲天堂国产精品一区在线| 成人毛片a级毛片在线播放| 有码 亚洲区| 女人被狂操c到高潮| 亚洲色图av天堂| 中国三级夫妇交换| 亚洲国产色片| 麻豆成人av视频| 九九久久精品国产亚洲av麻豆| 大香蕉97超碰在线| 免费av观看视频| 成人黄色视频免费在线看| av卡一久久| 国产成人精品一,二区| 成人毛片60女人毛片免费| 久久ye,这里只有精品| 久久精品国产a三级三级三级| 制服丝袜香蕉在线| 噜噜噜噜噜久久久久久91| 18禁动态无遮挡网站| 一级毛片黄色毛片免费观看视频| 欧美少妇被猛烈插入视频| 国产精品久久久久久精品古装| 亚洲经典国产精华液单| 亚洲国产欧美在线一区| 青春草国产在线视频| 美女被艹到高潮喷水动态| 亚洲成人av在线免费| 一级a做视频免费观看| 王馨瑶露胸无遮挡在线观看| 极品少妇高潮喷水抽搐| 午夜福利在线在线| 毛片一级片免费看久久久久| 国产免费又黄又爽又色| 国产午夜精品久久久久久一区二区三区| 欧美成人a在线观看| 秋霞伦理黄片| 26uuu在线亚洲综合色| 亚洲四区av| 国产伦理片在线播放av一区| 菩萨蛮人人尽说江南好唐韦庄| 人妻少妇偷人精品九色| 黄色配什么色好看| 啦啦啦在线观看免费高清www| 免费看av在线观看网站| 久久久久久久久久人人人人人人| 男女边吃奶边做爰视频| 亚洲精品国产av蜜桃| 欧美精品一区二区大全| 亚洲aⅴ乱码一区二区在线播放| 国产高清三级在线| 边亲边吃奶的免费视频| 日韩强制内射视频| 99久久人妻综合| 久久久亚洲精品成人影院| 国产免费视频播放在线视频| 精品视频人人做人人爽| 亚洲成人中文字幕在线播放| 热99国产精品久久久久久7| 欧美老熟妇乱子伦牲交| 国产成人免费观看mmmm| 狂野欧美白嫩少妇大欣赏| 岛国毛片在线播放| 日韩av免费高清视频| 欧美成人精品欧美一级黄| 亚洲av日韩在线播放| 青春草亚洲视频在线观看| 熟妇人妻不卡中文字幕| 国产黄色免费在线视频| 久久午夜福利片| 日韩在线高清观看一区二区三区| 日日撸夜夜添| 韩国av在线不卡| 99视频精品全部免费 在线| 中国国产av一级| 国产色爽女视频免费观看| 精品人妻视频免费看| 国产精品熟女久久久久浪| 黄色欧美视频在线观看| 国产精品偷伦视频观看了| 亚洲va在线va天堂va国产| 免费少妇av软件| 久久精品国产自在天天线| 久久久久性生活片| 国产一区二区三区av在线| 一级av片app| 精品久久久久久久久亚洲| 18禁动态无遮挡网站| 少妇丰满av| 日本三级黄在线观看| 久久久久精品久久久久真实原创| 狂野欧美激情性bbbbbb| 肉色欧美久久久久久久蜜桃 | 免费少妇av软件| 日韩大片免费观看网站| 精品视频人人做人人爽| 久久久久久久午夜电影| 国产成人一区二区在线| 亚洲aⅴ乱码一区二区在线播放| 成人免费观看视频高清| 美女cb高潮喷水在线观看| 在线天堂最新版资源| 禁无遮挡网站| 九九在线视频观看精品| 男人爽女人下面视频在线观看| 国产永久视频网站| 韩国高清视频一区二区三区| 日韩伦理黄色片| 欧美高清性xxxxhd video| 少妇丰满av| 日日啪夜夜爽| 最近最新中文字幕免费大全7| 在线观看一区二区三区激情| 一级a做视频免费观看| 国产又色又爽无遮挡免| 91在线精品国自产拍蜜月| 成年版毛片免费区| 嫩草影院新地址| 日韩成人伦理影院| 国产欧美另类精品又又久久亚洲欧美| 亚洲成人一二三区av| 亚洲第一区二区三区不卡| 国产免费视频播放在线视频| 波多野结衣巨乳人妻| av又黄又爽大尺度在线免费看| 蜜桃亚洲精品一区二区三区| 在线观看av片永久免费下载| 最后的刺客免费高清国语| 岛国毛片在线播放| 国产高清国产精品国产三级 | 亚洲欧美成人精品一区二区| 国产精品人妻久久久影院| 亚洲精品一区蜜桃| 少妇被粗大猛烈的视频| 久久精品国产亚洲网站| 两个人的视频大全免费| 最后的刺客免费高清国语| 亚洲欧美日韩东京热| 久久久精品欧美日韩精品| 成人综合一区亚洲| 日韩制服骚丝袜av| 中文字幕制服av| 国产黄频视频在线观看| av女优亚洲男人天堂| 高清午夜精品一区二区三区| 久久97久久精品| 日日摸夜夜添夜夜添av毛片| 国产成人精品婷婷| 中文在线观看免费www的网站| 看非洲黑人一级黄片| 国产视频内射| 精品人妻偷拍中文字幕| 99久国产av精品国产电影| 三级经典国产精品| 欧美激情在线99| 麻豆成人av视频| 国产亚洲最大av| 男女无遮挡免费网站观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久精品国产亚洲av涩爱| 久久久精品94久久精品| 国产一区有黄有色的免费视频| www.色视频.com| 国产一级毛片在线| 2021天堂中文幕一二区在线观| 下体分泌物呈黄色| 亚洲欧美一区二区三区黑人 | 白带黄色成豆腐渣| 天美传媒精品一区二区| 另类亚洲欧美激情| 一级a做视频免费观看| 国产色婷婷99| 亚洲自偷自拍三级| 亚洲人成网站高清观看| 女人久久www免费人成看片| 日日撸夜夜添| 国产久久久一区二区三区| 婷婷色综合大香蕉| 嘟嘟电影网在线观看| 黄片无遮挡物在线观看| 国产乱来视频区| 亚洲精品亚洲一区二区| 亚洲成人久久爱视频| 在线看a的网站| 亚洲精品国产av成人精品| 老司机影院毛片| 亚洲精品影视一区二区三区av| 国产毛片a区久久久久| 69人妻影院| 高清视频免费观看一区二区| 有码 亚洲区| 成人美女网站在线观看视频| 亚洲精品色激情综合| 在线观看人妻少妇| 亚洲av.av天堂| av黄色大香蕉| 亚洲av男天堂| 亚洲天堂国产精品一区在线| 少妇人妻久久综合中文| 久久久久久久久久久丰满| 亚洲怡红院男人天堂| 高清毛片免费看| 久久久久精品久久久久真实原创| 久久久久久久大尺度免费视频| 亚洲天堂av无毛| 一级av片app| 日韩欧美精品v在线| 欧美丝袜亚洲另类| 永久免费av网站大全| 在线免费十八禁| 欧美精品一区二区大全| 亚洲欧美中文字幕日韩二区| 日本黄大片高清| 好男人在线观看高清免费视频| 人妻夜夜爽99麻豆av| 男人和女人高潮做爰伦理| 天堂中文最新版在线下载 | 欧美一级a爱片免费观看看| 亚洲精品色激情综合| 国产免费又黄又爽又色| 少妇的逼好多水| 亚洲av中文字字幕乱码综合| 日韩强制内射视频| 91精品一卡2卡3卡4卡| 欧美性猛交╳xxx乱大交人| 色5月婷婷丁香| 91在线精品国自产拍蜜月| 欧美激情久久久久久爽电影| 国产高清有码在线观看视频| 大香蕉久久网| 一二三四中文在线观看免费高清| 亚洲国产日韩一区二区| 亚洲国产精品成人综合色| 久久女婷五月综合色啪小说 | 极品教师在线视频| 精华霜和精华液先用哪个| 在线亚洲精品国产二区图片欧美 | 天天躁日日操中文字幕| 国产高清不卡午夜福利| 男插女下体视频免费在线播放| 日本-黄色视频高清免费观看| 禁无遮挡网站| 青春草国产在线视频| 亚洲真实伦在线观看| 成人二区视频| 免费播放大片免费观看视频在线观看| 蜜桃久久精品国产亚洲av| 九九久久精品国产亚洲av麻豆| videos熟女内射| 国产一区亚洲一区在线观看| 日日啪夜夜爽| 五月玫瑰六月丁香| 美女被艹到高潮喷水动态| 久久久精品欧美日韩精品| 亚洲在久久综合| 国产成人a∨麻豆精品| 插逼视频在线观看| 老司机影院成人| 国产黄色免费在线视频| 国产v大片淫在线免费观看| 国产伦精品一区二区三区视频9| 在线观看人妻少妇| 日韩av免费高清视频| 亚洲欧美成人精品一区二区| 午夜免费鲁丝| 人人妻人人澡人人爽人人夜夜| 日韩欧美精品免费久久| 亚洲欧美一区二区三区黑人 | 国产爱豆传媒在线观看| 少妇人妻精品综合一区二区| 久久99精品国语久久久| 久热久热在线精品观看| 国产精品秋霞免费鲁丝片| 丝袜喷水一区| 一级a做视频免费观看| 尾随美女入室| 色播亚洲综合网| 亚洲国产高清在线一区二区三| 午夜爱爱视频在线播放| 自拍偷自拍亚洲精品老妇| 国产欧美日韩一区二区三区在线 | 男人爽女人下面视频在线观看| 久久久久久九九精品二区国产| 青春草国产在线视频| 日韩中字成人| 久久精品国产鲁丝片午夜精品| 中文精品一卡2卡3卡4更新| 国产精品人妻久久久久久| 亚洲,一卡二卡三卡| 美女脱内裤让男人舔精品视频| 麻豆成人午夜福利视频| 国产黄频视频在线观看| 欧美高清性xxxxhd video| av又黄又爽大尺度在线免费看| 久久久欧美国产精品| 日本av手机在线免费观看| 欧美日韩综合久久久久久| av女优亚洲男人天堂| 国产午夜精品久久久久久一区二区三区| 在线亚洲精品国产二区图片欧美 | 久久久久精品性色| 街头女战士在线观看网站| 日本三级黄在线观看| 啦啦啦在线观看免费高清www| 日韩成人伦理影院| 欧美成人a在线观看| 纵有疾风起免费观看全集完整版| 天堂俺去俺来也www色官网| 一区二区av电影网| 亚洲三级黄色毛片| 国产综合精华液| 最近中文字幕2019免费版| 国产成人aa在线观看| 国产一区二区三区av在线| 极品少妇高潮喷水抽搐| 久久久精品94久久精品| 欧美激情久久久久久爽电影| 日本一二三区视频观看| 婷婷色麻豆天堂久久|