• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    寬帶隙p區(qū)金屬氧化物/氫氧化物對苯的光催化降解

    2010-03-06 04:44:30李朝暉付賢智
    物理化學(xué)學(xué)報(bào) 2010年4期
    關(guān)鍵詞:省部氫氧化物福州大學(xué)

    李朝暉 劉 平 付賢智

    (福州大學(xué)光催化研究所,省部共建國家重點(diǎn)實(shí)驗(yàn)室培育基地,福州 350002)

    Benzene has severe health and environmental consequences due to its high toxicity and confirmed carcinogenicity[1-3].A recent study has shown that a long-term exposure to a very low levels (volume fraction less than 1×10-6)of benzene can reduce blood cell counts in human being.Workers exposed to benzene fumes, runintoanincreasedriskofleukemiaandbone-marrowtoxicity[4]. Benzene is also ubiquitous as an air pollutant from cigarette smoke,gasoline vapors,paint,industrial exhaust gases,and automobile emissions.The benzene pollution has already become one of the main environmental problems facing humanity. Therefore,the development of an efficient,cost-effective and environmentally sustainable technology in treating benzene and its derivatives is indispensable.

    Semiconductor photocatalysis for environmental remediation has received increasingly interest since it is environmentally friendly,capable of performing at room temperature and can treat organic pollutants at extremely low concentrations[5-13].The photocatalytic reactions occur over the semiconductor photocatalysts are initiated by the photo-generated electrons and holes that are captured subsequently by the surface adsorbed species. The capture of photo-generated charge carriers induce the formation of very reactive radicals such as O-·20,O·2,HO·2,HO·and so on,leading to the final decomposition of organic pollutants[6].

    Due to its high stability,non-toxicity,cheapness as well as its appropriate electronic band positions capable of oxidizing most organic pollutants,titanium dioxide(TiO2)has become the most widely used semiconductor photocatalyst in heterogeneous photocatalysis.Although TiO2-based photocatalytic oxidation(PCO) has been established to be one of the most promising technologies for the environment remediation and has been successful in treating a wide variety of volatile organic compounds(VOCs), PCO meets with limited success in the treatment of aromatic compounds like benzene due to the deactivation of TiO2resulted from the accumulation of the stable reaction intermediates on the surface[14-15].Loading of noble metals like Pt,Pd,or Rh over TiO2has been used to enhance its performance for photocatalytic oxidation of benzene in gas phase.However,these noble-metalloaded TiO2photocatalysts suffer from the problem of stability due to the oxidation of the noble metal nanoparticles on the surface of TiO2[16-18].Adding sufficient amount of H2O in the reaction feed gas can improve the efficiency of TiO2photocatalyst toward the complete oxidization of benzene to a certain degree[19-20].Our recent studies have also demonstrated that the introduction of magnetic field[21]or H2[22-23]into the photochemical reaction system can greatly improve the efficiency of Pt/TiO2for the photodecomposition of benzene at room temperature.However,it is not easy to realize such a complicated hybrid system for photocatalytic air purification.Therefore the development of photocatalysts with high performance for benzene degradation is indispensable in view of the application of photocatalysis for benzene treatment,yet it remains a great challenge till now.

    Recently,a series of wide band gap p-block metal oxides/hydroxides with superior performance for photocatalytic degradation of benzene have been developed in our institute[24-29].These wide band gap p-block metal oxides/hydroxides are a series of promising photocatalysts for benzene degradation.The preparations of these p-block metal oxides/hydroxides,their photocatalytic activity and mechanism for benzene degradation as well as the structure-activity relationship are summarized in this review.

    1 Preparations and photocatalytic activity for benzene degradation

    1.1 Binary p-block metal oxides/hydroxides β-Ga2O3, In(OH)3and InOOH

    Porous binary gallium oxide β-Ga2O3can be prepared via the hydrolysis of gallium nitrate in ammonia solution followed by a heat treatment at 600℃[24].The XRD pattern of the as-prepared β-Ga2O3is shown in Fig.1.The as-prepared β-Ga2O3exhibits stepwise adsorption and desorption(type IV isotherm)in the N2-sorption isotherm,indicative of a porous solid.The BET specific surface area is 80 m2·g-1and the average pore size is 7.3 nm with a narrow distribution of pore size for the as-prepared β-Ga2O3.With a band gap of 4.7 eV,β-Ga2O3can be excited with 254 nm UV irradiation.The as-prepared β-Ga2O3is highly photoactive for mineralizing benzene and its derivatives like toluene and ethylbenzene to CO2under 254 nm UV irradiation.For an initial benzene concentration of 450 μL·L-1,β-Ga2O3shows a high conversion rate of 42%and can maintain its reactivity during the prolonged operation of 80 h.In the meantime about 1070 μL·L-1of CO2can be produced over β-Ga2O3,indicating that 95%of benzene converted has been mineralized to CO2over β-Ga2O3(Fig.2)[24].

    Binary p-block metal hydroxide In(OH)3also shows high photocatalytic performance for benzene degradation under 254 nm UV irradiation.Porous In(OH)3can be prepared by hydrolysis of In(NO3)3in an aqueous solution of ammonium followed by a thermal treatment at 120℃.The BET specific surface area for the as-prepared In(OH)3is 120 m2·g-1.For an initial benzene concentration of 1300 μL·L-1,the conversion of benzene and the mineralization rate over In(OH)3can maintain at 25%and 40%,respectively,even after 30 h photocatalytic reaction(Fig.3)[25].

    Fig.1 X-ray diffraction(XRD)pattern of the as-synthesized Ga2O3sample[24]

    Fig.2 (a)Conversion of C6H6and(b)the amount of produced CO2over the Ga2O3as a function of reaction time(t)with TiO2(P25)as a reference[24]

    Oxyhydroxide InOOH can be prepared via a facile solvothermal process from In(NO3)3in a water/ethylenediamine(1∶6)solution.The XRD pattern of the as-prepared InOOH is shown in Fig.4.The average particle size is about 20 nm and the BET specific surface area is about 55 m2·g-1for the as-prepared InOOH. With a band gap energy of 3.7 eV,InOOH can be excited by 300 nm UV irradiation.For an initial benzene concentration of 260 μL·L-1,the conversion of benzene over InOOH can reach 7.5%.In addition,the amount of the produced CO2is about 50 μL·L-1,corresponding to a benzene mineralization ratio of more than 50%.The photocatalytic activity can be maintained for more than 30 h,during which no noticeable deactivation is observed(Fig.5)[26].

    1.2 Ternary p-block metal semiconductors Sr2Sb2O7, ZnGa2O4and Zn2GeO4

    Besides the binary p-block metal oxides/hydroxides,the photocatalytic activity for benzene degradation can also be found over ternary p-block metal oxides with more diversified composition and structure.

    Nanocrystalline Sr2Sb2O7prepared via a facile hydrothermal method is found to show high activity for benzene degradation. AlthoughSr2Sb2O7preparedviaaconventionalsolidstatereaction method(Sr2Sb2O7(SSR))has been reported to be a photocatalyst for water splitting[30]and the degradation of organic dyes[31],it shows very low activity for benzene degradation due to its low specific surface area.To extend its application for photocatalytic degradation of benzene,we developed for the first time a facile method in the preparation of nanocrystalline Sr2Sb2O7directly from commercial Sb2O5.The XRD patterns of the obtained products under different pH values are shown in Fig.6.It is found that the reaction pH plays an important role in the final product and only under highly basic condition can nanocrystalline Sr2Sb2O7be obtained.The hydrothermal prepared nanocrystalline Sr2Sb2O7consists entirely of small particles with average size at around 6 nm and has a relatively large BET specific surface area of about 24.8 m2·g-1,much higher than Sr2Sb2O7prepared via the solid state reaction(1.4 m2·g-1).The N2-sorption isotherm indicates that the as-prepared Sr2Sb2O7is a mesoporous solid with a narrow distribution of pore size at ca 4.0 nm.The as-prepared nanocrystalline Sr2Sb2O7show high photocatalytic performance for the degradation of benzene.For an initial ben-zene concentration of 220 μL·L-1,the conversion of benzene is about 24%and more than 160 μL·L-1of CO2is produced in the meantime,corresponding to a high mineralization ratio of about 50%.Both the conversion ratio and the mineral-ization ratio are higher than those over solid state prepared Sr2Sb2O7(4%,30 μL· L-1).The high conversion and mineralization ratio can be maintained for more than 40 h,during which no obvious deactivation is observed(Fig.7)[27].

    Fig.3 Photocatalytic oxidation conversion of henzene(A) and production of CO2(B)over the catalyst in dry O2[25](a)In(OH)3,(b)TiO2;curve(c)was a control experiment with In(OH)3without irradiation,and(d)was a control experiment without In(OH)3under 254 nm irradiation;the initial benzene volume fraction:1300 μL·L-1

    Fig.4 XRD pattern of the as-prepared InOOH[26]

    Fig.5 (A)Conversion of benzene and(B)the amount of produced CO2over InOOH and P25 for decomposing benzene as a function of reaction time under UV illumination(λ=300 nm)[26]

    Fig.6 XRD pattern of the samples prepared at 180℃for 48 h with different pH values[27](●)Sr1.36Sb2O6,(*)SrSb2O6,(▼)Sr2Sb2O7

    Fig.7 Conversion of C6H6and the amount of produced CO2 over the Sr2Sb2O7(180℃,48 h,[OH-]=2 mol·L-1)as a function of reaction time,with TiO2(P25)and Sr2Sb2O7(SSR)as references[27](■)(●)(▲)the conversion of C6H6over the Sr2Sb2O7,TiO2,and Sr2Sb2O7(SSR) respectively;(□)(○)(Δ)the amount of produced CO2over the Sr2Sb2O7,TiO2, and Sr2Sb2O7(SSR)respectively;Sr2Sb2O7(SSR)refers to the sample prepared via a solid state reaction.

    Nanocrystalline ZnGa2O4with a specific surface area of about 36.7 m2·g-1can be prepared via a co-precipitation method from Zn(NO3)2and Ga(NO3)3followed by a heat treatment at 600℃. The XRD pattern of the as-prepared ZnGa2O4is shown Fig.8. For an initial benzene concentration of 220 μL·L-1,the conversion of benzene over the thus-prepared ZnGa2O4is about 12.0% and more than 100 μL·L-1of CO2can be produced,corresponding to a mineralization ratio of about 63%(Fig.9)[28].With an aim at enhancing its activity,ZnGa2O4with an extremely high specific surface area of 201 m2·g-1has been prepared from Zn(NO3)2and Ga(NO3)3via a hydrothermal treatment at 80℃.The increase of the specific surface area leads to a significant enhancement of the photocatalytic activity for benzene degradation.The conversion ratio of benzene can be increased to as high as 41%and the produced CO2can reach 500 μL·L-1for an initial benzene concentration of 300 μL·L-1,which is much higher than Pt/TiO2(Fig.10)[32].

    Another ternary p-block metal oxides with high photocatalytic performance for benzene degradation is Zn2GeO4.Nanorods of Zn2GeO4can be prepared from GeO2and Zn(Ac)2under the assistance of surfactant cetyltrimethylammonium bromide(CTAB) via a facile hydrothermal method and the XRD pattern is shown in Fig.11.The SEM images reveal that the as-prepared sample contains a large quantity of nanorods 20-50 nm in width and 150-600nminlength(Fig.12).Under254nmUVirradiations,for an initial benzene concentration of 300 μL·L-1,the benzene conversion and CO2concentration over the as-prepared Zn2GeO4nanorods can be maintained steady at ca 21%and ca 280 μL·L-1, respectively,which corresponding to a high mineralization ratio of ca 75%(Fig.13)[29].

    Fig.8 XRD pattern of the nanocrystalline ZnGa2O4[28]

    Fig.9 Conversion of C6H6and the amount of produced CO2 over the nanocrystalline ZnGa2O4as a function of reaction time,with TiO2(P25)as references[28](▲)(●)the conversion of C6H6over the ZnGa2O4and TiO2respectively, (Δ)(○)the amount of produced CO2over the ZnGa2O4and TiO2respectively

    2 Structure-activity relationship

    Fig.10 Photocatalytic conversion of benzene(a)and the amount of produced CO2(b)over ZnGa2O4hydrothermal prepared under 80,120,160,200℃,TiO2and Pt/TiO2[32]

    Fig.11 XRD patterns of Zn2GeO4nanorods and bulk Zn2GeO4particles[29]

    The band gap,crystallinity,and the specific surface area are important factors that can influence the photocatalytic activity of the semiconductor photocatalysts.However,the activity of some p-block metal oxide photocatalysts can not be simply explained in terms of the above factors.A study on three crystalline phase of Ga2O3reveals that the intrinsic crystallographic structure,especially the geometric structure of the M—O polyhedron(M=pblock metal)can influence the photocatalytic activity of these wide band gap semiconductors as well[33].The crystal structure of α-Ga2O3and β-Ga2O3(Fig.14)and the calculations using the crystallographic data regarding the atom positions reveal that α-Ga2O3is constituted only by distorted octahedron GaO6with a dipole moment of 14.0×10-30C·m,while β-Ga2O3contains both distorted GaO6octahedron(7.3×10-30C·m)and GaO4tetrahedron(2.3×10-30C·m).It is believed that the dipole moment induced by the distorted polyhedron can create a local electric field inside the distorted polyhedron,which can promote the separation of the photo-generated electron-hole pairs[34].Although both α-Ga2O3and β-Ga2O3contain distorted polyhedron in their structure,α-Ga2O3contains only distorted octahedron,while β-Ga2O3has both heavily distorted octahedron and tetrahedron in its structure.The coexistence of two different kinds of electric fields might have synergic effects in promoting the separation of photoexcited electron-hole pairs.Therefore,α-Ga2O3shows a lower photocatalytic activity than β-Ga2O3(Table 1).This promo-moting effect is confirmed by the time-resolved photoluminescence(PL)measurements.The PL measurements reveal that the lifetime of the photogenerated electron-hole pairs on β-Ga2O3is longer than that on α-Ga2O3(Fig.15 and Table 2).The existence of the relationship between the geometric structure and the photocatalytic activity among these semiconductor photocatalysts provides some guideline in our development of new wide band gap p-block metal semiconductor photocatalysts.

    Fig.12 Structural characterization and general morphologies of Zn2GeO4nanorods[29](a)SEM image,(b)TEM image,(c)TEM image of a Zn2GeO4nanorod, (d)HRTEM image of area e1 in(c),(e)enlarged image of area f1 in(d), (f)SAED pattern recorded along the zone axis[110]of the Zn2GeO4nanorods

    Fig.13 (a)Photocatalytic conversion of benzene and(b)amount of produced CO2in the stream over the Zn2GeO4nanorods against the reaction time,with TiO2(Degussa P25)as a reference catalyst[29]

    Fig.14 Three-dimensional crystal structures of α-Ga2O3and β-Ga2O3with a unit cell[33]

    3 Mechanism for benzene degradation

    All the above mentioned wide band gap p-block metal oxides/ hydroxides show high stability for benzene degradation,while TiO2deactivate very quickly.Their obvious different behavior implies that these p-block metal oxides/hydroxides and TiO2may have different routes in the photocatalytic degradation of benzene.

    Generally,it is believed that the degradation of benzene over TiO2under dry air proceeds preferentially via a direct-hole-oxidation route.Such a direct-hole-oxidation process would pro-duce benzene cationic radical,which react further with an incoming benzene molecule,leading to the polymerization of benzene on the catalyst surface and the deactivation of TiO2during the degradation of benzene[35].The deposition of the stable intermediates can be confirmed by the color change of TiO2from the original white to dark brown after the photocatalytic reaction.In addition to this,the FT-IR spectrum of used TiO2indicates the formation of the stable intermediates by showing three new peaks at 1483,1686,and 1711 cm-1(Fig.16).On the contrary,no color change has been observed after photocatalytic benzene degradation for the p-block metal oxides/hydroxides, like InOOH.Besides this,no new peaks appear on the FT-IR spectrum over these p-block metal oxides/hydroxides,indicating that no stable intermediates have been deposited on the surface of these photocatalysts(Fig.16).All these phenomena imply that the degradation of benzene over these p-block metal oxides/hydroxides may proceed preferentially via the HO·radical route.Photocatalysts proceed via the HO·radical degradation route may have long term stability since the HO·radical route could significantly suppress the polymerization of benzene on the catalyst surface.

    Table 1 Hydrocarbon removal rate and CO2production rate over different photocatalysts[33]

    Fig.15 Photoluminescence decay curves of the gallium oxide catalysts[33]

    Table 2 Lifetimes(τ)and relative amplitudes of timeresolved photoluminescence of the gallium oxide catalysts at 77 K[33]

    The generation of HO·radicals over these p-block metal oxides/hydroxides is credible since they all have proper band structure.The calculations of their band position based on the following equation:ECB=X-Ec-0.5Egis-0.4 V(vs NHE)[36]reveal that the edge of their conduction band are all negative than that of E°(O2/O-·20)(-0.33 V vs NHE),while the edge of their valence band(EVB)are positive than that of E°(HO·/OH-)(2.38 V vs NHE)[37].These suggest that the photogenerated electrons on these p-block metal oxides/hydroxides can reduce O2to give O-·20, while the photogenerated holes can oxidize OH-to give HO· when illuminated.The ESR spin-trap with DMPO technique confirmed the production of both O-·20and HO·over all these pblock metal oxides/hydroxides.In addition to this,it is observed that the intensities of the signal corresponding to the DMPOHO·radical produced over the p-block metal oxides/hydroxides (for example,InOOH)are much stronger than those over P25 (Fig.17).This indicates that under similar condition,more HO· radicals can be produced over irradiated p-block metal oxides/ hydroxides than over P25[26].This again confirms the above assumption that the degradation of benzene over p-block metal oxides/hydroxides may proceeds preferentially via the HO·radical route,while that over P25 may proceed via the direct-hole oxidation route.

    Fig.16 FT-IR spectra of used and fresh P25 and InOOH(inset)[26]

    Fig.17 DMPO spin-trapping ESR spectra(a)in aqueous dispersion for DMPO-·OH and(b)in methanol dispersion for DMPO-O-·20[26]

    The degradation preferentially via the HO·radical route over these p-block metal oxides/hydroxides can be attributed to their peculiar structure.The intrinsic wide band gap of these p-block metal oxides/hydroxides endow the photogenerated holes with strong oxidation ability and make them thermodynamically more favorable to react with chemi-adsorbed H2O or the surface hydroxyl group to produce HO·radicals.On the other hand,the highly dispersive conduction band due to the hybridizations of the orbitals usually observed over these p-block metal oxides/ hydroxides can promote the mobility of the photoexcited electrons,leading to enhanced charge separation.All these characteristics are favorable for the generation of the HO·radicals over these p-block metal oxides/hydroxides when illuminated. Therefore the degradation of benzene over these p-block metal oxides/hydroxides can proceed preferentially via HO·radical route and hence a high stability is observed.

    The possible benzene degradation mechanism over these wide band gap p-block metal oxides/hydroxides is illustrated in Scheme 1.When illuminated,these p-block metal oxides/hydroxides can be efficiently excited to create electron-hole pairs. The photogenerated electrons and holes are long-lived enough to react with adsorbed H2O or surface hydroxyl group to produce HO·radicals.Since the water content in the feed gas is maintained at such a low level(<5 μL·L-1),H2O involved in the genera tion of the HO·radicals must come from the photocatalytic reaction itself.The photocatalytic degradation of benzene over these p-block metal oxides/hydroxides can proceed preferentially via the HO·radical.In this way,no polymerized intermedistes can be deposited and these p-block metal oxides/ hydroxides can maintain a clean surface and a higher stability in the photodegradation of benzene.

    Scheme 1 Possible mechanism of the photocatalytic degradation of benzene over wide band gap p-block metal oxides/hydroxides

    4 Conclusions and outlook

    Wide band gap p-block metal oxides/hydroxides can be a promising new generation of photocatalysts for benzene degradation.Their superior photocatalytic performance for benzene degradation may be attributed to their peculiar structures and their mechanism different from TiO2in the degradation of benzene.A limitation for the application of these wide band gap pblock metal oxides/hydroxides in the practical environmental remediation is their wide band gap since they can only adsorb the UV energy,which account for only ca 4%of the solar energy. Since the ultimate goal of photocatalysis is to use the solar light, the application of the photocatalysis of these wide band gap semiconductors in the visible light region is important.The extension of the adsorption of these wide band gap semiconductors to the visible light region is still going on in our laboratory.

    1 Hudak,A.;Ungvary,G.Toxicology,1978,11:55

    2 Caprino,L.;Togna,G.I.Environ.Health Perspect.,1998,106: 115

    3 Bird,M.G.;Greim,H.;Snyder,R.;Rice,J.M.Chem.-Biol. Interact.,2005,153:1

    4 Lan,Q.;Zhang,L.;Li,G.;Vermeulen,R.V.;Weinberg,R.S.; Dosemeci,M.;Rappaport,S.M.;Shen,M.;Alter,B.P.;Wu,Y.; Kopp,W.;Waidyanatha,S.;Rabkin,C.;Guo,W.;Chanock,S.; Hayes,R.B.;Linet,M.;Kim,S.;Yin,S.;Rothman,N.;Smith,M. T.Science,2004,306:1774

    5 Mills,A.;Davies,R.H.;Worsley,D.Chem.Soc.Rev.,1993,22: 417

    6 Hoffman,M.R.;Martin,S.T.;Choi,W.;Bahnemann,D.W. Chem.Rev.,1995,95:69

    7 Fujishima,A.;Rao,T.N.;Tryk,D.A.J.Photochem.Photobiol.C, 2000,1:1

    8 Linsebigler,L.;Lu,G.;Yates Jr.,J.T.Chem.Rev.,1995,95:735

    9 Fujishima,A.;Hashimoto,K.;Watanabe,T.Photocatalysis fundamentals and applications.1st ed.Tokyo:BKC,1999

    10 Kaneko,M.;Okura,I.Photocatalysis,science and technology, Berlin:Springer,2002

    11 Serpone,N.;Pelizzetti,E.Photocatalysis:fundamentals and applications.New York:Wiley,1989

    12 Ollis,D.F.;Al-Ekabi,H.Photocatalytic purification and treatment of water and air.Amsterdam:Elsevier,1993

    13 Fox,M.A.;Dulay,M.T.Chem.Rev.,1993,93:341

    14 Mendez-Roman,R.;Cardona-Martinez,N.Catal.Today,1998, 40:353

    15 Martra,G.;Coluccia,S.;Marchese,L.;Augugliaro,V.;Loddo,V.; Palmisano,L.;Schiavello,M.Catal.Today,1999,53:695

    16 Fu,X.Z.;Zeltner,W.A.;Anderson,M.C.Appl.Catal.B: Environ.,1995,6:209

    17 Einaga,H.;Futamura,S.;Ibusuki,T.Environ.Sci.Technol.,2001, 35:1880

    18 Einaga,H.;Futamura,S.;Ibusuki,T.Environ.Sci.Technol.,2004, 38:285

    19 Sitkiewitz,S.;Heller,A.New J.Chem.,1996,20:233

    20 Einaga,H.;Futamura,S.;Ibusuki,T.Phys.Chem.Chem.Phys., 1999,1:4903

    21 Zhang,W.;Wang,X.X.;Fu,X.Z.Chem.Commun.,2003:2196

    22 Chen,Y.L.;Li,D.Z.;Wang,X.C.;Wang,X.X.;Fu,X.Z.Chem. Commun.,2004:2304

    23 Chen,Y.L.;Li,D.Z.;Wang,X.C.;Wang,X.X.;Fu,X.Z.New J. Chem.,2005,29:1514

    24 Hou,Y.D.;Wang,X.C.;Wu,L.;Ding,Z.X.;Fu,X.Z.Environ. Sci.Technol.,2006,40:5799

    25 Yan,T.J.;Long,J.L.;Chen,Y.S.;Wang,X.X.;Li,D.Z.;Fu,X. Z.C.R.Chim.,2008,11:101

    26 Li,Z.H.;Xie,Z.P.;Zhang,Y.F.;Wu,L.;Wang,X.X.;Fu,X.Z. J.Phys.Chem.C,2007,111:18348

    27 Xue,H.;Li,Z.H.;Wu,L.;Ding,Z.X;Wang,X.X.;Fu,X.Z. J.Phys.Chem.C,2008,112:5850

    28 Chen,X.;Xue,H.;Li,Z.H.;Wu,L.;Wang,X.X.;Fu,X.Z. J.Phys.Chem.C,2008,112:20393

    29 Huang,J.H.;Wang,X.C.;Hou,Y.D.;Chen,X.F.;Wu,L.;Fu,X. Z.Environ.Sci.Technol.,2008,42:7387

    30 Sato,J.;Saito,N.;Nishiyama,H.;Inoue,Y.J.Photochem. Photobio.A:Chem.,2002,148:85

    31 Lin,X.P.;Huang,F.Q.;Wang,W.D.;Wang Y.M.;Xia,Y.J.; Shi,J.L.Appl.Catal.A:Gen.,2006,313:218

    32 Zhang,X.;Huang,J.;Ding,K.;Hou,Y.;Wang,X.;Fu,X.Environ. Sci.Technol.,2009,43:5947

    33 Hou,Y.;Wu,L.;Wang,X.;Ding,Z.;Li,Z.;Fu,X.J.Catal., 2007,250:12

    34 Sato,J.;Kobayashi,H.;Inoue,Y.J.Phys.Chem.B,2003,107: 7970

    35 d′Hennezel,O.;Pichat,P.;Ollis,D.F.J.Photochem.Photobiol.A: Chem,1998,118:197

    36 Butler,M.A.;Ginley,D.S.J.Electrochem.Soc.,1978,125:228

    37 Bard,A.J.;Parsons,R.;Jordan,J.Standard potentials in aqueous solution.New York:Marcel Dekker,1985

    猜你喜歡
    省部氫氧化物福州大學(xué)
    福州大學(xué)馬克思主義學(xué)院
    福州大學(xué)繼續(xù)教育學(xué)院
    重型機(jī)械裝備省部共建協(xié)同創(chuàng)新中心簡介
    陜西中藥資源產(chǎn)業(yè)化省部共建協(xié)同創(chuàng)新中心
    黑龍江省人民政府辦公廳關(guān)于印發(fā)黑龍江省合理膳食行動(dòng)省部合作項(xiàng)目實(shí)施方案的通知
    4個(gè)涉煤省部共建協(xié)同創(chuàng)新中心獲認(rèn)定
    中國煤炭(2019年10期)2019-01-19 08:52:17
    福州大學(xué)喜迎建校60周年
    層狀雙氫氧化物處理工業(yè)廢水的研究進(jìn)展
    氫氧化物鹽插層材料的制備和表征
    層狀雙氫氧化物表面負(fù)載TiO2的光催化性能
    亚洲在线自拍视频| 男女下面进入的视频免费午夜| 亚洲av美国av| 亚洲av免费高清在线观看| 性欧美人与动物交配| 国产精品野战在线观看| 欧美日韩黄片免| 99久久精品热视频| videossex国产| 最新在线观看一区二区三区| 亚洲国产日韩欧美精品在线观看| 欧美+亚洲+日韩+国产| 五月伊人婷婷丁香| 最近中文字幕高清免费大全6 | 成年人黄色毛片网站| 久久精品国产亚洲av天美| 日本熟妇午夜| 在线观看一区二区三区| 久久天躁狠狠躁夜夜2o2o| 极品教师在线视频| 亚洲va日本ⅴa欧美va伊人久久| 免费看a级黄色片| 十八禁网站免费在线| 夜夜爽天天搞| 亚洲美女搞黄在线观看 | 男人舔女人下体高潮全视频| 毛片一级片免费看久久久久 | 国产精品一区二区性色av| 国产91精品成人一区二区三区| 嫩草影院入口| 最近最新中文字幕大全电影3| 亚洲av二区三区四区| 男人舔女人下体高潮全视频| 亚洲黑人精品在线| 内地一区二区视频在线| 91在线观看av| 亚洲专区中文字幕在线| 成人特级av手机在线观看| 精品一区二区三区视频在线| 国产色爽女视频免费观看| 亚洲精品一卡2卡三卡4卡5卡| 男女下面进入的视频免费午夜| 国产伦人伦偷精品视频| 国产成人av教育| 美女被艹到高潮喷水动态| 我的老师免费观看完整版| 久久久久久久久久黄片| 日韩高清综合在线| 淫妇啪啪啪对白视频| 亚洲成人免费电影在线观看| 床上黄色一级片| 免费搜索国产男女视频| 久久精品国产鲁丝片午夜精品 | 亚洲国产色片| 国产亚洲精品av在线| 日本五十路高清| 国产一区二区亚洲精品在线观看| 国产亚洲欧美98| 韩国av一区二区三区四区| 嫩草影视91久久| 琪琪午夜伦伦电影理论片6080| 国产真实乱freesex| 国产激情偷乱视频一区二区| 国产男靠女视频免费网站| 噜噜噜噜噜久久久久久91| 一级黄片播放器| 欧美高清成人免费视频www| 亚洲精品亚洲一区二区| a级毛片免费高清观看在线播放| 国产人妻一区二区三区在| 精品久久久久久久久久免费视频| 欧美一区二区精品小视频在线| 精品久久久久久久久av| 国产69精品久久久久777片| 搡老熟女国产l中国老女人| 国产精品福利在线免费观看| 免费看美女性在线毛片视频| 亚洲图色成人| 国产高清不卡午夜福利| 99在线人妻在线中文字幕| av女优亚洲男人天堂| av专区在线播放| 又粗又爽又猛毛片免费看| a级毛片免费高清观看在线播放| 少妇人妻精品综合一区二区 | 欧美丝袜亚洲另类 | 亚洲五月天丁香| 久久久久久久久久久丰满 | 观看美女的网站| 欧美3d第一页| 亚洲性久久影院| 身体一侧抽搐| 美女大奶头视频| 日韩,欧美,国产一区二区三区 | 日本黄大片高清| 日韩欧美精品v在线| 九九热线精品视视频播放| 男女之事视频高清在线观看| 一本久久中文字幕| 最新在线观看一区二区三区| 精品久久久久久成人av| 国产在线精品亚洲第一网站| 亚洲av中文字字幕乱码综合| 网址你懂的国产日韩在线| 亚洲av中文av极速乱 | 国产高清三级在线| 久久精品国产亚洲av涩爱 | 日韩,欧美,国产一区二区三区 | av天堂在线播放| 少妇人妻一区二区三区视频| 婷婷精品国产亚洲av在线| 国产免费av片在线观看野外av| 欧美性猛交╳xxx乱大交人| 午夜老司机福利剧场| 夜夜夜夜夜久久久久| 欧美极品一区二区三区四区| 在线看三级毛片| 欧美日韩亚洲国产一区二区在线观看| 91精品国产九色| 午夜视频国产福利| 99视频精品全部免费 在线| 亚洲美女黄片视频| 麻豆国产97在线/欧美| www.www免费av| 国产v大片淫在线免费观看| 久久精品国产亚洲av天美| 动漫黄色视频在线观看| 男女边吃奶边做爰视频| 精品久久久久久成人av| 亚洲国产高清在线一区二区三| 欧美精品国产亚洲| 久久久久性生活片| 婷婷精品国产亚洲av| 美女高潮喷水抽搐中文字幕| 国产精品美女特级片免费视频播放器| 中文资源天堂在线| 他把我摸到了高潮在线观看| 国内精品久久久久久久电影| 国产高清不卡午夜福利| 国产一区二区在线av高清观看| 免费在线观看成人毛片| 国产高清不卡午夜福利| 国产精品精品国产色婷婷| 午夜福利成人在线免费观看| 在线天堂最新版资源| 麻豆国产97在线/欧美| 好男人在线观看高清免费视频| 免费av观看视频| 亚洲精品成人久久久久久| 毛片一级片免费看久久久久 | 黄片wwwwww| 欧美成人一区二区免费高清观看| 久久久久久久亚洲中文字幕| 亚洲中文字幕日韩| 亚洲无线在线观看| 级片在线观看| 亚洲美女黄片视频| 亚洲va在线va天堂va国产| 免费在线观看日本一区| 在线观看一区二区三区| 日韩亚洲欧美综合| 波多野结衣巨乳人妻| 成人三级黄色视频| 欧美xxxx黑人xx丫x性爽| 啦啦啦观看免费观看视频高清| 日日啪夜夜撸| 欧美黑人巨大hd| 欧美一级a爱片免费观看看| 日本五十路高清| 夜夜爽天天搞| 可以在线观看毛片的网站| 日韩欧美精品v在线| 久久久久国内视频| 老司机深夜福利视频在线观看| 国产蜜桃级精品一区二区三区| 国产人妻一区二区三区在| 欧美日本视频| 亚洲综合色惰| 老司机午夜福利在线观看视频| 99视频精品全部免费 在线| 久久久久久大精品| 国产av一区在线观看免费| 日韩人妻高清精品专区| 99riav亚洲国产免费| 中文字幕高清在线视频| 99久久中文字幕三级久久日本| 亚洲人成伊人成综合网2020| 成人特级黄色片久久久久久久| 黄色视频,在线免费观看| 色尼玛亚洲综合影院| 老熟妇仑乱视频hdxx| 午夜亚洲福利在线播放| 真实男女啪啪啪动态图| 在线观看一区二区三区| 欧美色欧美亚洲另类二区| 波野结衣二区三区在线| 欧美性猛交黑人性爽| 国产精品久久电影中文字幕| 精品人妻偷拍中文字幕| 久久久久国内视频| 两性午夜刺激爽爽歪歪视频在线观看| 九色成人免费人妻av| 特大巨黑吊av在线直播| 日本免费一区二区三区高清不卡| 欧美在线一区亚洲| 免费人成在线观看视频色| 一级a爱片免费观看的视频| 禁无遮挡网站| 免费无遮挡裸体视频| 女生性感内裤真人,穿戴方法视频| 一级av片app| 亚洲中文字幕日韩| 少妇猛男粗大的猛烈进出视频 | 国产又黄又爽又无遮挡在线| 97人妻精品一区二区三区麻豆| 国产精华一区二区三区| 伦理电影大哥的女人| 国国产精品蜜臀av免费| 国产成人a区在线观看| 国产午夜精品久久久久久一区二区三区 | 人妻夜夜爽99麻豆av| 91在线精品国自产拍蜜月| 中文字幕久久专区| 国产私拍福利视频在线观看| 欧美极品一区二区三区四区| 日本与韩国留学比较| 日本一二三区视频观看| 免费无遮挡裸体视频| 九九热线精品视视频播放| 久久久久精品国产欧美久久久| 日本五十路高清| 午夜福利视频1000在线观看| 老熟妇乱子伦视频在线观看| 美女xxoo啪啪120秒动态图| 又黄又爽又刺激的免费视频.| 国产精品福利在线免费观看| 男人和女人高潮做爰伦理| 伊人久久精品亚洲午夜| 成年女人永久免费观看视频| 精品一区二区三区av网在线观看| 亚洲综合色惰| 老司机午夜福利在线观看视频| 91久久精品电影网| 俺也久久电影网| 特级一级黄色大片| 中文字幕熟女人妻在线| 最近最新中文字幕大全电影3| 亚洲国产精品sss在线观看| 亚洲av免费高清在线观看| 又黄又爽又免费观看的视频| 精品久久国产蜜桃| 国产又黄又爽又无遮挡在线| eeuss影院久久| 精品人妻熟女av久视频| 在线a可以看的网站| 最近视频中文字幕2019在线8| 国产aⅴ精品一区二区三区波| 亚洲自拍偷在线| 99精品久久久久人妻精品| 网址你懂的国产日韩在线| 久久久精品欧美日韩精品| 国产在线精品亚洲第一网站| 亚洲av.av天堂| 成人鲁丝片一二三区免费| 人妻夜夜爽99麻豆av| 男女视频在线观看网站免费| 两性午夜刺激爽爽歪歪视频在线观看| 听说在线观看完整版免费高清| 男女那种视频在线观看| 国产免费av片在线观看野外av| 性欧美人与动物交配| 国内少妇人妻偷人精品xxx网站| 日韩欧美精品免费久久| 白带黄色成豆腐渣| 一夜夜www| 美女被艹到高潮喷水动态| 久久久久久久久大av| 91麻豆av在线| 亚洲国产精品sss在线观看| 国产美女午夜福利| 欧美一区二区精品小视频在线| 一个人观看的视频www高清免费观看| 精品人妻一区二区三区麻豆 | 久久99热这里只有精品18| 丰满乱子伦码专区| 国产亚洲欧美98| 成人高潮视频无遮挡免费网站| 2021天堂中文幕一二区在线观| 欧美一区二区亚洲| 午夜久久久久精精品| 国产av在哪里看| 禁无遮挡网站| 18+在线观看网站| 97碰自拍视频| 99国产精品一区二区蜜桃av| 啦啦啦韩国在线观看视频| 18禁黄网站禁片免费观看直播| 免费观看人在逋| 成人亚洲精品av一区二区| 三级国产精品欧美在线观看| 床上黄色一级片| 婷婷丁香在线五月| 成人国产一区最新在线观看| 国产精品免费一区二区三区在线| 干丝袜人妻中文字幕| 夜夜看夜夜爽夜夜摸| 九色成人免费人妻av| а√天堂www在线а√下载| 麻豆av噜噜一区二区三区| 特级一级黄色大片| 五月玫瑰六月丁香| 极品教师在线视频| 12—13女人毛片做爰片一| 有码 亚洲区| 人妻久久中文字幕网| 日本黄色视频三级网站网址| 国产成人福利小说| 一级av片app| 亚洲,欧美,日韩| 久久精品夜夜夜夜夜久久蜜豆| 欧美xxxx黑人xx丫x性爽| 久久久精品大字幕| 欧美日本亚洲视频在线播放| 最近最新免费中文字幕在线| 日韩一区二区视频免费看| 精品人妻视频免费看| videossex国产| 赤兔流量卡办理| 国产主播在线观看一区二区| 99在线视频只有这里精品首页| 亚洲,欧美,日韩| 国产精品免费一区二区三区在线| 在线免费观看不下载黄p国产 | 嫩草影院精品99| 亚洲国产精品久久男人天堂| 中文字幕av成人在线电影| 少妇猛男粗大的猛烈进出视频 | 久久久久久久久久久丰满 | 美女高潮的动态| 欧美又色又爽又黄视频| 久久99热6这里只有精品| 亚洲av中文av极速乱 | 男女下面进入的视频免费午夜| 成人二区视频| 精品久久久久久久久亚洲 | 久久久久久久久久黄片| 精品久久久久久久久久免费视频| 国产男人的电影天堂91| 中文字幕久久专区| 精品久久国产蜜桃| 免费av观看视频| 91久久精品国产一区二区三区| 99久久精品一区二区三区| 少妇的逼好多水| 亚洲在线自拍视频| 亚洲综合色惰| 久久久国产成人精品二区| 国产高清视频在线播放一区| 美女 人体艺术 gogo| 又黄又爽又免费观看的视频| 俄罗斯特黄特色一大片| 99热精品在线国产| 国产精品av视频在线免费观看| 国内精品久久久久久久电影| 日本成人三级电影网站| 色综合站精品国产| 久久人妻av系列| 最好的美女福利视频网| 国产成人影院久久av| 亚洲av二区三区四区| 乱人视频在线观看| 啦啦啦韩国在线观看视频| 又粗又爽又猛毛片免费看| 最近最新免费中文字幕在线| 亚洲精品乱码久久久v下载方式| 国产一区二区三区视频了| 久久久久久久午夜电影| 直男gayav资源| 亚洲成人中文字幕在线播放| 99精品久久久久人妻精品| 国产老妇女一区| 日日干狠狠操夜夜爽| 欧美日本视频| 亚洲av日韩精品久久久久久密| 欧美一级a爱片免费观看看| 我的女老师完整版在线观看| 在线看三级毛片| 日本免费一区二区三区高清不卡| 久久天躁狠狠躁夜夜2o2o| 欧美绝顶高潮抽搐喷水| 国产精品爽爽va在线观看网站| 成人综合一区亚洲| 九九久久精品国产亚洲av麻豆| 亚洲国产色片| 国产精品亚洲一级av第二区| 免费人成视频x8x8入口观看| 欧美+日韩+精品| 久久亚洲精品不卡| 国产麻豆成人av免费视频| 麻豆久久精品国产亚洲av| 亚洲精品久久国产高清桃花| 国语自产精品视频在线第100页| 日本爱情动作片www.在线观看 | 久久人妻av系列| 一进一出好大好爽视频| 国产精品久久电影中文字幕| 精品久久久久久久久亚洲 | 亚洲精品日韩av片在线观看| aaaaa片日本免费| 身体一侧抽搐| 成人午夜高清在线视频| 国产精品野战在线观看| 我的女老师完整版在线观看| 成年女人毛片免费观看观看9| 人妻夜夜爽99麻豆av| 免费搜索国产男女视频| 在线观看舔阴道视频| 亚洲内射少妇av| 老女人水多毛片| av国产免费在线观看| xxxwww97欧美| 免费在线观看影片大全网站| 成人无遮挡网站| 成人永久免费在线观看视频| 国产精品三级大全| 级片在线观看| 日韩人妻高清精品专区| 2021天堂中文幕一二区在线观| 97热精品久久久久久| 国产精品国产高清国产av| 国语自产精品视频在线第100页| 嫩草影院新地址| 欧美+日韩+精品| 国产一区二区三区在线臀色熟女| 国产在线男女| 天堂√8在线中文| 人妻丰满熟妇av一区二区三区| 精品乱码久久久久久99久播| av黄色大香蕉| 亚洲国产精品sss在线观看| x7x7x7水蜜桃| 97碰自拍视频| 日韩亚洲欧美综合| 动漫黄色视频在线观看| 天天躁日日操中文字幕| 亚洲国产精品合色在线| 黄色视频,在线免费观看| 亚洲av二区三区四区| 久久人妻av系列| 久久久午夜欧美精品| 男人和女人高潮做爰伦理| 国产精品嫩草影院av在线观看 | 日日啪夜夜撸| 18禁黄网站禁片午夜丰满| 两个人的视频大全免费| 99久久精品国产国产毛片| 变态另类成人亚洲欧美熟女| 丝袜美腿在线中文| 国产精品乱码一区二三区的特点| 18禁在线播放成人免费| 亚洲午夜理论影院| 国产精品三级大全| 美女被艹到高潮喷水动态| 免费高清视频大片| 真实男女啪啪啪动态图| 日日撸夜夜添| 精品人妻一区二区三区麻豆 | 国产一区二区三区av在线 | 狂野欧美激情性xxxx在线观看| 美女被艹到高潮喷水动态| АⅤ资源中文在线天堂| 国产色婷婷99| 国产男人的电影天堂91| 午夜精品一区二区三区免费看| 久久久久久久久久黄片| 老女人水多毛片| 美女高潮喷水抽搐中文字幕| 真实男女啪啪啪动态图| 久久久久久久久大av| 哪里可以看免费的av片| 国产av一区在线观看免费| 精品一区二区免费观看| 女人被狂操c到高潮| 神马国产精品三级电影在线观看| 久9热在线精品视频| 成人特级黄色片久久久久久久| 久久久久久久久久黄片| 欧美xxxx黑人xx丫x性爽| 一个人看的www免费观看视频| 一夜夜www| 看十八女毛片水多多多| 欧美xxxx黑人xx丫x性爽| 久久精品91蜜桃| 国产真实乱freesex| 国产女主播在线喷水免费视频网站 | 国产精品久久久久久久电影| 日本一二三区视频观看| 999久久久精品免费观看国产| 亚洲av免费高清在线观看| 国产精品一区二区性色av| 好男人在线观看高清免费视频| 精品一区二区三区人妻视频| 99精品久久久久人妻精品| 男女啪啪激烈高潮av片| 亚洲欧美激情综合另类| 人人妻人人澡欧美一区二区| 免费看日本二区| 97人妻精品一区二区三区麻豆| 女的被弄到高潮叫床怎么办 | 亚洲男人的天堂狠狠| 久久亚洲精品不卡| 日本在线视频免费播放| 亚洲av.av天堂| 最近最新中文字幕大全电影3| 精品乱码久久久久久99久播| 国产在视频线在精品| 久久精品久久久久久噜噜老黄 | 在线播放无遮挡| 淫秽高清视频在线观看| 亚洲av不卡在线观看| 在线国产一区二区在线| 女生性感内裤真人,穿戴方法视频| 99久久精品一区二区三区| 久久久久久大精品| 久久久久免费精品人妻一区二区| 在线观看美女被高潮喷水网站| 不卡视频在线观看欧美| 欧美在线一区亚洲| 三级男女做爰猛烈吃奶摸视频| 亚洲va在线va天堂va国产| 欧美日韩黄片免| 精品人妻熟女av久视频| 人人妻,人人澡人人爽秒播| 欧美3d第一页| 少妇丰满av| 亚洲第一电影网av| 美女黄网站色视频| 欧美最黄视频在线播放免费| 九九热线精品视视频播放| 亚洲性久久影院| 99国产精品一区二区蜜桃av| 一级黄色大片毛片| 国产精华一区二区三区| 欧美一区二区精品小视频在线| 韩国av在线不卡| av国产免费在线观看| 亚洲第一电影网av| 欧美精品国产亚洲| 久久久久久久久中文| av在线天堂中文字幕| 99精品在免费线老司机午夜| 伦理电影大哥的女人| 最近中文字幕高清免费大全6 | 免费看av在线观看网站| 日韩大尺度精品在线看网址| 国产精品久久久久久精品电影| 精品午夜福利视频在线观看一区| av国产免费在线观看| 日本三级黄在线观看| 国产私拍福利视频在线观看| 国产aⅴ精品一区二区三区波| 99热只有精品国产| 中文字幕久久专区| 国产精品爽爽va在线观看网站| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲精华国产精华精| 亚洲成人久久性| 亚洲一区高清亚洲精品| 国产蜜桃级精品一区二区三区| 国内精品久久久久精免费| 国产精品自产拍在线观看55亚洲| 欧美日韩瑟瑟在线播放| 国产精华一区二区三区| 成人国产一区最新在线观看| 午夜福利成人在线免费观看| 99久久中文字幕三级久久日本| 国产在线男女| 久久久久久久精品吃奶| 国产一区二区三区视频了| 免费在线观看成人毛片| 国产高清激情床上av| 日本一本二区三区精品| 狂野欧美激情性xxxx在线观看| 久久久久国产精品人妻aⅴ院| 91久久精品国产一区二区成人| 欧美最新免费一区二区三区| 春色校园在线视频观看| 小说图片视频综合网站| eeuss影院久久| 在线播放国产精品三级| 国产亚洲91精品色在线| 18+在线观看网站| 日韩av在线大香蕉| 国内精品美女久久久久久| xxxwww97欧美| 黄色女人牲交| 99久久精品一区二区三区| а√天堂www在线а√下载| 在线天堂最新版资源| 国产中年淑女户外野战色| 久久精品久久久久久噜噜老黄 | 国语自产精品视频在线第100页| 午夜福利视频1000在线观看| 久久精品人妻少妇| 日本黄色片子视频| 国产午夜精品久久久久久一区二区三区 | 精品久久久久久久久久免费视频| 99在线人妻在线中文字幕| 亚洲午夜理论影院| 亚洲五月天丁香| 亚洲专区中文字幕在线| 欧美极品一区二区三区四区| 国产亚洲91精品色在线| 国产精品99久久久久久久久| 亚洲欧美清纯卡通|