• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    寬帶隙p區(qū)金屬氧化物/氫氧化物對苯的光催化降解

    2010-03-06 04:44:30李朝暉付賢智
    物理化學(xué)學(xué)報(bào) 2010年4期
    關(guān)鍵詞:省部氫氧化物福州大學(xué)

    李朝暉 劉 平 付賢智

    (福州大學(xué)光催化研究所,省部共建國家重點(diǎn)實(shí)驗(yàn)室培育基地,福州 350002)

    Benzene has severe health and environmental consequences due to its high toxicity and confirmed carcinogenicity[1-3].A recent study has shown that a long-term exposure to a very low levels (volume fraction less than 1×10-6)of benzene can reduce blood cell counts in human being.Workers exposed to benzene fumes, runintoanincreasedriskofleukemiaandbone-marrowtoxicity[4]. Benzene is also ubiquitous as an air pollutant from cigarette smoke,gasoline vapors,paint,industrial exhaust gases,and automobile emissions.The benzene pollution has already become one of the main environmental problems facing humanity. Therefore,the development of an efficient,cost-effective and environmentally sustainable technology in treating benzene and its derivatives is indispensable.

    Semiconductor photocatalysis for environmental remediation has received increasingly interest since it is environmentally friendly,capable of performing at room temperature and can treat organic pollutants at extremely low concentrations[5-13].The photocatalytic reactions occur over the semiconductor photocatalysts are initiated by the photo-generated electrons and holes that are captured subsequently by the surface adsorbed species. The capture of photo-generated charge carriers induce the formation of very reactive radicals such as O-·20,O·2,HO·2,HO·and so on,leading to the final decomposition of organic pollutants[6].

    Due to its high stability,non-toxicity,cheapness as well as its appropriate electronic band positions capable of oxidizing most organic pollutants,titanium dioxide(TiO2)has become the most widely used semiconductor photocatalyst in heterogeneous photocatalysis.Although TiO2-based photocatalytic oxidation(PCO) has been established to be one of the most promising technologies for the environment remediation and has been successful in treating a wide variety of volatile organic compounds(VOCs), PCO meets with limited success in the treatment of aromatic compounds like benzene due to the deactivation of TiO2resulted from the accumulation of the stable reaction intermediates on the surface[14-15].Loading of noble metals like Pt,Pd,or Rh over TiO2has been used to enhance its performance for photocatalytic oxidation of benzene in gas phase.However,these noble-metalloaded TiO2photocatalysts suffer from the problem of stability due to the oxidation of the noble metal nanoparticles on the surface of TiO2[16-18].Adding sufficient amount of H2O in the reaction feed gas can improve the efficiency of TiO2photocatalyst toward the complete oxidization of benzene to a certain degree[19-20].Our recent studies have also demonstrated that the introduction of magnetic field[21]or H2[22-23]into the photochemical reaction system can greatly improve the efficiency of Pt/TiO2for the photodecomposition of benzene at room temperature.However,it is not easy to realize such a complicated hybrid system for photocatalytic air purification.Therefore the development of photocatalysts with high performance for benzene degradation is indispensable in view of the application of photocatalysis for benzene treatment,yet it remains a great challenge till now.

    Recently,a series of wide band gap p-block metal oxides/hydroxides with superior performance for photocatalytic degradation of benzene have been developed in our institute[24-29].These wide band gap p-block metal oxides/hydroxides are a series of promising photocatalysts for benzene degradation.The preparations of these p-block metal oxides/hydroxides,their photocatalytic activity and mechanism for benzene degradation as well as the structure-activity relationship are summarized in this review.

    1 Preparations and photocatalytic activity for benzene degradation

    1.1 Binary p-block metal oxides/hydroxides β-Ga2O3, In(OH)3and InOOH

    Porous binary gallium oxide β-Ga2O3can be prepared via the hydrolysis of gallium nitrate in ammonia solution followed by a heat treatment at 600℃[24].The XRD pattern of the as-prepared β-Ga2O3is shown in Fig.1.The as-prepared β-Ga2O3exhibits stepwise adsorption and desorption(type IV isotherm)in the N2-sorption isotherm,indicative of a porous solid.The BET specific surface area is 80 m2·g-1and the average pore size is 7.3 nm with a narrow distribution of pore size for the as-prepared β-Ga2O3.With a band gap of 4.7 eV,β-Ga2O3can be excited with 254 nm UV irradiation.The as-prepared β-Ga2O3is highly photoactive for mineralizing benzene and its derivatives like toluene and ethylbenzene to CO2under 254 nm UV irradiation.For an initial benzene concentration of 450 μL·L-1,β-Ga2O3shows a high conversion rate of 42%and can maintain its reactivity during the prolonged operation of 80 h.In the meantime about 1070 μL·L-1of CO2can be produced over β-Ga2O3,indicating that 95%of benzene converted has been mineralized to CO2over β-Ga2O3(Fig.2)[24].

    Binary p-block metal hydroxide In(OH)3also shows high photocatalytic performance for benzene degradation under 254 nm UV irradiation.Porous In(OH)3can be prepared by hydrolysis of In(NO3)3in an aqueous solution of ammonium followed by a thermal treatment at 120℃.The BET specific surface area for the as-prepared In(OH)3is 120 m2·g-1.For an initial benzene concentration of 1300 μL·L-1,the conversion of benzene and the mineralization rate over In(OH)3can maintain at 25%and 40%,respectively,even after 30 h photocatalytic reaction(Fig.3)[25].

    Fig.1 X-ray diffraction(XRD)pattern of the as-synthesized Ga2O3sample[24]

    Fig.2 (a)Conversion of C6H6and(b)the amount of produced CO2over the Ga2O3as a function of reaction time(t)with TiO2(P25)as a reference[24]

    Oxyhydroxide InOOH can be prepared via a facile solvothermal process from In(NO3)3in a water/ethylenediamine(1∶6)solution.The XRD pattern of the as-prepared InOOH is shown in Fig.4.The average particle size is about 20 nm and the BET specific surface area is about 55 m2·g-1for the as-prepared InOOH. With a band gap energy of 3.7 eV,InOOH can be excited by 300 nm UV irradiation.For an initial benzene concentration of 260 μL·L-1,the conversion of benzene over InOOH can reach 7.5%.In addition,the amount of the produced CO2is about 50 μL·L-1,corresponding to a benzene mineralization ratio of more than 50%.The photocatalytic activity can be maintained for more than 30 h,during which no noticeable deactivation is observed(Fig.5)[26].

    1.2 Ternary p-block metal semiconductors Sr2Sb2O7, ZnGa2O4and Zn2GeO4

    Besides the binary p-block metal oxides/hydroxides,the photocatalytic activity for benzene degradation can also be found over ternary p-block metal oxides with more diversified composition and structure.

    Nanocrystalline Sr2Sb2O7prepared via a facile hydrothermal method is found to show high activity for benzene degradation. AlthoughSr2Sb2O7preparedviaaconventionalsolidstatereaction method(Sr2Sb2O7(SSR))has been reported to be a photocatalyst for water splitting[30]and the degradation of organic dyes[31],it shows very low activity for benzene degradation due to its low specific surface area.To extend its application for photocatalytic degradation of benzene,we developed for the first time a facile method in the preparation of nanocrystalline Sr2Sb2O7directly from commercial Sb2O5.The XRD patterns of the obtained products under different pH values are shown in Fig.6.It is found that the reaction pH plays an important role in the final product and only under highly basic condition can nanocrystalline Sr2Sb2O7be obtained.The hydrothermal prepared nanocrystalline Sr2Sb2O7consists entirely of small particles with average size at around 6 nm and has a relatively large BET specific surface area of about 24.8 m2·g-1,much higher than Sr2Sb2O7prepared via the solid state reaction(1.4 m2·g-1).The N2-sorption isotherm indicates that the as-prepared Sr2Sb2O7is a mesoporous solid with a narrow distribution of pore size at ca 4.0 nm.The as-prepared nanocrystalline Sr2Sb2O7show high photocatalytic performance for the degradation of benzene.For an initial ben-zene concentration of 220 μL·L-1,the conversion of benzene is about 24%and more than 160 μL·L-1of CO2is produced in the meantime,corresponding to a high mineralization ratio of about 50%.Both the conversion ratio and the mineral-ization ratio are higher than those over solid state prepared Sr2Sb2O7(4%,30 μL· L-1).The high conversion and mineralization ratio can be maintained for more than 40 h,during which no obvious deactivation is observed(Fig.7)[27].

    Fig.3 Photocatalytic oxidation conversion of henzene(A) and production of CO2(B)over the catalyst in dry O2[25](a)In(OH)3,(b)TiO2;curve(c)was a control experiment with In(OH)3without irradiation,and(d)was a control experiment without In(OH)3under 254 nm irradiation;the initial benzene volume fraction:1300 μL·L-1

    Fig.4 XRD pattern of the as-prepared InOOH[26]

    Fig.5 (A)Conversion of benzene and(B)the amount of produced CO2over InOOH and P25 for decomposing benzene as a function of reaction time under UV illumination(λ=300 nm)[26]

    Fig.6 XRD pattern of the samples prepared at 180℃for 48 h with different pH values[27](●)Sr1.36Sb2O6,(*)SrSb2O6,(▼)Sr2Sb2O7

    Fig.7 Conversion of C6H6and the amount of produced CO2 over the Sr2Sb2O7(180℃,48 h,[OH-]=2 mol·L-1)as a function of reaction time,with TiO2(P25)and Sr2Sb2O7(SSR)as references[27](■)(●)(▲)the conversion of C6H6over the Sr2Sb2O7,TiO2,and Sr2Sb2O7(SSR) respectively;(□)(○)(Δ)the amount of produced CO2over the Sr2Sb2O7,TiO2, and Sr2Sb2O7(SSR)respectively;Sr2Sb2O7(SSR)refers to the sample prepared via a solid state reaction.

    Nanocrystalline ZnGa2O4with a specific surface area of about 36.7 m2·g-1can be prepared via a co-precipitation method from Zn(NO3)2and Ga(NO3)3followed by a heat treatment at 600℃. The XRD pattern of the as-prepared ZnGa2O4is shown Fig.8. For an initial benzene concentration of 220 μL·L-1,the conversion of benzene over the thus-prepared ZnGa2O4is about 12.0% and more than 100 μL·L-1of CO2can be produced,corresponding to a mineralization ratio of about 63%(Fig.9)[28].With an aim at enhancing its activity,ZnGa2O4with an extremely high specific surface area of 201 m2·g-1has been prepared from Zn(NO3)2and Ga(NO3)3via a hydrothermal treatment at 80℃.The increase of the specific surface area leads to a significant enhancement of the photocatalytic activity for benzene degradation.The conversion ratio of benzene can be increased to as high as 41%and the produced CO2can reach 500 μL·L-1for an initial benzene concentration of 300 μL·L-1,which is much higher than Pt/TiO2(Fig.10)[32].

    Another ternary p-block metal oxides with high photocatalytic performance for benzene degradation is Zn2GeO4.Nanorods of Zn2GeO4can be prepared from GeO2and Zn(Ac)2under the assistance of surfactant cetyltrimethylammonium bromide(CTAB) via a facile hydrothermal method and the XRD pattern is shown in Fig.11.The SEM images reveal that the as-prepared sample contains a large quantity of nanorods 20-50 nm in width and 150-600nminlength(Fig.12).Under254nmUVirradiations,for an initial benzene concentration of 300 μL·L-1,the benzene conversion and CO2concentration over the as-prepared Zn2GeO4nanorods can be maintained steady at ca 21%and ca 280 μL·L-1, respectively,which corresponding to a high mineralization ratio of ca 75%(Fig.13)[29].

    Fig.8 XRD pattern of the nanocrystalline ZnGa2O4[28]

    Fig.9 Conversion of C6H6and the amount of produced CO2 over the nanocrystalline ZnGa2O4as a function of reaction time,with TiO2(P25)as references[28](▲)(●)the conversion of C6H6over the ZnGa2O4and TiO2respectively, (Δ)(○)the amount of produced CO2over the ZnGa2O4and TiO2respectively

    2 Structure-activity relationship

    Fig.10 Photocatalytic conversion of benzene(a)and the amount of produced CO2(b)over ZnGa2O4hydrothermal prepared under 80,120,160,200℃,TiO2and Pt/TiO2[32]

    Fig.11 XRD patterns of Zn2GeO4nanorods and bulk Zn2GeO4particles[29]

    The band gap,crystallinity,and the specific surface area are important factors that can influence the photocatalytic activity of the semiconductor photocatalysts.However,the activity of some p-block metal oxide photocatalysts can not be simply explained in terms of the above factors.A study on three crystalline phase of Ga2O3reveals that the intrinsic crystallographic structure,especially the geometric structure of the M—O polyhedron(M=pblock metal)can influence the photocatalytic activity of these wide band gap semiconductors as well[33].The crystal structure of α-Ga2O3and β-Ga2O3(Fig.14)and the calculations using the crystallographic data regarding the atom positions reveal that α-Ga2O3is constituted only by distorted octahedron GaO6with a dipole moment of 14.0×10-30C·m,while β-Ga2O3contains both distorted GaO6octahedron(7.3×10-30C·m)and GaO4tetrahedron(2.3×10-30C·m).It is believed that the dipole moment induced by the distorted polyhedron can create a local electric field inside the distorted polyhedron,which can promote the separation of the photo-generated electron-hole pairs[34].Although both α-Ga2O3and β-Ga2O3contain distorted polyhedron in their structure,α-Ga2O3contains only distorted octahedron,while β-Ga2O3has both heavily distorted octahedron and tetrahedron in its structure.The coexistence of two different kinds of electric fields might have synergic effects in promoting the separation of photoexcited electron-hole pairs.Therefore,α-Ga2O3shows a lower photocatalytic activity than β-Ga2O3(Table 1).This promo-moting effect is confirmed by the time-resolved photoluminescence(PL)measurements.The PL measurements reveal that the lifetime of the photogenerated electron-hole pairs on β-Ga2O3is longer than that on α-Ga2O3(Fig.15 and Table 2).The existence of the relationship between the geometric structure and the photocatalytic activity among these semiconductor photocatalysts provides some guideline in our development of new wide band gap p-block metal semiconductor photocatalysts.

    Fig.12 Structural characterization and general morphologies of Zn2GeO4nanorods[29](a)SEM image,(b)TEM image,(c)TEM image of a Zn2GeO4nanorod, (d)HRTEM image of area e1 in(c),(e)enlarged image of area f1 in(d), (f)SAED pattern recorded along the zone axis[110]of the Zn2GeO4nanorods

    Fig.13 (a)Photocatalytic conversion of benzene and(b)amount of produced CO2in the stream over the Zn2GeO4nanorods against the reaction time,with TiO2(Degussa P25)as a reference catalyst[29]

    Fig.14 Three-dimensional crystal structures of α-Ga2O3and β-Ga2O3with a unit cell[33]

    3 Mechanism for benzene degradation

    All the above mentioned wide band gap p-block metal oxides/ hydroxides show high stability for benzene degradation,while TiO2deactivate very quickly.Their obvious different behavior implies that these p-block metal oxides/hydroxides and TiO2may have different routes in the photocatalytic degradation of benzene.

    Generally,it is believed that the degradation of benzene over TiO2under dry air proceeds preferentially via a direct-hole-oxidation route.Such a direct-hole-oxidation process would pro-duce benzene cationic radical,which react further with an incoming benzene molecule,leading to the polymerization of benzene on the catalyst surface and the deactivation of TiO2during the degradation of benzene[35].The deposition of the stable intermediates can be confirmed by the color change of TiO2from the original white to dark brown after the photocatalytic reaction.In addition to this,the FT-IR spectrum of used TiO2indicates the formation of the stable intermediates by showing three new peaks at 1483,1686,and 1711 cm-1(Fig.16).On the contrary,no color change has been observed after photocatalytic benzene degradation for the p-block metal oxides/hydroxides, like InOOH.Besides this,no new peaks appear on the FT-IR spectrum over these p-block metal oxides/hydroxides,indicating that no stable intermediates have been deposited on the surface of these photocatalysts(Fig.16).All these phenomena imply that the degradation of benzene over these p-block metal oxides/hydroxides may proceed preferentially via the HO·radical route.Photocatalysts proceed via the HO·radical degradation route may have long term stability since the HO·radical route could significantly suppress the polymerization of benzene on the catalyst surface.

    Table 1 Hydrocarbon removal rate and CO2production rate over different photocatalysts[33]

    Fig.15 Photoluminescence decay curves of the gallium oxide catalysts[33]

    Table 2 Lifetimes(τ)and relative amplitudes of timeresolved photoluminescence of the gallium oxide catalysts at 77 K[33]

    The generation of HO·radicals over these p-block metal oxides/hydroxides is credible since they all have proper band structure.The calculations of their band position based on the following equation:ECB=X-Ec-0.5Egis-0.4 V(vs NHE)[36]reveal that the edge of their conduction band are all negative than that of E°(O2/O-·20)(-0.33 V vs NHE),while the edge of their valence band(EVB)are positive than that of E°(HO·/OH-)(2.38 V vs NHE)[37].These suggest that the photogenerated electrons on these p-block metal oxides/hydroxides can reduce O2to give O-·20, while the photogenerated holes can oxidize OH-to give HO· when illuminated.The ESR spin-trap with DMPO technique confirmed the production of both O-·20and HO·over all these pblock metal oxides/hydroxides.In addition to this,it is observed that the intensities of the signal corresponding to the DMPOHO·radical produced over the p-block metal oxides/hydroxides (for example,InOOH)are much stronger than those over P25 (Fig.17).This indicates that under similar condition,more HO· radicals can be produced over irradiated p-block metal oxides/ hydroxides than over P25[26].This again confirms the above assumption that the degradation of benzene over p-block metal oxides/hydroxides may proceeds preferentially via the HO·radical route,while that over P25 may proceed via the direct-hole oxidation route.

    Fig.16 FT-IR spectra of used and fresh P25 and InOOH(inset)[26]

    Fig.17 DMPO spin-trapping ESR spectra(a)in aqueous dispersion for DMPO-·OH and(b)in methanol dispersion for DMPO-O-·20[26]

    The degradation preferentially via the HO·radical route over these p-block metal oxides/hydroxides can be attributed to their peculiar structure.The intrinsic wide band gap of these p-block metal oxides/hydroxides endow the photogenerated holes with strong oxidation ability and make them thermodynamically more favorable to react with chemi-adsorbed H2O or the surface hydroxyl group to produce HO·radicals.On the other hand,the highly dispersive conduction band due to the hybridizations of the orbitals usually observed over these p-block metal oxides/ hydroxides can promote the mobility of the photoexcited electrons,leading to enhanced charge separation.All these characteristics are favorable for the generation of the HO·radicals over these p-block metal oxides/hydroxides when illuminated. Therefore the degradation of benzene over these p-block metal oxides/hydroxides can proceed preferentially via HO·radical route and hence a high stability is observed.

    The possible benzene degradation mechanism over these wide band gap p-block metal oxides/hydroxides is illustrated in Scheme 1.When illuminated,these p-block metal oxides/hydroxides can be efficiently excited to create electron-hole pairs. The photogenerated electrons and holes are long-lived enough to react with adsorbed H2O or surface hydroxyl group to produce HO·radicals.Since the water content in the feed gas is maintained at such a low level(<5 μL·L-1),H2O involved in the genera tion of the HO·radicals must come from the photocatalytic reaction itself.The photocatalytic degradation of benzene over these p-block metal oxides/hydroxides can proceed preferentially via the HO·radical.In this way,no polymerized intermedistes can be deposited and these p-block metal oxides/ hydroxides can maintain a clean surface and a higher stability in the photodegradation of benzene.

    Scheme 1 Possible mechanism of the photocatalytic degradation of benzene over wide band gap p-block metal oxides/hydroxides

    4 Conclusions and outlook

    Wide band gap p-block metal oxides/hydroxides can be a promising new generation of photocatalysts for benzene degradation.Their superior photocatalytic performance for benzene degradation may be attributed to their peculiar structures and their mechanism different from TiO2in the degradation of benzene.A limitation for the application of these wide band gap pblock metal oxides/hydroxides in the practical environmental remediation is their wide band gap since they can only adsorb the UV energy,which account for only ca 4%of the solar energy. Since the ultimate goal of photocatalysis is to use the solar light, the application of the photocatalysis of these wide band gap semiconductors in the visible light region is important.The extension of the adsorption of these wide band gap semiconductors to the visible light region is still going on in our laboratory.

    1 Hudak,A.;Ungvary,G.Toxicology,1978,11:55

    2 Caprino,L.;Togna,G.I.Environ.Health Perspect.,1998,106: 115

    3 Bird,M.G.;Greim,H.;Snyder,R.;Rice,J.M.Chem.-Biol. Interact.,2005,153:1

    4 Lan,Q.;Zhang,L.;Li,G.;Vermeulen,R.V.;Weinberg,R.S.; Dosemeci,M.;Rappaport,S.M.;Shen,M.;Alter,B.P.;Wu,Y.; Kopp,W.;Waidyanatha,S.;Rabkin,C.;Guo,W.;Chanock,S.; Hayes,R.B.;Linet,M.;Kim,S.;Yin,S.;Rothman,N.;Smith,M. T.Science,2004,306:1774

    5 Mills,A.;Davies,R.H.;Worsley,D.Chem.Soc.Rev.,1993,22: 417

    6 Hoffman,M.R.;Martin,S.T.;Choi,W.;Bahnemann,D.W. Chem.Rev.,1995,95:69

    7 Fujishima,A.;Rao,T.N.;Tryk,D.A.J.Photochem.Photobiol.C, 2000,1:1

    8 Linsebigler,L.;Lu,G.;Yates Jr.,J.T.Chem.Rev.,1995,95:735

    9 Fujishima,A.;Hashimoto,K.;Watanabe,T.Photocatalysis fundamentals and applications.1st ed.Tokyo:BKC,1999

    10 Kaneko,M.;Okura,I.Photocatalysis,science and technology, Berlin:Springer,2002

    11 Serpone,N.;Pelizzetti,E.Photocatalysis:fundamentals and applications.New York:Wiley,1989

    12 Ollis,D.F.;Al-Ekabi,H.Photocatalytic purification and treatment of water and air.Amsterdam:Elsevier,1993

    13 Fox,M.A.;Dulay,M.T.Chem.Rev.,1993,93:341

    14 Mendez-Roman,R.;Cardona-Martinez,N.Catal.Today,1998, 40:353

    15 Martra,G.;Coluccia,S.;Marchese,L.;Augugliaro,V.;Loddo,V.; Palmisano,L.;Schiavello,M.Catal.Today,1999,53:695

    16 Fu,X.Z.;Zeltner,W.A.;Anderson,M.C.Appl.Catal.B: Environ.,1995,6:209

    17 Einaga,H.;Futamura,S.;Ibusuki,T.Environ.Sci.Technol.,2001, 35:1880

    18 Einaga,H.;Futamura,S.;Ibusuki,T.Environ.Sci.Technol.,2004, 38:285

    19 Sitkiewitz,S.;Heller,A.New J.Chem.,1996,20:233

    20 Einaga,H.;Futamura,S.;Ibusuki,T.Phys.Chem.Chem.Phys., 1999,1:4903

    21 Zhang,W.;Wang,X.X.;Fu,X.Z.Chem.Commun.,2003:2196

    22 Chen,Y.L.;Li,D.Z.;Wang,X.C.;Wang,X.X.;Fu,X.Z.Chem. Commun.,2004:2304

    23 Chen,Y.L.;Li,D.Z.;Wang,X.C.;Wang,X.X.;Fu,X.Z.New J. Chem.,2005,29:1514

    24 Hou,Y.D.;Wang,X.C.;Wu,L.;Ding,Z.X.;Fu,X.Z.Environ. Sci.Technol.,2006,40:5799

    25 Yan,T.J.;Long,J.L.;Chen,Y.S.;Wang,X.X.;Li,D.Z.;Fu,X. Z.C.R.Chim.,2008,11:101

    26 Li,Z.H.;Xie,Z.P.;Zhang,Y.F.;Wu,L.;Wang,X.X.;Fu,X.Z. J.Phys.Chem.C,2007,111:18348

    27 Xue,H.;Li,Z.H.;Wu,L.;Ding,Z.X;Wang,X.X.;Fu,X.Z. J.Phys.Chem.C,2008,112:5850

    28 Chen,X.;Xue,H.;Li,Z.H.;Wu,L.;Wang,X.X.;Fu,X.Z. J.Phys.Chem.C,2008,112:20393

    29 Huang,J.H.;Wang,X.C.;Hou,Y.D.;Chen,X.F.;Wu,L.;Fu,X. Z.Environ.Sci.Technol.,2008,42:7387

    30 Sato,J.;Saito,N.;Nishiyama,H.;Inoue,Y.J.Photochem. Photobio.A:Chem.,2002,148:85

    31 Lin,X.P.;Huang,F.Q.;Wang,W.D.;Wang Y.M.;Xia,Y.J.; Shi,J.L.Appl.Catal.A:Gen.,2006,313:218

    32 Zhang,X.;Huang,J.;Ding,K.;Hou,Y.;Wang,X.;Fu,X.Environ. Sci.Technol.,2009,43:5947

    33 Hou,Y.;Wu,L.;Wang,X.;Ding,Z.;Li,Z.;Fu,X.J.Catal., 2007,250:12

    34 Sato,J.;Kobayashi,H.;Inoue,Y.J.Phys.Chem.B,2003,107: 7970

    35 d′Hennezel,O.;Pichat,P.;Ollis,D.F.J.Photochem.Photobiol.A: Chem,1998,118:197

    36 Butler,M.A.;Ginley,D.S.J.Electrochem.Soc.,1978,125:228

    37 Bard,A.J.;Parsons,R.;Jordan,J.Standard potentials in aqueous solution.New York:Marcel Dekker,1985

    猜你喜歡
    省部氫氧化物福州大學(xué)
    福州大學(xué)馬克思主義學(xué)院
    福州大學(xué)繼續(xù)教育學(xué)院
    重型機(jī)械裝備省部共建協(xié)同創(chuàng)新中心簡介
    陜西中藥資源產(chǎn)業(yè)化省部共建協(xié)同創(chuàng)新中心
    黑龍江省人民政府辦公廳關(guān)于印發(fā)黑龍江省合理膳食行動(dòng)省部合作項(xiàng)目實(shí)施方案的通知
    4個(gè)涉煤省部共建協(xié)同創(chuàng)新中心獲認(rèn)定
    中國煤炭(2019年10期)2019-01-19 08:52:17
    福州大學(xué)喜迎建校60周年
    層狀雙氫氧化物處理工業(yè)廢水的研究進(jìn)展
    氫氧化物鹽插層材料的制備和表征
    層狀雙氫氧化物表面負(fù)載TiO2的光催化性能
    人人妻人人看人人澡| 最后的刺客免费高清国语| 成年女人看的毛片在线观看| 国产探花在线观看一区二区| 啦啦啦韩国在线观看视频| 亚洲国产精品国产精品| 亚洲av二区三区四区| 97人妻精品一区二区三区麻豆| 日韩精品有码人妻一区| 一二三四中文在线观看免费高清| 99久久无色码亚洲精品果冻| 国产片特级美女逼逼视频| 国产大屁股一区二区在线视频| av专区在线播放| 国产午夜福利久久久久久| 成人毛片a级毛片在线播放| 免费电影在线观看免费观看| 亚洲精品国产av成人精品| 精品99又大又爽又粗少妇毛片| 特级一级黄色大片| 3wmmmm亚洲av在线观看| 免费搜索国产男女视频| 在线播放国产精品三级| 在线天堂最新版资源| 久久99热这里只有精品18| 91久久精品国产一区二区成人| 亚洲欧美日韩高清专用| 九九爱精品视频在线观看| 少妇的逼水好多| 国产在视频线在精品| av黄色大香蕉| 国产日韩欧美在线精品| 国产又色又爽无遮挡免| 22中文网久久字幕| 久久精品综合一区二区三区| 国产精品国产三级国产专区5o | 色综合亚洲欧美另类图片| 女人十人毛片免费观看3o分钟| 婷婷色av中文字幕| 色综合色国产| 搡女人真爽免费视频火全软件| 亚洲欧美日韩卡通动漫| 色尼玛亚洲综合影院| 女人久久www免费人成看片 | 国产精品野战在线观看| 日韩人妻高清精品专区| 久久久久久久午夜电影| 久久99热6这里只有精品| 亚洲成av人片在线播放无| 亚洲精品自拍成人| 免费观看人在逋| 女人被狂操c到高潮| 欧美日韩国产亚洲二区| 欧美日韩精品成人综合77777| 日本免费a在线| 国产视频内射| 亚洲无线观看免费| 深夜a级毛片| 少妇裸体淫交视频免费看高清| 国产亚洲一区二区精品| 少妇高潮的动态图| 草草在线视频免费看| 色播亚洲综合网| 中文字幕制服av| 国产毛片a区久久久久| 在线观看一区二区三区| 午夜老司机福利剧场| 级片在线观看| 国产成人精品久久久久久| 五月玫瑰六月丁香| 非洲黑人性xxxx精品又粗又长| 国产色婷婷99| 22中文网久久字幕| av在线天堂中文字幕| 色视频www国产| 麻豆一二三区av精品| 中文字幕av成人在线电影| АⅤ资源中文在线天堂| 秋霞在线观看毛片| 日本熟妇午夜| 亚洲欧美成人综合另类久久久 | 天堂中文最新版在线下载 | 91久久精品电影网| 一级毛片久久久久久久久女| 亚洲图色成人| 国产极品精品免费视频能看的| 国产精品人妻久久久影院| 一本一本综合久久| 欧美高清成人免费视频www| 蜜臀久久99精品久久宅男| 乱人视频在线观看| 蜜桃亚洲精品一区二区三区| 人人妻人人澡人人爽人人夜夜 | 久久久久久国产a免费观看| 最近的中文字幕免费完整| 日韩在线高清观看一区二区三区| 国内揄拍国产精品人妻在线| 日本欧美国产在线视频| 国产欧美日韩精品一区二区| 成人三级黄色视频| videossex国产| 久久人妻av系列| 国产成人精品久久久久久| 国产一区二区在线av高清观看| 午夜激情福利司机影院| 九草在线视频观看| 国产精品一区二区三区四区久久| 建设人人有责人人尽责人人享有的 | 欧美高清成人免费视频www| 亚洲精品,欧美精品| 日韩成人av中文字幕在线观看| 中文字幕亚洲精品专区| 国产一级毛片七仙女欲春2| 色哟哟·www| 桃色一区二区三区在线观看| 老司机影院毛片| 97超视频在线观看视频| 久久久久性生活片| 少妇熟女aⅴ在线视频| 亚洲欧美成人综合另类久久久 | 汤姆久久久久久久影院中文字幕 | 大香蕉97超碰在线| 免费人成在线观看视频色| 熟女电影av网| 在线观看一区二区三区| 中国国产av一级| 午夜爱爱视频在线播放| 尤物成人国产欧美一区二区三区| 国产伦在线观看视频一区| 永久免费av网站大全| 免费av毛片视频| 卡戴珊不雅视频在线播放| 久久草成人影院| 在线播放无遮挡| 国产伦理片在线播放av一区| 小说图片视频综合网站| 神马国产精品三级电影在线观看| 久久久久久久久久黄片| 中国国产av一级| 建设人人有责人人尽责人人享有的 | 久久久久网色| 国产一区有黄有色的免费视频 | 日本熟妇午夜| 午夜福利在线在线| 亚洲精品色激情综合| 欧美性感艳星| 能在线免费观看的黄片| 天堂影院成人在线观看| 日韩,欧美,国产一区二区三区 | 日韩 亚洲 欧美在线| 国产 一区 欧美 日韩| 岛国毛片在线播放| 国产精品福利在线免费观看| 色综合站精品国产| 国产精华一区二区三区| 精品人妻一区二区三区麻豆| 白带黄色成豆腐渣| 久久精品综合一区二区三区| 欧美极品一区二区三区四区| 一区二区三区高清视频在线| 日韩成人av中文字幕在线观看| 国产在线一区二区三区精 | 嫩草影院入口| 免费av观看视频| 少妇丰满av| 国产亚洲精品久久久com| 天堂av国产一区二区熟女人妻| 久久99蜜桃精品久久| 亚洲高清免费不卡视频| 亚洲欧美成人精品一区二区| 免费电影在线观看免费观看| 精品无人区乱码1区二区| 岛国毛片在线播放| 成人特级av手机在线观看| 欧美成人精品欧美一级黄| 在线天堂最新版资源| 一级毛片电影观看 | 2022亚洲国产成人精品| 男人的好看免费观看在线视频| 中文字幕av在线有码专区| 亚洲精品成人久久久久久| 亚洲精品国产av成人精品| 国产精品人妻久久久久久| 亚洲美女视频黄频| 精品一区二区三区视频在线| 国产精品一区二区在线观看99 | 国产黄片视频在线免费观看| 成人欧美大片| 亚洲成人中文字幕在线播放| 亚洲国产色片| 一级黄色大片毛片| 免费大片18禁| 99热精品在线国产| 久久久成人免费电影| 亚洲国产精品成人久久小说| av福利片在线观看| 欧美一区二区国产精品久久精品| 国产综合懂色| 国产真实伦视频高清在线观看| 亚洲国产最新在线播放| 国产在线男女| 亚洲av免费在线观看| 人妻系列 视频| 欧美最新免费一区二区三区| 中文字幕熟女人妻在线| 欧美97在线视频| av国产免费在线观看| 国产精品熟女久久久久浪| 伦精品一区二区三区| 美女黄网站色视频| 一卡2卡三卡四卡精品乱码亚洲| av在线蜜桃| 欧美激情在线99| 99久久精品一区二区三区| 亚洲欧洲国产日韩| 国产69精品久久久久777片| 欧美区成人在线视频| 中文字幕熟女人妻在线| 联通29元200g的流量卡| 亚洲美女视频黄频| 蜜桃亚洲精品一区二区三区| 日韩av在线免费看完整版不卡| 免费搜索国产男女视频| 国产免费男女视频| or卡值多少钱| 国产淫语在线视频| 久久久久久久久大av| 国产乱来视频区| 你懂的网址亚洲精品在线观看 | 美女脱内裤让男人舔精品视频| 最近视频中文字幕2019在线8| 国产av一区在线观看免费| 国产av在哪里看| 国产精华一区二区三区| 黄色一级大片看看| 嫩草影院精品99| 丝袜喷水一区| 哪个播放器可以免费观看大片| 国产精品嫩草影院av在线观看| 日韩国内少妇激情av| 亚洲av男天堂| 亚洲美女搞黄在线观看| 国产精品国产三级专区第一集| 国产在视频线精品| 亚洲经典国产精华液单| 日本av手机在线免费观看| 在线播放国产精品三级| 夜夜看夜夜爽夜夜摸| 久久精品国产自在天天线| 青青草视频在线视频观看| 秋霞在线观看毛片| 亚洲成av人片在线播放无| 只有这里有精品99| 日本av手机在线免费观看| 久久久久久久国产电影| 网址你懂的国产日韩在线| 久久久成人免费电影| 免费观看的影片在线观看| 大又大粗又爽又黄少妇毛片口| 日韩精品青青久久久久久| 美女xxoo啪啪120秒动态图| 18禁动态无遮挡网站| 精品国产露脸久久av麻豆 | 免费观看a级毛片全部| 国产老妇伦熟女老妇高清| 黄色一级大片看看| 天美传媒精品一区二区| 97超碰精品成人国产| 亚洲精品色激情综合| 亚洲久久久久久中文字幕| 日产精品乱码卡一卡2卡三| 最后的刺客免费高清国语| 免费看光身美女| 国产黄a三级三级三级人| 在线播放国产精品三级| 国产亚洲av嫩草精品影院| 亚洲欧美精品综合久久99| 三级经典国产精品| 亚洲精品乱久久久久久| 人妻系列 视频| 国产精品.久久久| 亚洲一级一片aⅴ在线观看| 国产真实乱freesex| 免费av观看视频| 亚洲av中文av极速乱| 亚洲精品国产成人久久av| 99热这里只有是精品在线观看| 看免费成人av毛片| 免费电影在线观看免费观看| 国产美女午夜福利| 91精品一卡2卡3卡4卡| 精品久久久久久电影网 | 最近中文字幕2019免费版| 国产高清视频在线观看网站| 一级黄片播放器| 特级一级黄色大片| 久久99热这里只有精品18| 1024手机看黄色片| 欧美高清成人免费视频www| 少妇被粗大猛烈的视频| videossex国产| 国产欧美日韩精品一区二区| 国产精品无大码| 一边摸一边抽搐一进一小说| 99热精品在线国产| 国产一区二区三区av在线| videossex国产| 国产伦精品一区二区三区四那| 91av网一区二区| 日韩亚洲欧美综合| 大话2 男鬼变身卡| 亚洲最大成人手机在线| 成年女人看的毛片在线观看| 2021少妇久久久久久久久久久| 三级经典国产精品| 性插视频无遮挡在线免费观看| 亚洲最大成人中文| 搡老妇女老女人老熟妇| 日本熟妇午夜| 女人十人毛片免费观看3o分钟| 欧美+日韩+精品| 日韩强制内射视频| 国产亚洲精品av在线| 在线免费观看的www视频| 99热全是精品| 成人毛片60女人毛片免费| 春色校园在线视频观看| 亚洲第一区二区三区不卡| 国模一区二区三区四区视频| 国产高清不卡午夜福利| 亚洲国产精品成人综合色| 免费看光身美女| 久久综合国产亚洲精品| 伦精品一区二区三区| 国产高清国产精品国产三级 | 天美传媒精品一区二区| 国产精品乱码一区二三区的特点| 国产高清有码在线观看视频| 看免费成人av毛片| 99久久无色码亚洲精品果冻| 在线观看66精品国产| 免费搜索国产男女视频| av天堂中文字幕网| 最近手机中文字幕大全| 国产极品精品免费视频能看的| 午夜免费激情av| 老司机影院毛片| 亚洲高清免费不卡视频| 99视频精品全部免费 在线| 久久韩国三级中文字幕| 亚洲成av人片在线播放无| 国产精品久久久久久精品电影| 国产精品久久久久久精品电影| 一本久久精品| 免费看光身美女| 一级毛片电影观看 | 精品少妇黑人巨大在线播放 | 男女那种视频在线观看| 国产极品天堂在线| 欧美成人一区二区免费高清观看| 国产午夜精品论理片| 国产精品,欧美在线| 国产一级毛片在线| 日本免费一区二区三区高清不卡| 国产在视频线精品| 三级男女做爰猛烈吃奶摸视频| 精品免费久久久久久久清纯| 观看免费一级毛片| 国产精品综合久久久久久久免费| 色综合站精品国产| 女人被狂操c到高潮| 欧美日韩一区二区视频在线观看视频在线 | 最近中文字幕高清免费大全6| 男女那种视频在线观看| 深夜a级毛片| 亚洲国产精品成人久久小说| 99久久九九国产精品国产免费| 男女边吃奶边做爰视频| 直男gayav资源| 日本与韩国留学比较| 久久国内精品自在自线图片| 久久鲁丝午夜福利片| 变态另类丝袜制服| 免费黄网站久久成人精品| 亚洲精品,欧美精品| 国产精品一区www在线观看| 日韩欧美 国产精品| 最近手机中文字幕大全| 国产精品一区二区性色av| 毛片一级片免费看久久久久| 伦理电影大哥的女人| 国产精品久久久久久av不卡| 夜夜看夜夜爽夜夜摸| 国产精品熟女久久久久浪| 国产成人精品久久久久久| 1024手机看黄色片| 婷婷色麻豆天堂久久 | 久久这里只有精品中国| 久久精品国产鲁丝片午夜精品| 亚洲乱码一区二区免费版| 久久久国产成人精品二区| 男人舔奶头视频| 久久久久性生活片| 婷婷色综合大香蕉| 国产精品永久免费网站| 国产高清视频在线观看网站| 小蜜桃在线观看免费完整版高清| 一级毛片久久久久久久久女| 国产黄片美女视频| 春色校园在线视频观看| 在线观看av片永久免费下载| 免费看av在线观看网站| 亚洲av成人精品一二三区| 天堂影院成人在线观看| 少妇的逼好多水| 亚洲人成网站在线观看播放| 搡老妇女老女人老熟妇| 成人亚洲欧美一区二区av| 免费观看的影片在线观看| 永久免费av网站大全| 国产黄色视频一区二区在线观看 | 在线播放国产精品三级| 亚洲av成人av| 国产成人午夜福利电影在线观看| 69人妻影院| 亚洲成色77777| 男人的好看免费观看在线视频| 人妻夜夜爽99麻豆av| 热99re8久久精品国产| 黄片无遮挡物在线观看| 久久久久久久国产电影| 日韩三级伦理在线观看| 国产又色又爽无遮挡免| 91在线精品国自产拍蜜月| h日本视频在线播放| 男插女下体视频免费在线播放| 国产精品一区二区性色av| 少妇人妻精品综合一区二区| 精华霜和精华液先用哪个| 久久精品国产亚洲av天美| 美女黄网站色视频| 国产午夜精品一二区理论片| 一个人免费在线观看电影| 欧美不卡视频在线免费观看| 免费观看的影片在线观看| 午夜福利高清视频| 丝袜美腿在线中文| 国产老妇女一区| 精品一区二区三区视频在线| 成人亚洲精品av一区二区| 精品人妻视频免费看| 国产精品久久电影中文字幕| 国产成年人精品一区二区| 99久久精品一区二区三区| 久久综合国产亚洲精品| 特级一级黄色大片| 亚洲av电影在线观看一区二区三区 | eeuss影院久久| 啦啦啦啦在线视频资源| 久久久午夜欧美精品| 欧美xxxx性猛交bbbb| av在线蜜桃| 日本欧美国产在线视频| 国产精品1区2区在线观看.| 亚洲欧美日韩卡通动漫| 人妻制服诱惑在线中文字幕| 青青草视频在线视频观看| 特级一级黄色大片| 国语对白做爰xxxⅹ性视频网站| 边亲边吃奶的免费视频| 又爽又黄无遮挡网站| 欧美日本亚洲视频在线播放| 日韩高清综合在线| 亚洲在久久综合| 免费大片18禁| 18+在线观看网站| 色综合站精品国产| av专区在线播放| 国产一区二区亚洲精品在线观看| 一个人看视频在线观看www免费| av卡一久久| 人妻夜夜爽99麻豆av| 国产亚洲一区二区精品| 国产成人91sexporn| av在线老鸭窝| 美女xxoo啪啪120秒动态图| 国产探花极品一区二区| 99久久精品国产国产毛片| 欧美又色又爽又黄视频| 别揉我奶头 嗯啊视频| 日韩大片免费观看网站 | 国产熟女欧美一区二区| 韩国av在线不卡| 久久久久精品久久久久真实原创| 联通29元200g的流量卡| 久久精品久久精品一区二区三区| 久久精品91蜜桃| 国产视频内射| 久久精品久久久久久噜噜老黄 | 中文字幕熟女人妻在线| 波野结衣二区三区在线| av女优亚洲男人天堂| 国产真实伦视频高清在线观看| 亚洲天堂国产精品一区在线| 嫩草影院精品99| 老司机影院毛片| 狂野欧美白嫩少妇大欣赏| 久久久久精品久久久久真实原创| 亚洲丝袜综合中文字幕| 狠狠狠狠99中文字幕| 亚洲中文字幕一区二区三区有码在线看| 日韩一区二区三区影片| 七月丁香在线播放| 国产成人午夜福利电影在线观看| 天天躁日日操中文字幕| 成人毛片60女人毛片免费| 嘟嘟电影网在线观看| 国产成年人精品一区二区| 麻豆成人av视频| 男插女下体视频免费在线播放| 日本五十路高清| 精品人妻一区二区三区麻豆| 爱豆传媒免费全集在线观看| 亚洲在线自拍视频| 国产一区亚洲一区在线观看| 国产日韩欧美在线精品| 日韩制服骚丝袜av| 欧美极品一区二区三区四区| 免费观看a级毛片全部| 桃色一区二区三区在线观看| 蜜臀久久99精品久久宅男| 麻豆精品久久久久久蜜桃| 日韩一本色道免费dvd| 亚洲欧美一区二区三区国产| 22中文网久久字幕| 韩国av在线不卡| 日本五十路高清| 99久国产av精品| 色噜噜av男人的天堂激情| 国产69精品久久久久777片| 国产午夜精品久久久久久一区二区三区| 免费黄色在线免费观看| 亚洲av中文av极速乱| 99热全是精品| 亚洲av中文av极速乱| 一级黄片播放器| 日本与韩国留学比较| 韩国av在线不卡| 日日啪夜夜撸| 久久99热6这里只有精品| 成人三级黄色视频| 中文字幕亚洲精品专区| 国产精品av视频在线免费观看| 成年av动漫网址| 精品国产三级普通话版| 直男gayav资源| 我的女老师完整版在线观看| 尤物成人国产欧美一区二区三区| 高清日韩中文字幕在线| 成人美女网站在线观看视频| 久久精品久久精品一区二区三区| 91久久精品电影网| 亚洲人成网站在线播| 99在线人妻在线中文字幕| 免费无遮挡裸体视频| 一级黄片播放器| 美女黄网站色视频| 亚洲最大成人中文| 亚洲欧美中文字幕日韩二区| 九九久久精品国产亚洲av麻豆| 国产精品不卡视频一区二区| 美女cb高潮喷水在线观看| 少妇人妻一区二区三区视频| 成人一区二区视频在线观看| 99久久无色码亚洲精品果冻| 国产av在哪里看| 国产一区有黄有色的免费视频 | 国产亚洲精品久久久com| 日本午夜av视频| 国产精品野战在线观看| 最后的刺客免费高清国语| 国产一区二区三区av在线| 成人一区二区视频在线观看| 国产精品久久视频播放| 91aial.com中文字幕在线观看| 亚洲在线自拍视频| 久久99热这里只频精品6学生 | 国产亚洲精品久久久com| 3wmmmm亚洲av在线观看| 国产又色又爽无遮挡免| 国语对白做爰xxxⅹ性视频网站| 欧美日韩在线观看h| 秋霞伦理黄片| 成人无遮挡网站| 国产精品无大码| 日韩一区二区视频免费看| 能在线免费看毛片的网站| 日本色播在线视频| 波多野结衣巨乳人妻| 免费观看的影片在线观看| 男人舔女人下体高潮全视频| 亚洲成av人片在线播放无| 日韩亚洲欧美综合| 99久久精品热视频| 搞女人的毛片| 欧美xxxx性猛交bbbb| 99热全是精品| 国产精品一及| 九草在线视频观看| 麻豆成人av视频| 中文乱码字字幕精品一区二区三区 | 亚洲精品乱久久久久久| 国内精品一区二区在线观看| 99热6这里只有精品| 亚洲熟妇中文字幕五十中出|