• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Proton-Exchange Sulfonated Poly (ether ether ketone) (SPEEK)/SiOx-S Composite Membranes in Direct Methanol Fuel Cells*

    2009-05-12 03:32:50GAOQijun高啟君WANGYuxin王宇新XULi許莉WEIGuoqiang衛(wèi)國(guó)強(qiáng)andWANGZhitao王志濤
    關(guān)鍵詞:高啟王宇衛(wèi)國(guó)

    GAO Qijun (高啟君), WANG Yuxin (王宇新), XU Li (許莉), WEI Guoqiang (衛(wèi)國(guó)強(qiáng)) and WANG Zhitao (王志濤)

    ?

    Proton-Exchange Sulfonated Poly (ether ether ketone) (SPEEK)/SiO-S Composite Membranes in Direct Methanol Fuel Cells*

    GAO Qijun (高啟君)1,2, WANG Yuxin (王宇新)1,2, XU Li (許莉)1,**, WEI Guoqiang (衛(wèi)國(guó)強(qiáng))1,2and WANG Zhitao (王志濤)1,2

    1School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China2State Key Laboratory of Chemical Engineering, Tianjin 300072, China

    sulfonated poly(ether ether ketone), functionalized silica, composite membrane, direct methanol fuel cell

    1 INTRODUCTION

    Development and research on direct methanol fuel cells (DMFCs) have been an area of active interest since the 1990s [1]. DMFC technology has made significant progress over the years, but two obstacles still need to be surmounted before DMFC commercialization [2, 3]. First, the anode catalyst is inactive and unstable enough causing a high overpotential loss of the anode. Second, severe methanol crossover of the commercially available perfluorosulfonic acid (PFSA) proton-exchange membranes (PEM) (.., Nafionò) from anode to cathode reduces fuel efficiency and increases the mixed electrode potential of the cathode, resulting in low cell performance [2, 3]. Production of the commercially available PFSA polymer membranes is costly and time-consuming. Therefore, there is an urgent need to develop PEM with improved properties, including high proton conductivity, low methanol permeability, and low cost.

    Much effort has been made in recent years to develop an alternative fluorine-free polymer membranes [4-8] and to modify PFSA polymer membranes [9]. It is widely recognized that sulfonated poly (ether ether ketone) (SPEEK) polymers are very promising materials for membranes in DMFCs [4]. SPEEK polymers can, in theory, have higher ion-exchange capacity (IEC) than PFSA polymers, which may compensate for the demerit of weaker acidity of their own sulfonic groups (SO3H). SPEEK membranes also exhibit lower methanol crossover and are less costly to produce than PFSA membranes [5]. The demand for high proton conductivity calls for SPEEK membranes to have a high degree of sulfonation (DS) and to function at high temperatures. However, highly sulfonated SPEEK membranes tend to swell excessively or even dissolve at high temperatures. There have been several attempts to overcome the excessive swelling while maintaining high proton conductivity, for example, by synthesizing SPEEK with various hydrophobic block: hydrophilic block ratios [10], by introducing cross-links between some of the sulfonic groups in the SPEEK membrane [11], and by blending the SPEEK polymer with non-conductive engineering thermoplastics (.., SPEEK/PEI, SPEEK/PES, SPEEK/PBI) [12-14].

    Addition of inorganic particles (.., ZrO2) into the SPEEK matrix is also an important approach in PEM research [15]. This approach has two objectives: one is to improve the mechanical properties of the composite membranes and the other is to physically counteract methanol crossover [16, 17]. It has also been suggested that the size of the particles (nano or micro), surface properties (acid or basic), and the functionalization determine whether the filler, besides acting as a reinforcing components as above mentioned, can impart a significant improvement in proton conductivity [16-22].

    Figure 1 Molecular structure of the functionalized silica with sulfonic acid groups (SiO-S)

    2 EXPERIMENTAL

    2.1 Materials

    2.2 Preparation of SiOx-S powder

    The SiO-S gel can be prepared from SiO-Cl hydrolyzed for 6 h at 80°C as described in a previous study [17]. The gel was washed repeatedly with deionized water until pH of the rinse water was 7 and then dried at 70°C for 24 h to remove water. The resultant SiO-S was ground to fine powder by a QM-ISP04 ball mill and finally stored in an airtight bottle before being used.

    The back-titration of sulfonic groups within the SiO-S powder was used to find whether the SiO-Cl hydrolyzed into the SiO-S completely.

    2.3 Synthesis of SPEEK

    PEEK (10g) was added gradually to 100 ml of concentrated sulfuric acid in a three-necked flask with vigorous stirring at 60°C. At a prescribed time point, the acid polymer solution was added to a large excessive ice-cold water with continuous agitation. The SPEEK precipitate was rinsed repeatedly with deionized water until the water reached pH 7. Then the SPEEK was dried at room temperature for 2 days followed by drying at 60°C for 24 h under vacuum. The IEC and DS of the sulfonated polymers were determined by a classical back-titration method as described in a previous study[23].

    2.4 Membrane preparation

    The membranes were prepared by solution casting. When the mass content of SiO-S powder is higher than 20%, the composite membrane becomes brittle in dry state at room temperature. Therefore, SPEEK/SiO-S (3%–20%) composite membranes (the degree of sulfonation for the SPEEK polymer is 55.1%, the mass content of SiO-S powder in the composite membranes is from 3% to 20%) were studied in this article.

    SPEEK and SPES-C in prescribed amount were dissolved separately in DMF (10%, by mass) and then the two solutions were mixed and stirred for 6 h. The mixed solution was cast onto a glass plate and dried overnight at 60°C in a vacuum oven, followed by annealing at 100°C for 4 h. After cooling to room temperature, the membrane was peeled from the glass plate with deionized water.

    SiO-S powder in prescribed amount was uniformly dispersed in DMF solvent with mechanical stirring. The desired amount of SPEEK was then added to the solvent to make a 10% (by mass) solution. After stirring for 6 h and degassing, the solution was cast onto a glass plate and dried overnight at 60°C in a vacuum oven, followed by annealing at 100°C for 4 h. After cooling to room temperature, the membrane was peeled from the glass plate with deionized water. Finally, the membrane was treated with 1 mol·L-1sulfuric acid at room temperature for 24 h and subsequently rinsed with deionized water several times to remove acid completely. Membranes were kept in deionized water before testing. The thickness of the dried membranes was 80-95 μm.

    2.5 Membrane characterization

    Fourier transform infrared spectroscopy (FT-IR) were measured in absorbance mode by using an FT-IR spectrometer (Bio-RAD FTS 6000) in the range of wave numbers 600-4000 cm-1to compare position of IR bands and to check the presence of functional groups and their interaction in composite membranes. Prior to FT-IR measurement, the samples were dried at 80°C for 24 h.

    Thermogravimetric analysis (TGA) was used to estimate the thermal stability of the composite membranes. We used a TGA thermogravimetric analyzer (TA-50 Instrument Shimadzu TGA) at a heating rate of 10 K·min-1in nitrogen gas in the temperature range 30-800°C. All specimens were dried overnight at 90°C under vacuum before measurements.

    The morphology of the cross-section of samples was examined with an environment-scanning electron microscope (PHILIPS XL30 ESEM). The samples werecryo-fractured in liquid nitrogen to obtain fresh cross-sections, which were coated with gold before measurements.

    The swelling degree (SD) of the specimens was obtained by measuring the area difference between the dry and the wet states as described in Ref. [23]. The membranes were cut into 3 cm×4 cm rectangles and dried overnight at 90°C under vacuum before measuring the area (d). The dried membranes were immersed for 48 h in 1 mol·L-1methanol to reach equilibrium at the desired temperature. The wet membranes were wiped dry with tissue paper and the area was measured again (w). SD was calculated (in area percent) as follows:

    wheredandware the areas of dry and corresponding wet membrane sheets, respectively. Three sheets of each membrane composition were measured by the above method, and the average was calculated.

    The proton conductivity of samples in the lateral direction was measured with a measurement cell and a frequency response analyzer (FRA) (Autolab PG-STAT20). Two stainless steel electrodes connected to the FRA were pressed against the membrane to be tested. The measurement temperature was controlled from room temperature to 160°C. The conductivity,, was calculated from the impedance data, using the relation/(×), whereandare the distance between the electrodes and the cross-section area of the membrane, respectively, andwas derived from the low intersection of the high-frequency semi circle on a complex impedance plane with the() axis. For membranes that dissolved below 160°C, their dissolution was tested by measuring the weight before and after the proton conductivity measurement. Besides, the proton conductivity of SiO-S powder was obtained as described in a previous study [23]. The powder needs to be pressed into a slice before testing.

    3 RESULTS AND DISCUSSION

    3.1 Preparation of the SiOx-S

    Table 1 The back-titration results of sulfonic groups within the SiOx-S hydrolyzed at different time

    3.2 Sulfonation

    3.3 FT-IR spectra

    3.4 Thermal stability

    Figure 3 TGA curves of SiOx-S powder, SPEEK/SiOx-S (18%) composite membrane and pure SPEEK membrane

    1—SiOx-S; 2—SPEEK/SiOx-S (18%); 3—SPEEK (DS = 55.1%)

    3.5 Morphology

    The basic homogeneous distribution of SiO-S powder within the SPEEK matrix and no sign of evident aggregation can be observed from the SEM images of the SPEEK/SiO-S composite membranes at magnification of up to 10000× (Fig. 4) although the SiO-S content reaches 20%. The nominal powder size is less than 500 nm as indicated by the SEM images.

    Figure 4 Cross-section images of SPEEK/SiO-S (5%) composite membrane and SPEEK/SiO-S (20%) composite membrane

    3.6 Swelling behavior

    Figure 5 Swelling degree of Nafionò115, SPEEK membrane and SPEEK/SiO-S composite membranes in 1 mol·L-1methanol solution at different temperatures

    Figure 6 Arrehenius plots of methanol permeability for Nafionò115, pure SPEEK membrane, and SPEEK/SiO-S composite membranes

    Figure 7 Arrehenius plots of proton conductivity at 100%RH for Nafionò115, SiO-S powder, pure SPEEK membrane and SPEEK/SiO-S (15%, 20%) composite membranes under 100% RH

    3.7 Methanol permeability

    Methanol fuel is fed in the form of liquid below 80°C, thus the methanol crossover is more serious than in the form of gas at higher temperatures [2]. We analyze the methanol permeability of the membranes below 80°C here. Fig. 6 shows the methanol permeability as a function of temperature for Nafionò115, pure SPEEK and SPEEK/SiO-S composite membranes. The methanol permeability of Nafionò115 at room temperature is 1.02×10-6cm2·s-1, which is very close to the value reported by Tricoli. [24, 26, 27], while that of SPEEK and SPEEK/ SiO-S membranes are approximately an order of magnitude lower than Nafionò115.

    The difference in methanol permeability between Nafionò115 and the SPEEK membrane can be explained qualitatively by the differences in their microstructures and the acidity of their sulfonic acid functional groups [4]. Nafionò115 macromolecules consist of very hydrophobic perfluorinated backbones and very hydrophilic side chains with sulfonic acid functional groups. The very different components lead to relatively large microphase separation in Nafionò115, which results in the low resistance to methanol permeation. The situation for SPEEK polymer is rather different. The carbon-hydrogen main chains with ether links, phenyl rings, and carbonyl groups in SPEEK make it less hydrophobic and more rigid compared with Nafionò115. Furthermore, the acidity of sulfonic acid functional groups of the SPEEK polymer is weaker than that of Nafionò115. Therefore, the microphase separation in the SPEEK membrane is not obvious and the hydrophilic ion channels are narrower, which results in low methanol permeability. This can also be proved by the results of schematic representation of the microstructure of Nafionò115 and SPEEK reported by Kreuer[4].

    As can be seen in Fig. 6, the methanol permeability of the SPEEK/SiO-S composite membranes is even lower and decreases with the increased SiO-S content in the membrane. The addition of SiO-S inhibits effectively the swelling of SPEEK matrix (Fig. 5) and thus imposes higher resistance to methanol crossover. The higher resistance to methanol crossover of the SPEEK/SiO-S composite membranes is beneficial to improve open circuit voltage (OCV) of DMFCs [2].

    3.8 Proton conductivity

    The relation between the conductivity and the reciprocal of the temperature for all the SPEEK and SPEEK/SiO-S membranes, before they dissolve, can be described by the Arrhenius equation and exhibits straight lines in a semilogarithmic graph (Fig. 7). The apparent activation energy of proton transfer, which is equal to the slope of the corresponding lines of different membranes, is obtained from the Arrhenius plot. It is noteworthy that the apparent activation energy of the SPEEK membrane has approximately 38 kJ×mol-1, in contrast to 9 kJ×mol-1for Nafionò115. The very high apparent activation energy of the SPEEK membrane is believed to be a consequence of its low swelling degree and slow variation with temperature (as shown in Fig. 7). Narrow ion channels and rich branches with dead-end “pockets” in the membrane will contribute to the high barrier to proton transfer [4].

    SPEEK and SiO-S materials are weakly acidic compared with Nafionò115. The dissociation of sulfonic acid functional groups in these materials increases at high temperatures [5, 23], whereas that of Nafionò115 approaches 100% at room temperature. Therefore, the elevation of temperature increases both the proton mobility and the proton content in the SPEEK and SPEEK/SiO-S membranes, which results in a much faster increase of proton conductivity with temperature.

    The proton conductivity of SiO-S powder is 0.018 S×cm-1at room temperature and 100% RH, and reaches 0.086 S·cm-1at 120°C. The proton conductivity of composite membranes increases slightly as mass content of SiO-S powder increases, although SiO-S powder has lower proton conductivity than the pure SPEEK membrane. The increase in conductivity upon addition of SiO-S can be rationalized based on previous studies [16-22, 28]. This phenomenon has been observed by Kim. [29] in composite PEMs based on heteropolyacid in sulfonated polysulfones. The presence of the additive was found to enhance the proton conductivity, while at the same time decrease the water uptake. In this case, it is not completely understood whether the filler participates actively in the proton conduction by enhancing proton dissociation or by providing favorable pathways for the proton along polymer-particle interfaces [16-18, 22]. The conductivity results obtained in this study are very similar to that of previous studies above, and it is likely that a similar mechanism is in place. The lower apparent activation energy of proton transfer through the composite membranes than through the pure SPEEK membrane also shows that the similar mechanism exists. The apparent activation energy of the SPEEK/SiO-S (20%) composite membrane is 33.09 kJ×mol-1. The conductivity of SPEEK/SiO-S (20%) exceeds slightly that of Nafionò115 at 145°C and 100% RH and approaches 0.17S×cm-1.

    3.9 Working temperature

    Figure 8 shows*as a function of the mass content of SiO-S in the composite membranes. SPEEK membranes of 55.1% DS is useful only below 90°C. The*of the composite membranes is, however, markedly increased as the mass content of SiO-S powder increases. As discussed in Section 3.6, the addition of SiO-S to SPEEK matrix inhibits effectively the swelling and dissolution of the membranes below 80°C. The membranes’ swelling at temperature above 100°C was quickly measured by measuring the area changes after their conductivity was tested at the temperature. It can be found that the content of SiO-S increased from 10% to 20%, the swelling degree of composite membranes decreased from 67.8% to 30.4% at 110°C and the content of SiO-S increased from 15% to 20%, the swelling degree of composite membranes decreased from 72.3% to 35.8% at 130°C. The increase of*with the increased content of SiO-S in the composite membrane should be attributed to the depressed swelling and dissolution of the composite membranes at high temperatures.

    Figure 8*of the SPEEK/SiO-S composite membranes with different SiO-S mass contents

    The extension of the working temperature of the membrane is beneficial for DMFC in many aspects. Working at higher temperature, the membrane exhibits higher proton conductivity, which leads to lower ohmic losses in DMFC. The electrocatalysts are also more active and more tolerant to carbon monoxide poisoning [30] at high temperatures. When methanol fuel is fed in the form of gas at high temperature, the methanol crossover and its negative effects can be reduced markedly. Operating at high temperature also simplifies the management of water and heat in the DMFC systems [30].

    4 CONCLUSIONS

    The results of this study indicate a strong potential of these composite membranes for use in DMFCs. SPEEK/SiO-S composite membranes with high levels of dimensional stability were prepared. The methanol permeability of the membranes was shown to be about one order of magnitude lower than that of Nafionò115, and to decrease with the increase of SiO-S content. The addition of the SiO-S into the membranes not only increases slightly the proton conductivity of composite membranes but also effectively inhibits their swelling, which enables them to be used at higher temperature, thus presenting higher proton conductivity. The results of this study indicate a strong potential of these composite membranes for use in DMFCs.

    1 Kuver, A., Kamloth, K.P., “Comparative study of methanol crossover acrosselectropolymerized and commercial proton exchange membrane electrolytes for the acid direct methanol fuel cell”,., 43 (16), 2527-2535 (1998).

    2 Ren, X., Zawadzinski, T.A., Uribe, F., Dai, H., “Methanol cross-over in direct methanol fuel cells”,..., 95 (23), 284-289 (1995).

    3 Heinzel, A., Barragan, V.M., “A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells”,., 84, 70-74 (1999).

    4 Kreuer, K.D., “On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells”,..., 185, 29-39 (2001).

    5 Yang, B., Manthiram, A., “Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cells”,.., 6, A229-A231 (2003).

    6 Wycisk, R., Lee, J.K., Pintauro, P.N., “Sulfonated polyphosphazene- polybenzimidazole membranes for DMFCs”,..., 152, A892-A898 (2005).

    7 Dai, H., Guan, R., Li, C.H., Liu, J.H., “Development and characterization of sulfonated poly(ether sulfone) for proton exchange membrane materials”,., 178, 339-345 (2007).

    8 Shahi, V.K., “Highly charged proton-exchange membrane: Sulfonated poly(ether sulfone)-silica polyelectrolyte composite membranes for fuel cells”,., 177, 3395-3404 (2007).

    9 Park, K.T., Jung, U.H., Choi, D.W., Chun, K., Lee, H.M., Kim, S.H., “ZrO2-SiO2/Nafion (R) composite membrane for polymer electrolyte membrane fuel cells operation at high temperature and low humidity”,., 177, 247-253 (2008).

    10 Zhao, C., Li, X., Na, H., “Synthesis of sulfonated poly(ether ether ketone) (S-PEEKs) material for proton exchange membrane”,..., 280, 643-650 (2006).

    11 Mikhailenko, S.U.D., Wang, K.P., Kaliaguine, S., Xing, P.X., Robertson, G.P., Guiver, M.D., “Proton conducting membranes based on cross-linked sulfonated poly(ether ether ketone) (SPEEK)”,..., 233, 93-99 (2004).

    12 Mikhailenko, S.D., Zaidi, S.M.J., Kaliaguine, S., “Electrical properties of sulfonated polyether ether ketone/polyetherimide blend membranes doped with inorganic acids”,...,:.., 33, 1386-1395 (2000).

    13 Manea, C., Mulder, M., “Characterization of polymer blends of polyether sulfone/sulfonated polysulfone and polyether sulfone/sulfonated polyetherether ketone for direct methanol fuel cell applications”,..., 206, 443-453 (2002).

    14 Zhang, H.Q., Li, X.F., Zhao, C.J., Fu, T.Z., Shi, Y.H., Na, H., “Composite membranes based on highly sulfonated PEEK and PBI: Morphology characteristics and performance”,..., 308, 67-74 (2008).

    15 Silva, V.S., Ruffmann, B., Silva, H., Gallego, Y.A., Mends, A., Madeira, L.M., Nunes, S.P., “Proton electrolyte membrane properties and direct methanol fuel cell performance/I. Characterization of hybrid sulfonated poly (ether ether ketone)/zirconium oxide membranes”,., 140, 34-40 (2005).

    16 Uchida, H., Ueno,Y., Hagihara, H., Watanabe, M., “Self-humidifying electrolyte membranes for fuel cells—Preparation of highly dispersed TiO2particles in Nafion 112”,.., 150, A57-A62 (2003).

    17 Martinelli, A., Matic, A., Jacobsson, P., borjesson, L., Navarra, M.A., Fernicola, A., Panero, S., Scrosati, B., “Structural analysis of PVA-based proton conducting membranes”,., 177, 2431-2435 (2006).

    18 Kim, D.S., Park, H.B., Rhim, J.W., Lee, Y.M., “Preparation and characterization of crosslinked PVA/SiO2hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications ”,..., 240, 37-48 (2004).

    19 Croce, F., Persi, L., Scrosati, B., Serraino-Fiory, F., Plichta, E., Hendrickson, M.A., “Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes”,., 46, 2457-2461 (2001).

    20 Shao, Z.G.., Joghee, P., Hsing, I.M., “Preparation and characterization of hybrid Nafion-silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells”,.., 229, 43-51 (2004).

    21 Xu, W.L., Liu, C.P., Xue, X.Z., Su, Y., Lv, Y.Z., Xing, W., Lu, T.H., “New proton exchange membranes based on poly (vinyl alcohol) for DMFCs ”,., 171, 121-127 (2004).

    22 Sambandam, S., Ramani, V., “SPEEK/functionalized silica composite membranes for polymer electrolyte fuel cells”,., 170, 259-267 (2007).

    23 Li, L., Wang, Y.X., “Sulfonated polyethersulfone Cardo membranes for direct methanol fuel cell”,..., 246, 167-172 (2005).

    24 Li, L., Wang, Y.X., “A hybrid membrane of poly(vinyl alcohol) and phosphotungstic acid for fuel cells”,...., 10 (5), 614-617 (2002).

    25 Zaidi, S.M.J., Mikhailenko, S.D., Robertson, G.P., Guiver, M.D., Kaliaguine, S., “Proton conducting composite membranes from polyetherether ketone and heteropolyacids for fuel cell applications”,..., 173, 17-34 (2000).

    26 Tricoli, V., Carretta, N., Bartolozzi, M., “A comparative investgation of proton and methanol transport in fluorinated ionomeric membranes”,..., 147, 1286-1290 (2000).

    27 Huang, M.Y., Wang, Y.X., Cai, Y.Q., Xu, L., “Sulfonated poly(ether ether ketone)/zirconium tricarboxybutylphosphonate composite proton-exchange membranes for direct methanol fuel cells”,, 4, 337-342 (2007).

    28 Gasa, J.V., Boob, S., Weiss, R.A., Shaw, M.T., “Proton-exchange membranes composed of slightly sulfonated poly(ether ketone ketone) and highly sulfonated crosslinked polystyrene particles”,..., 269, 177-186 (2006).

    29 Kim, Y.S., Wang, F., Hickner, M., Zawodzinski, T.A., McGrath, J.E., “Fabrication and characterization of heteropolyacid (H3PW12O40)/ directly polymerized sulfonated poly(arylene ether sulfone) copolymer composite membranes for higher temperature fuel cell applications”,..., 212, 263-282 (2003).

    30 Li, Q.F., Huang, R.H., “Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100°C”,.., 15, 4896-4915 (2003).

    2008-07-24,

    2008-11-20.

    the State Key Development Program for Basic Research of China (2008CB617502), the National Natural Science Foundation of China (20606025), and Program for Changjiang Scholars and Innovative Research Team in University of China (IRT0641).

    ** To whom correspondence should be addressed. E-mail: xuli620@eyou.com

    猜你喜歡
    高啟王宇衛(wèi)國(guó)
    基于ShuffleNet V2算法的三維視線估計(jì)
    A novel low-loss four-bit bandpass filter using RF MEMS switches
    許衛(wèi)國(guó)書(shū)法作品選
    我相信
    高啟與北郭詩(shī)社成員交游考
    Cavitation erosion in bloods*
    我的同桌
    高啟對(duì)李白詩(shī)歌藝術(shù)特點(diǎn)的繼承
    Evaluation on nitrogen isotopes analysis in high-C/N-ratio plants using elemental analyzer/isotope ratio mass spectrometry
    A Support Vector Machine Based on Bayesian Criterion
    人人妻,人人澡人人爽秒播| 日本在线视频免费播放| 很黄的视频免费| 99在线视频只有这里精品首页| 色视频www国产| 99热这里只有是精品50| 波野结衣二区三区在线| 一级a爱片免费观看的视频| 嫩草影院精品99| 高清毛片免费观看视频网站| 亚洲av电影不卡..在线观看| 亚洲最大成人中文| 一进一出抽搐gif免费好疼| 国产一区二区在线观看日韩| 成人午夜高清在线视频| 精品日产1卡2卡| 欧美日韩国产亚洲二区| 亚洲精品在线观看二区| 亚洲精品粉嫩美女一区| bbb黄色大片| 人妻丰满熟妇av一区二区三区| 99视频精品全部免费 在线| 午夜a级毛片| 日本爱情动作片www.在线观看 | 午夜激情福利司机影院| 午夜日韩欧美国产| 自拍偷自拍亚洲精品老妇| 久久精品综合一区二区三区| 99热这里只有是精品在线观看| 欧美国产日韩亚洲一区| 搞女人的毛片| 精品久久久久久久久亚洲 | 精品福利观看| 久久精品久久久久久噜噜老黄 | 国产精品亚洲一级av第二区| 99久久中文字幕三级久久日本| 欧美黑人巨大hd| 人妻久久中文字幕网| 天天一区二区日本电影三级| 草草在线视频免费看| 最近中文字幕高清免费大全6 | 欧美一区二区精品小视频在线| 天堂动漫精品| 欧美色视频一区免费| 久久久久精品国产欧美久久久| 人妻制服诱惑在线中文字幕| 小说图片视频综合网站| 久久亚洲精品不卡| 亚洲狠狠婷婷综合久久图片| 久9热在线精品视频| 精品久久久噜噜| 国产午夜福利久久久久久| 国产精品,欧美在线| 一边摸一边抽搐一进一小说| 十八禁国产超污无遮挡网站| 成人av一区二区三区在线看| 亚洲精品国产成人久久av| 简卡轻食公司| 国产亚洲精品综合一区在线观看| 婷婷色综合大香蕉| 精品免费久久久久久久清纯| 国内久久婷婷六月综合欲色啪| 免费无遮挡裸体视频| 国产主播在线观看一区二区| 春色校园在线视频观看| 国产av麻豆久久久久久久| 国产爱豆传媒在线观看| 我要搜黄色片| 欧美高清性xxxxhd video| 亚洲av五月六月丁香网| 精品一区二区免费观看| 成年人黄色毛片网站| 人妻丰满熟妇av一区二区三区| 亚洲成人久久性| 哪里可以看免费的av片| 亚洲人与动物交配视频| 国产成人一区二区在线| 精华霜和精华液先用哪个| 一区二区三区四区激情视频 | 亚洲欧美激情综合另类| 亚洲欧美日韩东京热| 18禁黄网站禁片免费观看直播| 69人妻影院| 如何舔出高潮| 婷婷精品国产亚洲av| 婷婷六月久久综合丁香| 午夜免费激情av| 九色国产91popny在线| 动漫黄色视频在线观看| 亚洲av日韩精品久久久久久密| 亚洲人成伊人成综合网2020| 看免费成人av毛片| 国产精品久久久久久精品电影| 男人的好看免费观看在线视频| 久久国产精品人妻蜜桃| 日韩人妻高清精品专区| 亚洲av第一区精品v没综合| 婷婷丁香在线五月| 精品一区二区三区视频在线观看免费| 露出奶头的视频| 色视频www国产| 亚洲欧美日韩东京热| 热99在线观看视频| 给我免费播放毛片高清在线观看| 在线播放无遮挡| 欧美绝顶高潮抽搐喷水| 一进一出好大好爽视频| 简卡轻食公司| 天天一区二区日本电影三级| 亚洲av免费在线观看| 久久久色成人| 亚洲av中文字字幕乱码综合| 精华霜和精华液先用哪个| 亚洲五月天丁香| 国产大屁股一区二区在线视频| 动漫黄色视频在线观看| 美女xxoo啪啪120秒动态图| 欧美3d第一页| 亚洲国产高清在线一区二区三| 波多野结衣高清作品| 能在线免费观看的黄片| 少妇高潮的动态图| 天堂√8在线中文| 午夜激情福利司机影院| 日韩精品中文字幕看吧| 91麻豆精品激情在线观看国产| 麻豆国产av国片精品| 赤兔流量卡办理| 色在线成人网| 日韩高清综合在线| 精品久久久噜噜| 日韩欧美国产一区二区入口| 中亚洲国语对白在线视频| 国产aⅴ精品一区二区三区波| 午夜福利在线观看免费完整高清在 | 午夜日韩欧美国产| 国产不卡一卡二| 亚洲欧美清纯卡通| 在线播放无遮挡| 国产不卡一卡二| 日本一二三区视频观看| 91在线观看av| 91麻豆精品激情在线观看国产| 国产真实乱freesex| 国产午夜精品论理片| 日韩中字成人| 国产真实乱freesex| 国产午夜精品论理片| 久久婷婷人人爽人人干人人爱| 亚洲最大成人手机在线| 91狼人影院| 欧美bdsm另类| 国产精华一区二区三区| 国产伦一二天堂av在线观看| 99热网站在线观看| 国产日本99.免费观看| 老熟妇乱子伦视频在线观看| 国国产精品蜜臀av免费| 日本三级黄在线观看| 欧美日韩黄片免| 最近视频中文字幕2019在线8| 成熟少妇高潮喷水视频| 国内少妇人妻偷人精品xxx网站| 免费看美女性在线毛片视频| 观看免费一级毛片| 精品久久久久久,| 国产精品久久视频播放| 尾随美女入室| 美女黄网站色视频| 色视频www国产| 免费av不卡在线播放| 国产亚洲91精品色在线| 免费黄网站久久成人精品| 不卡一级毛片| 成人午夜高清在线视频| 成人精品一区二区免费| 国产精品久久久久久精品电影| 成人性生交大片免费视频hd| 日韩国内少妇激情av| 美女黄网站色视频| 亚洲欧美精品综合久久99| 在线观看免费视频日本深夜| 色综合站精品国产| 级片在线观看| 亚洲自拍偷在线| 18禁裸乳无遮挡免费网站照片| av专区在线播放| 国产 一区精品| 桃红色精品国产亚洲av| 国产探花极品一区二区| 亚洲国产欧美人成| 老女人水多毛片| 日韩精品青青久久久久久| 丝袜美腿在线中文| av专区在线播放| 3wmmmm亚洲av在线观看| 精品一区二区三区视频在线| 白带黄色成豆腐渣| a级毛片a级免费在线| 99热这里只有精品一区| 此物有八面人人有两片| 一边摸一边抽搐一进一小说| 久久人妻av系列| 欧美+日韩+精品| 亚洲av不卡在线观看| 亚洲在线观看片| 国产精品1区2区在线观看.| 精品久久久久久久久亚洲 | 一本精品99久久精品77| 熟女电影av网| 亚洲美女视频黄频| 99久久无色码亚洲精品果冻| 久久精品国产鲁丝片午夜精品 | 日韩高清综合在线| 又黄又爽又刺激的免费视频.| 国产高清不卡午夜福利| 草草在线视频免费看| 国产精品久久视频播放| 99久久成人亚洲精品观看| 婷婷精品国产亚洲av| 免费av毛片视频| 一边摸一边抽搐一进一小说| 成人美女网站在线观看视频| 色哟哟哟哟哟哟| 久久人人爽人人爽人人片va| 能在线免费观看的黄片| 亚洲午夜理论影院| 国产亚洲91精品色在线| 一本精品99久久精品77| 黄片wwwwww| 18禁黄网站禁片午夜丰满| av福利片在线观看| 男女之事视频高清在线观看| 亚洲精华国产精华液的使用体验 | 美女免费视频网站| 国产成人aa在线观看| 老熟妇乱子伦视频在线观看| 在线观看美女被高潮喷水网站| 男女那种视频在线观看| 欧美bdsm另类| 女人被狂操c到高潮| 国产极品精品免费视频能看的| 精品免费久久久久久久清纯| 日日摸夜夜添夜夜添av毛片 | 看黄色毛片网站| 日韩欧美一区二区三区在线观看| xxxwww97欧美| 国产乱人视频| 美女cb高潮喷水在线观看| 真人做人爱边吃奶动态| 丝袜美腿在线中文| 午夜爱爱视频在线播放| 欧美成人性av电影在线观看| 久久精品国产亚洲av天美| 精品人妻偷拍中文字幕| 九九久久精品国产亚洲av麻豆| 午夜老司机福利剧场| 十八禁国产超污无遮挡网站| 大型黄色视频在线免费观看| 琪琪午夜伦伦电影理论片6080| 成人无遮挡网站| 午夜日韩欧美国产| 国产精品久久久久久精品电影| 毛片女人毛片| av专区在线播放| 最好的美女福利视频网| 国产精品女同一区二区软件 | 色哟哟哟哟哟哟| 午夜亚洲福利在线播放| 亚洲在线观看片| 日韩欧美精品v在线| 亚洲成人中文字幕在线播放| 久久亚洲真实| 国产综合懂色| 波多野结衣高清无吗| 亚洲av一区综合| 99热这里只有精品一区| 日本熟妇午夜| avwww免费| 欧美成人一区二区免费高清观看| 99热这里只有是精品50| 精品人妻偷拍中文字幕| 99九九线精品视频在线观看视频| 老司机午夜福利在线观看视频| 国产白丝娇喘喷水9色精品| 国产精品久久久久久精品电影| 男人和女人高潮做爰伦理| 美女被艹到高潮喷水动态| 亚洲真实伦在线观看| 女人十人毛片免费观看3o分钟| 国产久久久一区二区三区| 亚洲第一区二区三区不卡| 成人特级av手机在线观看| 日韩欧美在线二视频| 国产三级在线视频| 别揉我奶头~嗯~啊~动态视频| 欧美日韩综合久久久久久 | 99久久精品一区二区三区| 高清日韩中文字幕在线| 高清在线国产一区| av国产免费在线观看| 一进一出抽搐动态| 日韩欧美 国产精品| 午夜免费激情av| 看十八女毛片水多多多| 两个人视频免费观看高清| 中国美白少妇内射xxxbb| 国产一区二区激情短视频| 久久久久久久亚洲中文字幕| 精品一区二区免费观看| 欧美成人免费av一区二区三区| 波多野结衣高清无吗| 在线免费十八禁| 亚洲中文字幕日韩| 免费人成视频x8x8入口观看| 久久久久国产精品人妻aⅴ院| 我要看日韩黄色一级片| 中文资源天堂在线| av在线天堂中文字幕| 99久久精品一区二区三区| 五月玫瑰六月丁香| 中文字幕久久专区| 亚洲av美国av| 日本一本二区三区精品| 在线免费观看的www视频| 亚洲男人的天堂狠狠| 搡老岳熟女国产| 国产69精品久久久久777片| 神马国产精品三级电影在线观看| 国内精品久久久久久久电影| av天堂在线播放| 狂野欧美白嫩少妇大欣赏| 精品一区二区三区人妻视频| 一本一本综合久久| 国产女主播在线喷水免费视频网站 | 最后的刺客免费高清国语| 免费无遮挡裸体视频| 岛国在线免费视频观看| 亚洲最大成人中文| 免费人成视频x8x8入口观看| 波野结衣二区三区在线| 最后的刺客免费高清国语| h日本视频在线播放| 国产高清有码在线观看视频| 亚洲最大成人中文| 亚洲国产精品成人综合色| 少妇熟女aⅴ在线视频| 欧美性感艳星| 内射极品少妇av片p| 欧美一区二区国产精品久久精品| 91精品国产九色| 伦精品一区二区三区| 日韩大尺度精品在线看网址| 国产高潮美女av| 一级毛片久久久久久久久女| 欧美最新免费一区二区三区| 国产黄片美女视频| 搡女人真爽免费视频火全软件 | 大型黄色视频在线免费观看| 欧美激情在线99| 国产伦精品一区二区三区四那| 热99在线观看视频| 国内精品久久久久久久电影| 欧美区成人在线视频| 美女xxoo啪啪120秒动态图| 九色国产91popny在线| 亚洲自拍偷在线| 久久久色成人| 欧美日韩瑟瑟在线播放| 少妇的逼好多水| 日本三级黄在线观看| 国产av在哪里看| 91久久精品国产一区二区成人| 日日摸夜夜添夜夜添小说| 成人国产麻豆网| 日本撒尿小便嘘嘘汇集6| 小说图片视频综合网站| 校园人妻丝袜中文字幕| 国产精品野战在线观看| 久久久久久伊人网av| xxxwww97欧美| 少妇人妻一区二区三区视频| 精品99又大又爽又粗少妇毛片 | 精品国内亚洲2022精品成人| 精品久久久久久久久av| 亚洲午夜理论影院| 精品免费久久久久久久清纯| h日本视频在线播放| 中国美女看黄片| 日本成人三级电影网站| videossex国产| 国产老妇女一区| 18禁裸乳无遮挡免费网站照片| 成人特级黄色片久久久久久久| 日本一二三区视频观看| 欧美一区二区精品小视频在线| 18禁黄网站禁片午夜丰满| 亚洲 国产 在线| 久久精品国产亚洲网站| av国产免费在线观看| 亚洲男人的天堂狠狠| 黄色女人牲交| 午夜精品一区二区三区免费看| 亚洲av成人av| 国产在线男女| 一个人免费在线观看电影| 免费看光身美女| 国产单亲对白刺激| 人人妻人人澡欧美一区二区| 女的被弄到高潮叫床怎么办 | 美女被艹到高潮喷水动态| 成人特级av手机在线观看| 在线播放无遮挡| 国产伦人伦偷精品视频| 黄色日韩在线| 男人和女人高潮做爰伦理| 91久久精品电影网| 麻豆av噜噜一区二区三区| 亚洲精品成人久久久久久| 欧美成人免费av一区二区三区| 亚洲美女视频黄频| 国产又黄又爽又无遮挡在线| 久久人人爽人人爽人人片va| 国产亚洲精品av在线| 日本爱情动作片www.在线观看 | 久久婷婷人人爽人人干人人爱| 国产大屁股一区二区在线视频| 日本精品一区二区三区蜜桃| 18+在线观看网站| 国产精品女同一区二区软件 | 亚洲欧美日韩高清专用| 亚洲精品在线观看二区| 蜜桃亚洲精品一区二区三区| 国产高清激情床上av| 99久久成人亚洲精品观看| 黄色女人牲交| 成人一区二区视频在线观看| 免费大片18禁| 免费无遮挡裸体视频| 嫁个100分男人电影在线观看| 永久网站在线| 久久精品国产亚洲网站| avwww免费| 国产色爽女视频免费观看| 国产一区二区在线av高清观看| 亚洲午夜理论影院| 丝袜美腿在线中文| 三级男女做爰猛烈吃奶摸视频| 毛片女人毛片| av中文乱码字幕在线| 国产精品久久久久久久久免| 高清日韩中文字幕在线| 真人做人爱边吃奶动态| а√天堂www在线а√下载| 一个人看的www免费观看视频| www.www免费av| 色哟哟哟哟哟哟| 久久精品国产亚洲网站| 搡女人真爽免费视频火全软件 | 一个人免费在线观看电影| 91在线精品国自产拍蜜月| av黄色大香蕉| 亚洲精品粉嫩美女一区| 欧美激情国产日韩精品一区| 亚洲精品久久国产高清桃花| av.在线天堂| 热99re8久久精品国产| 日本色播在线视频| 精品午夜福利视频在线观看一区| 日韩欧美三级三区| 人人妻人人看人人澡| 岛国在线免费视频观看| 亚洲电影在线观看av| 亚洲人与动物交配视频| 精品人妻视频免费看| 黄色丝袜av网址大全| 91麻豆精品激情在线观看国产| 国产激情偷乱视频一区二区| 亚洲av第一区精品v没综合| 亚洲精品一卡2卡三卡4卡5卡| 国产亚洲精品久久久com| 中文字幕av成人在线电影| 中出人妻视频一区二区| 99热只有精品国产| 中文字幕av在线有码专区| 美女xxoo啪啪120秒动态图| 不卡视频在线观看欧美| 岛国在线免费视频观看| 亚洲最大成人中文| 亚洲国产精品成人综合色| 在现免费观看毛片| 又黄又爽又免费观看的视频| 婷婷精品国产亚洲av在线| 在线看三级毛片| 91av网一区二区| 久久草成人影院| 亚洲欧美日韩无卡精品| 欧美3d第一页| 97人妻精品一区二区三区麻豆| 成人亚洲精品av一区二区| 搡女人真爽免费视频火全软件 | av视频在线观看入口| 欧美+日韩+精品| 两个人视频免费观看高清| 一个人看的www免费观看视频| 欧美在线一区亚洲| 欧美高清成人免费视频www| 亚洲性夜色夜夜综合| 精品无人区乱码1区二区| av在线观看视频网站免费| 成年免费大片在线观看| 日本色播在线视频| 蜜桃久久精品国产亚洲av| 欧美+亚洲+日韩+国产| 久久国内精品自在自线图片| 韩国av一区二区三区四区| 亚洲最大成人av| 亚洲国产日韩欧美精品在线观看| 国产精品精品国产色婷婷| 国产成人一区二区在线| 久久久精品欧美日韩精品| 国产精品电影一区二区三区| 亚洲av美国av| 人妻丰满熟妇av一区二区三区| 床上黄色一级片| 午夜视频国产福利| 露出奶头的视频| 在线观看舔阴道视频| 国产欧美日韩精品亚洲av| av专区在线播放| 乱人视频在线观看| 欧美绝顶高潮抽搐喷水| 天堂√8在线中文| 欧美日本视频| 欧美zozozo另类| 夜夜看夜夜爽夜夜摸| 久久久国产成人免费| 欧美又色又爽又黄视频| 热99re8久久精品国产| 3wmmmm亚洲av在线观看| 老女人水多毛片| 我的女老师完整版在线观看| 99久久精品一区二区三区| 超碰av人人做人人爽久久| 日本熟妇午夜| www.www免费av| 亚洲专区中文字幕在线| 日本黄色片子视频| 精品国产三级普通话版| 久久久国产成人精品二区| 久久国产乱子免费精品| 亚洲av电影不卡..在线观看| 我的女老师完整版在线观看| 国产av麻豆久久久久久久| 校园人妻丝袜中文字幕| 日本熟妇午夜| 国产成人影院久久av| 日韩一本色道免费dvd| 美女 人体艺术 gogo| 亚洲精品日韩av片在线观看| 亚洲avbb在线观看| 丰满人妻一区二区三区视频av| 日日摸夜夜添夜夜添小说| 观看美女的网站| 亚洲成人免费电影在线观看| 国产精品美女特级片免费视频播放器| 国产 一区精品| 最近最新中文字幕大全电影3| 国产精品人妻久久久影院| 欧美日本视频| 欧美激情在线99| 成年女人看的毛片在线观看| 午夜免费激情av| av.在线天堂| 亚洲欧美激情综合另类| 久久亚洲精品不卡| 久久久久久久亚洲中文字幕| АⅤ资源中文在线天堂| 91狼人影院| 最近最新免费中文字幕在线| 欧美区成人在线视频| 亚洲四区av| 波多野结衣高清无吗| 内地一区二区视频在线| 国产国拍精品亚洲av在线观看| 搡老熟女国产l中国老女人| 久久午夜福利片| 身体一侧抽搐| 精品久久久久久久末码| 精品一区二区三区人妻视频| 中文字幕精品亚洲无线码一区| 97超级碰碰碰精品色视频在线观看| 欧美日本亚洲视频在线播放| 内地一区二区视频在线| 精品乱码久久久久久99久播| 成人精品一区二区免费| 亚洲七黄色美女视频| 九九在线视频观看精品| 熟女人妻精品中文字幕| 成人三级黄色视频| 日韩欧美在线二视频| 久久人人爽人人爽人人片va| 亚洲国产日韩欧美精品在线观看| 色播亚洲综合网| 国产极品精品免费视频能看的| 少妇人妻精品综合一区二区 | 亚洲va在线va天堂va国产| 国内少妇人妻偷人精品xxx网站| 蜜桃亚洲精品一区二区三区| 免费电影在线观看免费观看| 午夜视频国产福利| 丝袜美腿在线中文| 国内精品美女久久久久久| 国产日本99.免费观看| 黄色女人牲交|