• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Kinetics of Reactive Extraction of Nd from Nd2O3 with TBP-HNO3Complex in Supercritical Carbon Dioxide*

    2009-05-12 03:33:14ZHULiyang朱禮洋DUANWuhua段五華XUJingming徐景明andZHUYongjun朱永
    關(guān)鍵詞:五華

    ZHU Liyang (朱禮洋), DUAN Wuhua (段五華), XU Jingming (徐景明) andZHU Yongjun(朱永)

    ?

    Kinetics of Reactive Extraction of Nd from Nd2O3with TBP-HNO3Complex in Supercritical Carbon Dioxide*

    Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 102201, China

    The process based on supercritical fluid extraction for reprocessing of the spent nuclear fuel has some remarkable advantages over the plutonium-uranium extraction (PUREX) process. Especially, it can minimize the generation of secondary waste. Dynamic reactive extraction of neodymium oxide (Nd2O3) in supercritical carbon dioxide (SC-CO2) containing tri--butyl phosphate-nitric acid (TBP-HNO3) complex was investigated. Temperature showed a positive effect on the extraction efficiency, while pressure showed a negative effect when the unsaturated TBP-HNO3complex was employed for the dynamic reactive extraction of Nd2O3in SC-CO2. Both temperature and pressure effects indicated that the kinetic process of the reactive extraction was controlled by the chemical reaction. A kinetic model was proposed to describe the extraction process.

    supercritical carbon dioxide, kinetics, reactive extraction, TBP-HNO3complex, Nd2O3

    1 INTRODUCTION

    Reprocessing of the spent nuclear fuel is commercially carried out by the plutonium-uranium extraction (PUREX) process. In the PUREX process, the spent nuclear fuel is dissolved in nitric acid followed by co-extraction of uranium and plutonium from acid solution using the tri--butyl phosphate (TBP)/kerosene system. The fission products are left in the raffinate stream [1]. Therefore, considerable volume of the high level liquid waste (HLLW) is generated, leading to further treatment with high cost.

    Recently, supercritical fluid extraction (SFE) of lanthanides and actinides has been extensively studied for its potential application in reprocessing of the spent nuclear fuel because it can simplify the process and reduce the secondary liquid waste [2-11]. TBP-HNO3complex has been found to have high solubility in supercritical carbon dioxide (SC-CO2). It is capable of dissolving directly lanthanide and actinide oxides. This process integrates chemical reactions with SFE, which is free of any aqueous solution to dissolve metal oxides prior to extraction. Therefore, this process is named reactive extraction.

    There are extensive mathematical models proposed for SFE of natural products from the solid matrix, where the interactions between target compounds and the matrix are carefully considered [12-14]. Cui. [15] studied the kinetics of chelating extraction of heavy metal ions in SC-CO2. However, little is known about modeling supercritical fluid reactive extraction of metal oxides, especially lanthanide and actinide oxides, which is very important to explore the extraction mechanisms. In this study, Nd2O3as a typical lanthanide oxide in the spent nuclear fuel is selected to start our research on application of SFE in reprocessing of the spent nuclear fuel. The reactive extraction of Nd2O3is conducted using TBP-HNO3complex in SC-CO2. Effects of temperature and pressure are investigated. A kinetic model is proposed to describe the extraction process.

    2 EXPERIMENTAL

    2.1 Materials

    Tri--butyl phosphate (AR, >98%) and HNO3(AR, 15.5 mol·L-1) were provided by Beijing Chemical Plant, China. NaOH (AR) was obtained from Tianjin Unionlab Chemical Reagent Ltd., China. Ethylene diamine tetraacetic acid disodium salt (EDTA, 99.96%) was purchased from National Research Center for Certified Reference Materials, China. Carbon dioxide (99.995%) was purchased from Beijing Bei Temperature Gas Factory, China. Nd2O3powder was obtained from Sinopharm Chemical Reagent Co., Ltd, China, and sieved before use with standard sieve of 0.025-0.031 mm.

    TBP-HNO3complex was prepared by vigorously mixing TBP with equal volume of 15.5 mol·L-1HNO3, followed by centrifugation for 0.5 h. The concentration of HNO3in TBP-HNO3complex was determined by acid-base titration using 0.1 mol·L-1NaOH. The content of water was measured by a 787 KF Titrino instrument (Metrohm Ltd., Switzerland). The density of the complex was calculated by weighing a known volume of complex with Mettler AE 200 balance (Mettler Toledo, Switzerland). The concentration of TBP in TBP-HNO3complex could be calculated by combining the density of complex with the content of H2O and HNO3in the complex [16, 17]. The complex in this study had a formula of TBP(HNO3)1.63(H2O)0.53. Since TBP in the complex was saturated with HNO3and H2O, excess water droplets would form and separate from the supercritical fluid phase during the extraction process. If the metal ion is distributed into the water droplets, effective extraction is not achieved [18]. Thus, another kind of TBP-HNO3complex was prepared by diluting the TBP(HNO3)1.63(H2O)0.53complex with equal volume of anhydrate TBP and used in the experiments. Accordingly, its formula was determined to be TBP(HNO3)0.79(H2O)0.26, which could be called an unsaturated complex wherein the concentration of H+was 2.52 mol·L-1and the content of water was 1.48% (by mass).

    2.2 Procedure

    A schematic diagram of the apparatus (SFT-100, Supercritical Fluid Technologies, Inc. USA) for the SFE experiments is shown in Fig. 1. The main part of the apparatus consists of a 50-ml stainless steel reaction vessel, which is settled in a thermostatic air bath that can control the temperature within ±0.1 K. A plunger pump is used to flow CO2. It is coupled with a pressure control plane, which can display and control both the flow rate of CO2and the pressure of the system.

    Figure 1 Schematic diagram of the apparatus for SFE

    1—CO2cylinder; 2—plunger pump; 3—TBP-HNO3complex container; 4—syringe pump; 5—pre-heating coil; 6—inlet valve; 7—thermostatic air bath; 8—reaction vessel; 9—static/dynamic valve; 10—back pressure restrictor; 11—collection vessel; 12—tail gas filter

    Figure 2 Effect of pressure on the extraction efficiency at 323.15 K

    flow rate of CO2/ml·min-1: ■?2.51±0.28;●?2.56±0.23;▲?2.61±0.20;▼?2.58±0.28pressure/MPa: ■?15; ●?21; ▲?25; ▼?30

    The thermostatic air bath was first heated to the desired temperature. The reaction vessel was sealed after 0.5 g Nd2O3powder was charged into it. The liquid CO2was subsequently purged into the system. The restrictor valve was closed for pressurizing CO2with the plunge pump. When the pressure of the system reached the desired pressure, the restrictor valve was opened carefully to let CO2flow through the system. The flow rate of the liquid CO2at the outlet of the plunger pump was about 2.50 ml·min-1. It was difficult to keep the pressure and the flow rate of CO2constant in the flow SFE process, so the pressure was kept constant throughout the experiments in the present work, while slight fluctuation of the flow rate of liquid CO2was observed, which was also reported by Tomioka [19]. Then, TBP-HNO3complex was supplied into the system by the syringe pump at a constant rate of 0.5 ml·min-1, and mixed with CO2flow at the mixing joint of the system. In the reaction vessel, TBP-HNO3complex in SC-CO2reacted with Nd2O3. As a result, the soluble Nd-TBP complex was formed in SC-CO2, carried out of the reaction vessel by SC-CO2. At last, the soluble Nd-TBP complex was retained in the collection vessel filled with the hydrogenating kerosene when SC-CO2was gasified under the atmospheric pressure by opening the back pressure restrictor. The collection vessel was replaced at a designed time interval for the study of dynamic extraction.

    The quantity of Nd collected was determined by the complexometric titration method with the EDTA solution. The residual Nd2O3in the reaction vessel after being dissolved in 1 mol·L-1nitric acid was determined by ICP-AES (IRIS. Adr, Thermo Jarrell Ash, USA). Consequently the mass balance could be estimated.

    The extraction efficiency () is defined as follows:

    3 RESULTS AND DISCUSSION

    3.1 Effect of pressure on the extraction efficiency

    The effect of pressure on the reactive extraction of Nd2O3in SC-CO2was investigated by fixing the temperature at 323.15 K and varying pressure from 15 to 30 MPa. The extraction curve is shown in Fig. 2 by plotting the extraction efficiency () against the extraction time (). The extraction efficiency increased exponentially with the extraction time. The extraction process nearly finished after 180 min of dynamic extraction because Nd2O3in the reaction vessel was completely reacted and extracted by TBP-HNO3complex in SC-CO2under different pressure. The extraction efficiency could reach 96% for all the cases. Pressure usually has positive effect in the SFE processes, namely the extraction efficiency increases with pressure [20], because the higher the pressure is, the higher the solubility of the solute in SC-CO2is. In contrast, pressure showed a negative effect on the reactive extraction of Nd2O3, namely the extraction efficiency declined with pressure. A similar effect of pressure was also observed when U3O8was dissolved and extracted using SC-CO2containing TBP-HNO3complex [19]. It is possible that increase of pressure in those reactive extraction systems reduces the reactivity of TBP-HNO3complex.

    3.2 Effect of temperature on the extraction efficiency

    The effect of temperature on the extraction efficiency was examined by fixing pressure at 21 MPaand varying temperature in the range of 313.15-333.15 K. The extraction curve is shown in Fig. 3. The temperature shows a different effect on the extraction efficiency from the pressure, namely, the higher the temperature is, the higher the extraction efficiency is. The temperature effect may attribute to the influence of temperature on the chemical reaction rate of TBP-HNO3complex with Nd2O3. The reaction rate generally increases with temperature.

    Figure 3 Effect of temperature on the extraction efficiency at 21 MPa

    flow rate of CO2/ml·min-1:■?2.77±0.53;●?2.56±0.23; ▲?2.51±0.15temperature/K:■?313.15;●?323.15;▲?333.15

    4 PROCESS KINETICS

    Both effects of temperature and pressure suggest that the process kinetics is controlled by chemical reaction before 120 min. The kinetics process is composed of the following steps (see Fig. 4).

    Figure 4 Schematic diagram of the kinetic process

    (1) A stagnant film is formed by TBP-HNO3complex near Nd2O3particle surface [21, 22].

    (2) TBP-HNO3complex diffuses to the stagnant film from SC-CO2phase in a convective-diffusion way. Subsequently, TBP-HNO3complex penetrates the stagnant film, followed by reaching the particle surface.

    (3) TBP-HNO3complex reacts with Nd2O3at the surface of the Nd2O3particle, forming the Nd-TBP complex. It was reported that 1︰4 complex was formed when neodymium nitrate complexes with TBP in SC-CO2[23]. Therefore the reaction can be described as follows:

    A united reaction equation is obtained for simplification:

    (4) The Nd(NO3)3(TBP)4product diffuses out of the stagnant film to SC-CO2phase, and is transported out of the reaction vessel by convective flow.

    With a small quantity of the Nd2O3sample loaded in the reaction vessel, some assumptions can be made: 1) The Nd2O3particle exhibits a spherical shape. 2) SC-CO2is a well-mixed flow and well distributed in every cross-section of the reaction vessel. 3) Temperature and pressure are uniformly distributed in the reaction vessel. Thereby, the reaction and mass transport should be carried out under isothermal conditions. 4) Both the stagnant film resistance and the convective mass transfer resistance may be neglected. Taken these assumptions together with the reaction taking place at particle surface, the conservation equation can be written as follows [15]:

    In addition, the diffusivity of SC-CO2is excellent, so that the radial distribution of concentration on particle surface may be neglected, provided that the size of the Nd2O3particle is small. The first term on the right hand side of Eq. (4) is zero. Thus Eq. (4) is further reduced to:

    The extraction efficiencycan be expressed as (8):

    so Eq. (7) is reduced to:

    The experimental results under various temperature and pressure are fitted using Eq. (9). The results are listed in Table 1. The linear correlation coefficients (value) are all above 96%. The probabilities of completely nonlinear (value) are less than 0.05 when the confidence level is 95% for all the case.

    Table 1 Exponential fitting result for the dynamic reactive extraction of Nd2O3 into SC-CO2

    Figure 5 Exponential fitting for the reactive extraction

    The effect of temperature on the reaction can be represented by the Arrhenius equation:

    The apparent activation energyais calculated to be (16.47±3.02) kJ·mol-1by plotting ln′ against 1/as shown in Fig. 6.

    Figure 6 Arrhenius plots for the reactive extraction of Nd2O3at 21 Mpa

    5 CONCLUSIONS

    Quantitative extraction of Nd2O3by SC-CO2containing TBP-HNO3complex was achieved. The extraction efficiency increased with temperature in the range of 313.15-333.15 K and decreased with pressure in the range of 15-30 MPa. The reactive extraction process was controlled by chemical reaction, and the kinetic process could be well described by a simple mathematic model. The reaction could be represented by a pseudo-first-order reaction, and the apparent reaction rate constants of the reaction of TBP-HNO3complex with Nd2O3under various pressures and temperatures were obtained. The apparent activation energy of the present system was calculated to be (16.47±3.02) kJ·mol-1based on the experimental data in the range of 313.15-333.15 K at 21 MPa.

    NOMENCLATURE

    pre-exponential factor, min-1

    ANd2O3remained in the reaction vessel, mol

    A,0Nd2O3loaded in the reaction vessel, mol

    collectedNd2O3collected in the collection vessel, mol

    sconcentration of TBP-HNO3complex, mol·L-1

    ′ effective diffusion coefficient, m2·min-1

    extraction efficiency, %

    aapparent activation energy, kJ·mol-1

    ′ apparent reaction rate constant, min-1

    number of experimental data points

    probability (thatis zero)

    pressure, MPa

    Aformation reaction rate, mol·min-1

    linear correlation coefficient

    pparticle size, m

    temperature, K

    time, min

    2standard deviation

    1 Jiang, S.J., Ren, F.Y., Reprocessing Engineering of Nuclear Fuel, Nuclear Energy Press, Beijing, China, 8-19 (1995). (in Chinese)

    2 Laintz, K.E., Wai, C.M., Yonker, C.R., Smith, R.D., “Extraction of metal ions from liquid and solid materials by supercritical carbon dioxide”,.., 64 (22), 2875-2878 (1992).

    3 Lin, Y.H., Brauer, R.D., Laintz, K.E., Wai, C.M., “Supercritical fluid extraction of lanthanides and actinides from solid materials with a fluorinated β-diketone”,.., 65 (18), 2549-2551 (1993).

    4 Tomioka, O., Enokida, Y., Yamamoto, I., “Solvent extraction of lanthanides from their oxides with TBP in supercritical carbon dioxide”,...., 35 (7), 515-516 (1998).

    5 Tomioka, O., Enokida, Y., Yamamoto, I., “Selective recovery of neodymium from oxides by direct extraction method with supercritical CO2containing TBP-HNO3complex”,..., 37 (5), 1153-1162 (2002).

    6 Trofimov, T.I., Samsonov, M.D., Kulyako, Y.M., Myasoedov, B.F., “ Dissolution and extraction of actinide oxides in supercritical carbon dioxide containing the complex of tri--butylphosphate with nitric acid”,.., 7 (12), 1209-1213 (2004).

    7 Shimada, T., Ogumo, S., Sawada, K., Enokida, Y., Yamamoto, I., “Selective extraction of uranium from a mixture of metal or metal oxides by a tri--butylphosphate complex with HNO3and H2O in supercritical CO2”,.., 22 (11), 1387-1391 (2006).

    8 Duan, W.H., Jing, S., Zhu, Y.J., Chen, J., “Research progress on supercritical fluid chelating extraction of lanthanides and actinides”,..., 41 (4), 429-437 (2007). (in Chinese)

    9 Wai, C.M., “Supercritical fluid extraction of radionuclides: A green technology for nuclear waste management”, In: A.C.S. symposium series 943, American Chemical Society, Washington, DC, 161-170 (2006).

    10 Wai, C.M., “Reprocessing spent nuclear fuel with supercritical carbon dioxide”, In: A.C.S. symposium series 933, American Chemical Society, Washington, DC, 57-70 (2006).

    11 Enokida, Y., Sawada, K., Shimada, T., Yamamoto, I., “An option making for nuclear fuel reprocessing by using supercritical carbon dioxide”, In: Proceedings of Global 2007 Conference on Advanced Nuclear Fuel Cycles and Systems, Boise, Idaho, Sept. 9-13, 1029-1032 (2007).

    12 Yin, J.Z., Liu, Y., “Kinetics analysis of supercritical fluid extraction for natural products”,...., 22 (2), 216-222 (2008). (in Chinese)

    13 Ruetsch, L., Daghero, J., Mattea, M., “Supercritical extraction of solid matrices model formulation and experiments”,...., 33 (2), 103-107 (2003).

    14 Vargas, R.M.F., Cassel, E., Gomes, G.M.F., Longhi, L.G.S., Atti-Serafini, L., Atti-Santos, A.C., “Supercritical extraction of carqueja essential oil: Experiments and modeling”,...., 23 (3), 375-382 (2006).

    15 Cui, H.Y., Wang, T., Guan, Y.F., Shen, Z.Y., “Kinetics of chelating extraction of heavy metals by supercritical CO2”,...., 52 (9), 829-833 (2001). (in Chinese)

    16 Enokida, Y., Tomioka, O., Lee, S.C., Rustenholtz, A., Wai, C.M., “Characterization of a tri--butyl phosphate-nitric acid complex: A CO2-soluble extractant for dissolution of uranium dioxide”,...., 42 (21), 5037-5041 (2003).

    17 Duan, W.H., Zhu, L.Y., Jing, S., Zhu, Y.J., Chen, J., “Study on properties of TBP-HNO3complex used for direct dissolution of lanthanide and actinide oxides in supercritical fluid CO2”,..., 25 (3), 319-322 (2007).

    18 Shimizu, R., Sawada, K., Enokida, Y., Yamamoto, I., “Supercritical fluid extraction of rare earth elements from luminescent material in waste fluorescent lamps”,.., 33 (3), 235-241 (2005).

    19 Tomioka, O., Meguro, Y., Enokida. Y., Yamamoto, I., Yoshida, Z., “Dissolution behavior of uranium oxides with supercritical CO2using HNO3-TBP complex as a reactant”,...., 38 (12), 1097-1102 (2001).

    20 Kumoro, A.C., Hasan, M., “Supercritical carbon dioxide extraction of andrographolide from andrographis paniculata: Effect of the solvent flow rate, pressure, and temperature”,...., 15 (6), 877-883 (2007).

    21 Liao, C.H., Huang, Z.R., Gu, G.L., “Mass transfer model for supercritical CO2extraction of solid raw material”,., 21 (7), 502-506 (2004). (in Chinese)

    22 Goto, M., Roy, B.C., Kodama, A., Hirose, T., “Modeling supercritical fluid extraction process involving solute-solid interaction”,...., 31 (2), 171-177 (1998).

    23 Fox, R.V., Ball, R.D., Harrington, P.D.B., Rollins, H.W., Jolley, J.J., Wai, C.M., “Praseodymium nitrate and neodymium nitrate complexation with organophosphorus reagents in supercritical carbon dioxide solvent”,.., 31 (3), 273-286 (2004).

    2008-08-26,

    2009-01-19.

    the National Natural Science Foundation of China (20506014).

    ** To whom correspondence should be addressed. E-mail: dwh203@mail.tsinghua.edu.cn

    猜你喜歡
    五華
    試析粵東五華提線木偶的造型與演出形態(tài)
    ——以五華提線木偶傳習(xí)所為例
    五華獅雄山遺址的考古收獲及其性質(zhì)——與《五華獅雄山》考古報(bào)告作者的商榷
    廣州文博(2020年0期)2020-06-09 05:13:54
    憶孔明
    青年生活(2019年35期)2019-09-10 00:25:43
    中央蘇區(qū)(五華)歷史博物館奠基動(dòng)工
    源流(2018年6期)2018-12-03 02:02:14
    從《五華燕堂李氏族譜》中看名字的選字特點(diǎn)
    五華紅木文化產(chǎn)業(yè)園開業(yè)
    五華掠影
    源流(2014年1期)2014-01-08 22:27:44
    五華石雕精品水寨大橋
    源流(2014年1期)2014-01-08 08:37:33
    隸屬于原中央蘇區(qū)的五華
    源流(2014年1期)2014-01-08 08:30:15
    五華蘇區(qū)革命史略
    源流(2014年1期)2014-01-08 04:01:05
    午夜福利免费观看在线| 麻豆av在线久日| 欧美日韩成人在线一区二区| av又黄又爽大尺度在线免费看| 成人三级做爰电影| 久久国产亚洲av麻豆专区| 天堂俺去俺来也www色官网| 嫩草影视91久久| 亚洲,欧美精品.| 亚洲精品粉嫩美女一区| 两性夫妻黄色片| 亚洲熟女精品中文字幕| 人妻久久中文字幕网| 中文精品一卡2卡3卡4更新| 91大片在线观看| 热re99久久国产66热| 亚洲自偷自拍图片 自拍| a 毛片基地| 欧美 日韩 精品 国产| 少妇精品久久久久久久| 99re6热这里在线精品视频| 肉色欧美久久久久久久蜜桃| 99香蕉大伊视频| 国产精品亚洲av一区麻豆| 日本wwww免费看| 夫妻午夜视频| 国产免费视频播放在线视频| 国产男女内射视频| 亚洲国产av影院在线观看| 美女大奶头黄色视频| 人妻 亚洲 视频| 国产成人欧美| 亚洲精品成人av观看孕妇| 女警被强在线播放| 亚洲激情五月婷婷啪啪| 岛国毛片在线播放| www.999成人在线观看| 一区福利在线观看| 亚洲国产看品久久| 丁香六月天网| 男人舔女人的私密视频| 婷婷成人精品国产| 色老头精品视频在线观看| 亚洲国产欧美在线一区| 一区二区三区精品91| 中文字幕另类日韩欧美亚洲嫩草| 午夜福利视频在线观看免费| 视频区欧美日本亚洲| 国产精品 国内视频| 国产色视频综合| 欧美日韩成人在线一区二区| 一个人免费看片子| 久久国产精品人妻蜜桃| 国产国语露脸激情在线看| 午夜精品久久久久久毛片777| 热99re8久久精品国产| 99精品久久久久人妻精品| 男女之事视频高清在线观看| 久久女婷五月综合色啪小说| 国产伦理片在线播放av一区| 欧美变态另类bdsm刘玥| av在线app专区| 国产成人欧美| 人妻一区二区av| 日本a在线网址| 国产熟女午夜一区二区三区| 免费在线观看日本一区| 动漫黄色视频在线观看| 国产不卡av网站在线观看| 叶爱在线成人免费视频播放| 如日韩欧美国产精品一区二区三区| av又黄又爽大尺度在线免费看| 在线观看免费高清a一片| 9色porny在线观看| 欧美日韩精品网址| 久久毛片免费看一区二区三区| 亚洲av欧美aⅴ国产| 日本撒尿小便嘘嘘汇集6| 国产高清国产精品国产三级| 热99国产精品久久久久久7| 中文字幕制服av| 国产av一区二区精品久久| 亚洲成av片中文字幕在线观看| 国产淫语在线视频| 国产野战对白在线观看| 亚洲精品国产区一区二| 国产精品1区2区在线观看. | 午夜影院在线不卡| 少妇粗大呻吟视频| 黑人巨大精品欧美一区二区蜜桃| 午夜免费成人在线视频| 精品国产国语对白av| 亚洲午夜精品一区,二区,三区| 999精品在线视频| av天堂在线播放| 国产不卡av网站在线观看| 超色免费av| 亚洲情色 制服丝袜| 婷婷色av中文字幕| 亚洲精品美女久久久久99蜜臀| 日韩有码中文字幕| 国产精品久久久久成人av| 亚洲国产看品久久| 国产熟女午夜一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美日本中文国产一区发布| 69精品国产乱码久久久| 亚洲欧美清纯卡通| kizo精华| 国产一区二区在线观看av| 一区二区三区乱码不卡18| 精品人妻1区二区| 国产有黄有色有爽视频| 久久久久精品国产欧美久久久 | 狠狠狠狠99中文字幕| 欧美日韩亚洲国产一区二区在线观看 | 国产成人影院久久av| 成人18禁高潮啪啪吃奶动态图| 在线观看www视频免费| 日韩,欧美,国产一区二区三区| 国产欧美日韩综合在线一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 十分钟在线观看高清视频www| 人妻人人澡人人爽人人| 考比视频在线观看| 国产国语露脸激情在线看| 亚洲欧美清纯卡通| 成人av一区二区三区在线看 | 成年女人毛片免费观看观看9 | av免费在线观看网站| 亚洲精品第二区| 午夜免费成人在线视频| 久久中文看片网| 国产av又大| 久久国产亚洲av麻豆专区| 精品亚洲成国产av| av网站免费在线观看视频| 久久ye,这里只有精品| 亚洲自偷自拍图片 自拍| 每晚都被弄得嗷嗷叫到高潮| 亚洲成人免费av在线播放| 精品一区二区三卡| 性高湖久久久久久久久免费观看| 中文欧美无线码| 啦啦啦视频在线资源免费观看| 午夜免费成人在线视频| 一级片免费观看大全| 午夜免费鲁丝| 亚洲伊人色综图| 久久精品国产亚洲av高清一级| 久久ye,这里只有精品| 亚洲国产成人一精品久久久| 中文字幕人妻丝袜制服| 制服人妻中文乱码| 一个人免费看片子| 国产精品成人在线| 久久精品亚洲熟妇少妇任你| 亚洲成av片中文字幕在线观看| 久久久精品国产亚洲av高清涩受| 亚洲欧美日韩另类电影网站| 亚洲av电影在线进入| 欧美另类亚洲清纯唯美| 中文字幕制服av| 亚洲欧美精品自产自拍| 精品少妇久久久久久888优播| 91成人精品电影| 亚洲激情五月婷婷啪啪| 一本综合久久免费| 在线永久观看黄色视频| 亚洲欧美成人综合另类久久久| av不卡在线播放| 亚洲,欧美精品.| 菩萨蛮人人尽说江南好唐韦庄| 岛国在线观看网站| 国产在线免费精品| 成人影院久久| 一个人免费看片子| 久9热在线精品视频| 国产精品久久久久成人av| 国产精品久久久人人做人人爽| 成人黄色视频免费在线看| 美女福利国产在线| 国产xxxxx性猛交| 日本精品一区二区三区蜜桃| 国产一区二区在线观看av| 精品福利观看| 成人免费观看视频高清| 高清在线国产一区| 999久久久国产精品视频| 精品免费久久久久久久清纯 | 国产男女内射视频| 国产精品国产三级国产专区5o| 亚洲av电影在线进入| 欧美少妇被猛烈插入视频| 国产高清视频在线播放一区 | 亚洲精品国产区一区二| 欧美精品一区二区大全| 丰满少妇做爰视频| 欧美黄色片欧美黄色片| 少妇的丰满在线观看| 99热全是精品| 亚洲一码二码三码区别大吗| 亚洲av成人一区二区三| 亚洲第一青青草原| 一级片'在线观看视频| 午夜视频精品福利| 久久久久精品人妻al黑| 久久久久久久久久久久大奶| 爱豆传媒免费全集在线观看| 国产成人a∨麻豆精品| 丝瓜视频免费看黄片| 久久亚洲国产成人精品v| 狠狠婷婷综合久久久久久88av| 日本一区二区免费在线视频| 精品一区二区三区av网在线观看 | 动漫黄色视频在线观看| 日韩欧美免费精品| 啦啦啦在线免费观看视频4| 久久狼人影院| 桃花免费在线播放| 每晚都被弄得嗷嗷叫到高潮| 成年人免费黄色播放视频| 超色免费av| 黑人欧美特级aaaaaa片| a级毛片黄视频| 亚洲欧美色中文字幕在线| 久久人妻熟女aⅴ| 日韩有码中文字幕| 久久久久久久精品精品| 热re99久久国产66热| 亚洲国产欧美日韩在线播放| videos熟女内射| 黄色视频不卡| 交换朋友夫妻互换小说| 亚洲精品国产一区二区精华液| 一本综合久久免费| 国产精品影院久久| 午夜福利免费观看在线| 国产精品秋霞免费鲁丝片| 日韩 亚洲 欧美在线| 久久国产精品大桥未久av| 丰满迷人的少妇在线观看| 精品亚洲成国产av| 波多野结衣一区麻豆| 女性被躁到高潮视频| 亚洲国产日韩一区二区| 国产精品一区二区在线不卡| 美女午夜性视频免费| 免费观看a级毛片全部| 国产老妇伦熟女老妇高清| 啦啦啦 在线观看视频| 多毛熟女@视频| 极品少妇高潮喷水抽搐| 18禁黄网站禁片午夜丰满| 777久久人妻少妇嫩草av网站| 日韩熟女老妇一区二区性免费视频| 亚洲欧洲精品一区二区精品久久久| 国产野战对白在线观看| 亚洲国产av新网站| 91字幕亚洲| 久久精品成人免费网站| 久久久久网色| 欧美激情高清一区二区三区| 久久青草综合色| 成年动漫av网址| e午夜精品久久久久久久| 动漫黄色视频在线观看| 日韩大码丰满熟妇| 下体分泌物呈黄色| 黄频高清免费视频| 亚洲欧美一区二区三区久久| 国产成人精品在线电影| 天堂8中文在线网| 男人添女人高潮全过程视频| 极品人妻少妇av视频| 天堂俺去俺来也www色官网| 国产成人精品无人区| 亚洲中文日韩欧美视频| 日韩,欧美,国产一区二区三区| 伦理电影免费视频| 精品一品国产午夜福利视频| 首页视频小说图片口味搜索| 国产精品影院久久| 一区二区av电影网| 91字幕亚洲| 两性夫妻黄色片| 日韩 亚洲 欧美在线| 免费观看av网站的网址| 中文字幕av电影在线播放| 久久久欧美国产精品| 亚洲成国产人片在线观看| 亚洲全国av大片| 欧美精品一区二区免费开放| 国产精品一二三区在线看| 国产成人精品无人区| 天天躁日日躁夜夜躁夜夜| 19禁男女啪啪无遮挡网站| 国产亚洲欧美精品永久| 男人爽女人下面视频在线观看| 日韩欧美一区视频在线观看| 男女边摸边吃奶| 91精品伊人久久大香线蕉| 成人国产一区最新在线观看| 在线精品无人区一区二区三| 亚洲精品久久久久久婷婷小说| 成人18禁高潮啪啪吃奶动态图| 飞空精品影院首页| 免费观看人在逋| 国产人伦9x9x在线观看| 热99久久久久精品小说推荐| 午夜成年电影在线免费观看| 美女中出高潮动态图| 日本撒尿小便嘘嘘汇集6| 成人av一区二区三区在线看 | 18禁观看日本| 亚洲天堂av无毛| 又紧又爽又黄一区二区| 又大又爽又粗| 国产亚洲av高清不卡| 狠狠狠狠99中文字幕| av电影中文网址| 国产精品一区二区在线观看99| 亚洲色图综合在线观看| 国产一区二区三区综合在线观看| 精品少妇久久久久久888优播| 久久中文看片网| 精品一区在线观看国产| 欧美午夜高清在线| 亚洲av电影在线观看一区二区三区| 久久精品aⅴ一区二区三区四区| 91麻豆av在线| 国产精品香港三级国产av潘金莲| 老司机午夜福利在线观看视频 | 国产一卡二卡三卡精品| 中国国产av一级| 久久久欧美国产精品| 黑人猛操日本美女一级片| 亚洲第一av免费看| 欧美另类亚洲清纯唯美| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲国产欧美网| 性高湖久久久久久久久免费观看| 精品少妇内射三级| 国产成人精品在线电影| 丰满少妇做爰视频| 国产伦人伦偷精品视频| 搡老熟女国产l中国老女人| 亚洲中文av在线| 久久午夜综合久久蜜桃| 久久天堂一区二区三区四区| 伦理电影免费视频| 久久av网站| 国产一区二区 视频在线| 宅男免费午夜| 色视频在线一区二区三区| 国产91精品成人一区二区三区 | 九色亚洲精品在线播放| 亚洲av欧美aⅴ国产| 曰老女人黄片| 日韩人妻精品一区2区三区| 国产老妇伦熟女老妇高清| 狠狠婷婷综合久久久久久88av| 王馨瑶露胸无遮挡在线观看| 中文字幕另类日韩欧美亚洲嫩草| 免费日韩欧美在线观看| 电影成人av| 国产精品一区二区精品视频观看| 中亚洲国语对白在线视频| 国产精品久久久久久精品电影小说| 亚洲欧美精品自产自拍| 中文字幕精品免费在线观看视频| 日韩熟女老妇一区二区性免费视频| 亚洲色图综合在线观看| 国产成人精品在线电影| 又黄又粗又硬又大视频| 亚洲国产精品一区二区三区在线| 亚洲国产精品成人久久小说| 亚洲精品日韩在线中文字幕| 久久久久久免费高清国产稀缺| 成人手机av| 婷婷成人精品国产| 国产成人一区二区三区免费视频网站| 精品亚洲成a人片在线观看| 亚洲国产av新网站| 亚洲中文字幕日韩| 美女脱内裤让男人舔精品视频| 午夜久久久在线观看| 妹子高潮喷水视频| 大陆偷拍与自拍| 久久午夜综合久久蜜桃| av线在线观看网站| 国产精品久久久久久人妻精品电影 | 亚洲av欧美aⅴ国产| 国产免费视频播放在线视频| 一个人免费在线观看的高清视频 | 亚洲国产日韩一区二区| 国产成人精品久久二区二区免费| 久久人妻福利社区极品人妻图片| 超碰成人久久| 男女边摸边吃奶| 亚洲三区欧美一区| 久久精品国产亚洲av高清一级| 欧美久久黑人一区二区| 91成人精品电影| a在线观看视频网站| 久久 成人 亚洲| 欧美黑人精品巨大| 日韩制服骚丝袜av| 侵犯人妻中文字幕一二三四区| 天天添夜夜摸| 色婷婷久久久亚洲欧美| 中国美女看黄片| 欧美成人午夜精品| 在线观看免费午夜福利视频| 99国产极品粉嫩在线观看| 国产成人影院久久av| 一区在线观看完整版| 国产麻豆69| 一本综合久久免费| 欧美老熟妇乱子伦牲交| 日本一区二区免费在线视频| 超碰97精品在线观看| 亚洲人成电影观看| 亚洲国产欧美网| 亚洲精品美女久久久久99蜜臀| 免费久久久久久久精品成人欧美视频| 欧美 日韩 精品 国产| 香蕉丝袜av| 国产精品一区二区在线不卡| 999精品在线视频| 久久久久久久久久久久大奶| 丝袜美足系列| 日韩欧美一区二区三区在线观看 | 19禁男女啪啪无遮挡网站| 午夜日韩欧美国产| 国产成人精品无人区| 久久人人爽人人片av| 久久精品亚洲av国产电影网| 嫩草影视91久久| 首页视频小说图片口味搜索| av视频免费观看在线观看| 天堂8中文在线网| 久久精品人人爽人人爽视色| 无限看片的www在线观看| 满18在线观看网站| 建设人人有责人人尽责人人享有的| 99香蕉大伊视频| 国产精品影院久久| 国产亚洲欧美精品永久| 美女高潮喷水抽搐中文字幕| 99久久99久久久精品蜜桃| 男女免费视频国产| 亚洲人成77777在线视频| 多毛熟女@视频| 男女床上黄色一级片免费看| 久久 成人 亚洲| 欧美激情高清一区二区三区| 水蜜桃什么品种好| 汤姆久久久久久久影院中文字幕| 午夜视频精品福利| 欧美黄色淫秽网站| 考比视频在线观看| av国产精品久久久久影院| 俄罗斯特黄特色一大片| a 毛片基地| 香蕉国产在线看| 亚洲伊人色综图| 高清av免费在线| 久久av网站| 中文字幕高清在线视频| 国产伦人伦偷精品视频| 亚洲精品成人av观看孕妇| 亚洲人成电影免费在线| 欧美av亚洲av综合av国产av| 国产高清videossex| 在线天堂中文资源库| 99久久综合免费| 纵有疾风起免费观看全集完整版| 亚洲精品在线美女| 操出白浆在线播放| 蜜桃国产av成人99| 麻豆国产av国片精品| 蜜桃国产av成人99| 一本一本久久a久久精品综合妖精| 国产有黄有色有爽视频| 亚洲第一欧美日韩一区二区三区 | 亚洲av电影在线观看一区二区三区| 老熟女久久久| 一级片免费观看大全| 99热国产这里只有精品6| 亚洲精品中文字幕在线视频| 免费在线观看黄色视频的| 少妇粗大呻吟视频| 制服诱惑二区| 久久久久久人人人人人| 中文字幕人妻熟女乱码| 好男人电影高清在线观看| 免费不卡黄色视频| 精品亚洲成a人片在线观看| 日韩大片免费观看网站| 极品少妇高潮喷水抽搐| 99热网站在线观看| av在线老鸭窝| 欧美中文综合在线视频| 国产一卡二卡三卡精品| 国产日韩一区二区三区精品不卡| 欧美午夜高清在线| 欧美大码av| 午夜福利,免费看| 高潮久久久久久久久久久不卡| 狠狠狠狠99中文字幕| 午夜福利影视在线免费观看| 成在线人永久免费视频| 日韩免费高清中文字幕av| 51午夜福利影视在线观看| 午夜福利影视在线免费观看| 国产男女超爽视频在线观看| 老司机深夜福利视频在线观看 | 国产精品一区二区精品视频观看| 中国美女看黄片| 秋霞在线观看毛片| 在线观看免费日韩欧美大片| 欧美日韩黄片免| 精品熟女少妇八av免费久了| 亚洲少妇的诱惑av| 老司机福利观看| av视频免费观看在线观看| 黄色怎么调成土黄色| 日韩熟女老妇一区二区性免费视频| 午夜福利影视在线免费观看| 男女之事视频高清在线观看| 国产精品熟女久久久久浪| 最近最新免费中文字幕在线| 又紧又爽又黄一区二区| 18在线观看网站| 久久久精品区二区三区| 亚洲熟女精品中文字幕| 超碰97精品在线观看| 精品熟女少妇八av免费久了| 国产深夜福利视频在线观看| 国产麻豆69| 亚洲精品一区蜜桃| 少妇的丰满在线观看| 久久精品熟女亚洲av麻豆精品| 欧美另类一区| 亚洲视频免费观看视频| 99久久综合免费| 这个男人来自地球电影免费观看| av线在线观看网站| 国产高清国产精品国产三级| 国产一区二区激情短视频 | 香蕉丝袜av| 下体分泌物呈黄色| 黄片大片在线免费观看| 久久国产精品影院| 男人添女人高潮全过程视频| 日本vs欧美在线观看视频| 丝袜喷水一区| 亚洲国产欧美在线一区| 日韩精品免费视频一区二区三区| 免费av中文字幕在线| 亚洲,欧美精品.| 亚洲精品av麻豆狂野| 人人妻人人澡人人爽人人夜夜| 久久精品国产综合久久久| 日本a在线网址| 久久国产精品影院| 后天国语完整版免费观看| 三上悠亚av全集在线观看| 两人在一起打扑克的视频| 亚洲国产看品久久| svipshipincom国产片| 男女床上黄色一级片免费看| 成年人午夜在线观看视频| 国产国语露脸激情在线看| 国产又色又爽无遮挡免| 精品少妇内射三级| 久久精品亚洲av国产电影网| 国产真人三级小视频在线观看| 91精品国产国语对白视频| 亚洲欧美精品自产自拍| 狂野欧美激情性bbbbbb| 大香蕉久久成人网| 欧美 日韩 精品 国产| 在线av久久热| 午夜福利一区二区在线看| 青青草视频在线视频观看| 成人免费观看视频高清| 老司机深夜福利视频在线观看 | netflix在线观看网站| 纵有疾风起免费观看全集完整版| 999久久久精品免费观看国产| 两人在一起打扑克的视频| 啦啦啦免费观看视频1| 青春草亚洲视频在线观看| 五月开心婷婷网| 精品国产国语对白av| 一级片免费观看大全| 国产欧美日韩一区二区三区在线| 18禁裸乳无遮挡动漫免费视频| 考比视频在线观看| 久久99热这里只频精品6学生| 欧美激情高清一区二区三区| 黑人巨大精品欧美一区二区mp4| 欧美人与性动交α欧美精品济南到| 国产一区有黄有色的免费视频| 黑人欧美特级aaaaaa片| 99精国产麻豆久久婷婷| 岛国在线观看网站| 黄片大片在线免费观看| 男人舔女人的私密视频| 国产男人的电影天堂91| 午夜福利,免费看| 免费一级毛片在线播放高清视频 | 亚洲成人免费av在线播放|