• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Fully Flexible Potential Model for Carbon Dioxide*

    2009-05-12 03:33:04ZhuAimei朱愛梅ZhangXinbo張新波LiuQinglin劉慶林andZhangQiugen張秋根

    ZhuAimei (朱愛梅), Zhang Xinbo (張新波), Liu Qinglin (劉慶林) and Zhang Qiugen (張秋根)

    ?

    A Fully Flexible Potential Model for Carbon Dioxide*

    ZhuAimei (朱愛梅), Zhang Xinbo (張新波), Liu Qinglin (劉慶林)**and Zhang Qiugen (張秋根)

    National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, Department of Chemical and Biochemical Engineering, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, China

    molecular simulations, radial distributions, fully flexible potential model, carbon dioxide

    1 Introduction

    Carbon dioxide, especially, supercritical carbon dioxide (ScCO2) is widely studied as a “green solvent” in chemical reaction and catalysis because it is nonflammable, inexpensive, nontoxic, and has exceeding miscible ability.

    In order to improve the precision of physical models for solute solubility and reaction rates in a liquid and supercritical carbon dioxide, a model should include intermolecular interactions between carbon dioxide molecules and/or other solutes. For decades, the most acceptable models are fully rigid models, such as the rescaling the potential parameters of the elementary physical model (EPM2) [1], one of three different atom-atom intermolecular potentials developed by Murthy, Singer, and McDonald (MSM) [2, 3], and transferable potentials for phase equilibria (TraPPE) [4],and several optimized potential models with improvement in some aspects [5-7] have been proposed. For example, Vrabec. [5] developed the two-centers+ quadrupole model that predicted saturated vapor pressures with a better precision (10%) than the EPM2 model. Draghi. [7] added bond stretching and bending potentials and developed a fully flexible model on the basis of the EPM2 model, however, there were 11% and 15% average deviation of the saturated pressure and the saturated vapor density, respectively.

    Although several potential models have been proposed for carbon dioxide, unfortunately, none of them can meet all requirements.and Car-Parrinello molecular-dynamics (CPMD) calculations on charged CO2clusters [8, 9], and neutron diffraction experiments on supercritical carbon dioxide [9-11] have shown a similar deviation. The CPMD simulations of carbon dioxide have been employed within a plane-wave- basis density functional theory (DFT). Comparing with neutron diffraction experiments, the CPMD simulations [8] on the microscopic structure of carbon dioxide are quite good, while they are unable to describe the phase behaviors accurately since they have employed only 32 molecules in the system.

    The aim of this study is to find a suitable potential model for carbon dioxide, which will accurately predict both the microscopic structure and the phase behavior under high and low temperatures and pressures. For the proposed model, the ways to obtain the parameters, the methodologies, and the simulation details were provided. The simulation results of carbon dioxide obtained by the present potential and the best-known potential EPM2 were discussed, including vapor-liquid equilibra (VLE), structural properties, PVT properties, and dynamic properties.

    2 Potential models

    The non-bonded interactions are described by pair wise-additive Lennard-Jones (L-J) 12-6 potentials and Coulombic interactions of partial charges.

    where,r,ε,σ,q,q, and0are the separation, L-J well depth, L-J size, partial charges, and? permittivity of free space, respectively, for the pair of atomsand. The parameters for unlike L-J interactions are determined by Lorentz-Berthelot combining rules [13].

    The long-range interactions using a Group based summation method [14-16] were compared with the Ewald summation. The intramolecular part consists of harmonic bond stretching and bond angle vibration terms in the equation below

    where,,0,, and0are the measured bending length, the equilibrium bending length, the measured bending angle, and the equilibrium bending angle, respectively; andkandkare the force constants.

    The force field parameters are obtained using the optimization method proposed by Zhang [6] and Khare. [16]. Firstly, we understand how the parameters affect the simulations results. The initial force constants are obtained from quantum chemical calculations, and the other initial parameters are obtained from the EPM2 model. For example, the PVT properties at supercritical conditions for carbon dioxide are calculated to get a prerequisite knowledge of the parameter spaces. Then, the Lennard-Jones parameters of oxygen or carbon atom are changed, and the PVT properties of carbon dioxide that are the most sensitive to the Lennard-Jones parameter of oxygen atoms are slightly changed to get good results. The analysis of the carbon dioxide structure shows that the equilibrium bending length is short, which is consequently increased. The process described above was repeated to obtain all the optimized parameters that were different from the initial parameters. All the parameters for carbon dioxide in this study are listed in Table 1.

    3 Simulation Details

    3.1 Phase equilibrium simulations

    Pure component vapor-liquid equilibria were obtained using the NVT-Gibbs ensemble Monte Carlo (GEMC) method [17] with periodic boundary conditions. The intra and intermolecular force field parameters adopted are shown in Table 1. The simulation system contained 400-500 molecules. Simulations for the vapor-liquid equilibria at high temperature consisted of 1.2′107moves, and longer simulations (1.5′107) were required at low temperatures. The ratio of the different types of Monte Carlo moves was 13%-16% translation moves, 13%-16% rotation moves, 8%-12% volume moves, and the rest were transfer moves that were employed. The temperature increases with the decreasing of the ratio of transfer moves. A cutoff distance of 1.05 nm was used for the non-bonded interactions, with long-range corrections applied beyond this distance for the van der Waals interactions. Initial configurations were based on the face centered cubic (fcc) lattice. Then, enough Monte Carlo cycles (1×104moves) at an elevated temperature were used to “melt” the crystal structure, and the system was then “cooled” to the desired temperature.

    Owing to the large fluctuations near the critical point, it is not possible to determine its location explicitly. Simulation data at subcritical conditions are used to estimate the critical point by invoking the following scaling law

    where,is a constant, andcis the critical density. The critical pressures were found by extrapolating the vapor pressure curve to the critical temperature. The vapor pressures were fitted to the semi-empirical equation [18]

    where,0-3are the fitting constants.

    3.2 Pressure, self-diffusion coefficient, and structure of pure carbon dioxide

    In our molecular dynamics simulations, 400 molecules were placed in a cubic simulation box. The conventional periodic boundary conditions and minimum image conventions were used in the simulations. Velocity Verlet algorithm was adopted to propagate the statistical trajectory. Long-range electrostatic forces and energies were calculatedthe group based method, which was compared with the Ewald method in calculating the pressures of VLE. The constant number of atom, pressure and temperature ensemble molecular dynamics (NPT-MD) simulations proposed by Khare. [14-16] were used to calculate the vapor pressures (the saturated pressures), and then the pressure-density data were fitted linearly to determine the vapor pressure corresponding to the equilibrium vapor density from coexisting calculations. The NPT-MD ensemble was also used to calculate the dynamic properties, and the self-diffusion coefficients were calculated by the Einstein equation [19]:

    where,r() is the molecular positionat time, and ther(0) is the initial position.

    The constant number of atom, volume and temperature ensemble molecular dynamics (NVT-MD) ensemble was used to investigate the structural properties of pure carbon dioxide. All the simulations were run at the time step of 1 fs for 120 ps, using the method of Andersen and Berendsen for the temperature control and the pressure control, respectively. The choice of the simulation length, number of molecules,., in this study is made on the basis of Ref. [14-16].

    Table 1 Parameters for carbon dioxide in this study

    4 Results and Discussion

    Figure 1 shows the simulated coexistence envelopes, the experimental observations [20], and the literature simulation data [5, 21]. At 230 K, the deviations of the saturated liquid and vapor density are 0.5% and 17% (EPM2), and 0.2% and 18% (TraPPE), respectively. At 290 K, the maximums are 3.3% and 8.7% (EPM2), and 3.5% and 18.6% (TraPPE), respectively. The present model shows as good results as the EPM2 and TraPPE models below 260 K. The deviations of the saturated liquid and vapor density by the present model are 0.6% and 1.3% (230 K), and 0.7% and 2.0% (290 K), respectively. The average absolute deviation by the EPM2, TraPPE, and the present model are 2.3% and 6.3%, 1.7% and 19.1%, and 0.3% and 2.0%, respectively. Generally, the present model produces improved saturated liquid and vapor density over the two well-known models in a wide temperature range, especially at higher temperatures.

    Figure 1 Pure carbon dioxide phase equilibria——?Exp. [20];△?TraPPE [6];■?EPM2 [21];●?this work

    The experimental data [20], the literature simulation data [1, 4, 6], and the predictions in this study for the critical properties are shown in Table 2. The EPM2 predictions agree with the experimental data for the critical density and pressure, however, there is significant deviation for the critical temperature. The critical pressure predicted by the MSM and TraPPE models is either considerably lower or higher than the experimental data. The critical properties obtained by the Errington and the present model agree with the experimental values. In this study, the deviation ofc,c, andcare only 0.09 K, 0.0003 g×cm-3, and 0.01 MPa, respectively.

    Table 2 Critical properties of carbon dioxide reproduced by different models

    The simulated densities by the present model and the experimental data [20] from 5 to 800 MPa are shownin Fig. 2. The relative errors for other models increased almost parallel with increasing the pressures [5]. The largest deviation for the EPM2 model is almost 7 % at 980.65 K and 800 MPa. Below 100 MPa, the simulated densities of the present model agree with the experimental data. In the range of 100 to 800 MPa, the deviations increase slightly, and the largest deviation is 5 % at 1100 K and 800 MPa.

    Figure 3 Snapshot of CO2under the supercritical state from the NVT-MD simulations (Oxygen atoms are in white, and carbon atoms are in gray)

    Table 3 The structural features for ScCO2

    The self-diffusion coefficient estimated by the present model and the experimental observations [22] are shown in Table 4. The self-diffusion coefficient at supercritical condition is important for chemical industries, particularly at 10-15 MPa. The best prediction of the present model is at 13.79 MPa and the predicted results are also reasonable with increasing the pressures in the supercritical condition.

    Table 4 Self-diffusion coefficients estimated by this study and the experiments at 348.15 K

    5 Conclusions

    A new fully flexible potential model for carbon dioxide was optimized to reproduce experimental properties. The phase equilibrium of pure carbon dioxide was calculated by the GEMC over a wide temperature range. The densities of supercritical carbon dioxide and the structural properties (318.15 K and 0.703 g×cm-3) for carbon dioxide were calculated using the present method. Radial distribution functions for ScCO2were calculated. The critical properties were estimated from subcritical simulation data using the critical scaling laws.

    1 Harris, J.G., Yung, K.H., “Carbon dioxide’s liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model”,..., 99, 12021-12024 (1995).

    2 Murthy, C.S., Oshea, S.F., McDonald, I.R., “Electrostatic interactions in molecular crystals: lattice dynamics of solid nitrogen and carbon dioxide”,.., 50, 531-541 (1983).

    3 Geiger, L.C., Ladanyi, B.M., Chapin, M.E., “A comparison of models for depolarized light scattering in supercritical CO2”,..., 93, 4533-4542 (1990).

    4 Potoff, J.J., Siepmann, J.I., “Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen”,., 47, 1676-1682 (2001).

    5 Vrabec, J., Stoll, J., Hasse, H., “A set of molecular models for symmetric quadrupolar fluids”,..., 105, 12126-12133 (2001).

    6 Zhang, Z., Duan, Z., “An optimized molecular potential for carbon dioxide”,..., 122, 214507-214522 (2005).

    7 Draghi, C.N., Bruin, T.D., Pellitero, J.P., Avalos, J.B., Mackie, A.D., “Thermodynamic and transport properties of carbon dioxide from molecular simulation”,..., 126, 064509-1-8 (2007).

    8 Saharay, M., Balasubramanian, S., “molecular-dynamics study of supercritical carbon dioxide”,..., 120, 9694-9702 (2004).

    9 Zhang, Y., Yang, J., Yu, Y., “Dielectric constant and density dependence of the structure of supercritical carbon dioxide using a new modified empirical potential model: A Monte Carlo simulation study”,..., 109, 13375-13382 (2005).

    10 Ishii, R., Okazaki, S., Odawara, O., Okada, I., Misawa, M., Fukunaga, T., “Structural study of supercritical carbon dioxide by neutron diffraction”,., 104, 291-304 (1995).

    11 Ishii, R., Okazaki, S., Okada, I., Furusaka, M., Watanabe, N., Misawa, M., Fukunaga, T., “Density dependence of structure of supercritical carbon dioxide along an isotherm”,..., 105, 7011-7021 (1996).

    12 Fedchenia, I.I., Schr?der, J., “Local orientational correlations and short time anisotropic motion in molecular liquids: computer simulations of liquid CO2”,..., 106, 7749-7755 (1997).

    13 Kolafa, J., Nezbeda, I., Lisal, M., “Effect of short- and long-range forces on the properties of fluids. III. Dipolar and quadrupolar fluids”,.., 99, 1751-1764 (2001).

    14 Chen, B., Potoff, J.J., Siepmann, J.I., “Monte Carlo calculations for alcohol and their mixtures with alkanes. Transferable potential for phase equilibra.5.united-atom description of primary, secondary, and tertiary alcohols”,..., 105, 3093-3104 (2001).

    15 Nath, S.K., “Molecular simulation of vapor-liquid phase equilibria of hydrogen sulfide and its mixtures with alkanes”,..., 107, 9498-9504 (2003).

    16 Khare, R., Sum, A.K., Nath, S.K., de Pablo, J.J., “Simulation of vapor-liquid phase equilibria of primary alcohols and alcohol-alkane mixtures”,..., 108, 10071-10076 (2004).

    17 de Pablo, J.J., Laso, M., Suter, U.W., “Simulation of polyethylene above and below the melting point”,..., 96, 6157-6162 (1992).

    18 Errington, J.R., Panagiotopoulos, A.Z., “Phase equilibria of the modified Buckingham exponential-6 potential from Hamiltonian scaling grand canonical Monte Carlo”,..., 109, 1093-1100 (1998).

    19 Allen, M.P., Tildesley, D.J., Computer Simulation of Liquids, Oxford Science, Oxford (1989).

    20 National Institute of Standards and Technology, NIST Chemistry WebBook, http://webbook.nist.gov/chemistry

    21 Vorholz, J., Harismiadis, V.I., Rumpf, B., Panagiotopoulos, A.Z., Maurer, G., “Vapor plus liquid equilibrium of water, carbon dioxide, and the binary system, water plus carbon dioxide, from molecular simulation”,, 170, 203-234 (2000).

    22 Etesse, P., Zega, J.A., Kobayashi, R., “High pressure nuclear magnetic resonance measurement of spin-lattice relaxation and self-diffusion in carbon dioxide”,..., 97, 2022-2029 (1992).

    2008-07-30,

    2008-12-01.

    the National Natural Science Foundation of China (50573063), the Program for New Century Excellent Talents in University of the State Ministry of Education (NCET-05-0566) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (2005038401).

    ** To whom correspondence should be addressed. E-mail: qlliu@xmu.edu.cn

    一级黄色大片毛片| 国产精品久久久久久人妻精品电影| 在线a可以看的网站| 三级男女做爰猛烈吃奶摸视频| 久久伊人香网站| 精品一区二区三区四区五区乱码| 久9热在线精品视频| 啪啪无遮挡十八禁网站| 亚洲七黄色美女视频| 51午夜福利影视在线观看| 精品乱码久久久久久99久播| 亚洲av成人不卡在线观看播放网| 午夜两性在线视频| 特级一级黄色大片| 久久久久久久久中文| 精品日产1卡2卡| 亚洲第一欧美日韩一区二区三区| 日本撒尿小便嘘嘘汇集6| 久久久国产成人免费| 非洲黑人性xxxx精品又粗又长| 午夜老司机福利片| av片东京热男人的天堂| 国产99久久九九免费精品| 亚洲中文字幕日韩| 天堂√8在线中文| a在线观看视频网站| 欧美乱妇无乱码| 国产激情久久老熟女| 老司机福利观看| 亚洲av中文字字幕乱码综合| 日本免费一区二区三区高清不卡| 精品人妻1区二区| 色综合亚洲欧美另类图片| 精品久久久久久久末码| 夜夜躁狠狠躁天天躁| 妹子高潮喷水视频| 免费在线观看完整版高清| 欧美在线一区亚洲| 老司机午夜福利在线观看视频| 无限看片的www在线观看| 亚洲精品在线观看二区| 免费观看人在逋| 国产69精品久久久久777片 | 亚洲中文字幕日韩| 国产一区二区在线av高清观看| 后天国语完整版免费观看| 久久人妻av系列| 亚洲 欧美 日韩 在线 免费| 国产一区二区在线av高清观看| 精品熟女少妇八av免费久了| 亚洲一区二区三区不卡视频| 欧美av亚洲av综合av国产av| 国产精品 国内视频| 女人被狂操c到高潮| 特级一级黄色大片| 啦啦啦免费观看视频1| 最近最新中文字幕大全免费视频| 丰满人妻熟妇乱又伦精品不卡| 三级男女做爰猛烈吃奶摸视频| 精品国产美女av久久久久小说| 一级片免费观看大全| 国产精品 欧美亚洲| 久久国产精品影院| 亚洲精品国产精品久久久不卡| 免费在线观看黄色视频的| 国产99久久九九免费精品| 欧美一区二区精品小视频在线| 天堂动漫精品| 国产成人av教育| 一区二区三区国产精品乱码| 97人妻精品一区二区三区麻豆| 亚洲国产欧洲综合997久久,| av福利片在线| 麻豆一二三区av精品| 欧美又色又爽又黄视频| 18禁美女被吸乳视频| 可以免费在线观看a视频的电影网站| 国产亚洲精品一区二区www| 亚洲av成人不卡在线观看播放网| 岛国在线免费视频观看| 日韩欧美在线二视频| 小说图片视频综合网站| 麻豆国产97在线/欧美 | 妹子高潮喷水视频| 在线免费观看的www视频| 后天国语完整版免费观看| 日日爽夜夜爽网站| av中文乱码字幕在线| 日本免费a在线| 亚洲avbb在线观看| 亚洲中文字幕一区二区三区有码在线看 | 久久久国产欧美日韩av| 九九热线精品视视频播放| 久久久久国内视频| a级毛片a级免费在线| 我要搜黄色片| 精品国产乱码久久久久久男人| 一个人观看的视频www高清免费观看 | 欧美性猛交╳xxx乱大交人| 国产黄色小视频在线观看| 亚洲精品中文字幕一二三四区| 俺也久久电影网| 操出白浆在线播放| 特大巨黑吊av在线直播| 精品国产乱子伦一区二区三区| 欧美激情久久久久久爽电影| 国产亚洲精品久久久久久毛片| 国产伦在线观看视频一区| 国内少妇人妻偷人精品xxx网站 | 久久久久性生活片| 欧美不卡视频在线免费观看 | 亚洲精品av麻豆狂野| 亚洲全国av大片| 日韩欧美免费精品| 国内久久婷婷六月综合欲色啪| 黑人巨大精品欧美一区二区mp4| 亚洲男人天堂网一区| 久久久国产成人免费| 国产成人精品久久二区二区免费| 国产野战对白在线观看| 中亚洲国语对白在线视频| 国产在线精品亚洲第一网站| 午夜福利18| 欧美成人性av电影在线观看| 亚洲欧美日韩高清在线视频| 神马国产精品三级电影在线观看 | 一级黄色大片毛片| a级毛片a级免费在线| 99久久精品国产亚洲精品| 757午夜福利合集在线观看| 嫩草影视91久久| 黄频高清免费视频| 亚洲欧美日韩高清在线视频| 一级a爱片免费观看的视频| 亚洲国产欧美一区二区综合| 特大巨黑吊av在线直播| 亚洲七黄色美女视频| 韩国av一区二区三区四区| 久久久久久人人人人人| 18禁黄网站禁片免费观看直播| 国产私拍福利视频在线观看| 51午夜福利影视在线观看| 国产三级黄色录像| 久久天躁狠狠躁夜夜2o2o| svipshipincom国产片| 日本一本二区三区精品| 手机成人av网站| 婷婷六月久久综合丁香| 欧美性猛交黑人性爽| 欧美在线一区亚洲| 亚洲精品粉嫩美女一区| 真人一进一出gif抽搐免费| 亚洲av中文字字幕乱码综合| 欧美日韩精品网址| 在线视频色国产色| 国产精品久久久久久人妻精品电影| 亚洲avbb在线观看| 变态另类成人亚洲欧美熟女| av中文乱码字幕在线| 最近视频中文字幕2019在线8| 国产麻豆成人av免费视频| 久久热在线av| 在线十欧美十亚洲十日本专区| 无遮挡黄片免费观看| 男人舔女人下体高潮全视频| 狠狠狠狠99中文字幕| 在线看三级毛片| 国产在线精品亚洲第一网站| 亚洲国产精品合色在线| 男女下面进入的视频免费午夜| 久久久国产精品麻豆| 又大又爽又粗| 首页视频小说图片口味搜索| 免费在线观看黄色视频的| 中出人妻视频一区二区| 亚洲国产欧美网| 天天一区二区日本电影三级| 国产一级毛片七仙女欲春2| 天天躁夜夜躁狠狠躁躁| 熟女电影av网| 日本成人三级电影网站| 国产高清视频在线播放一区| 免费av毛片视频| 亚洲av熟女| 成人三级做爰电影| 成人永久免费在线观看视频| 久久欧美精品欧美久久欧美| 天堂动漫精品| 国产成人精品久久二区二区91| 一本一本综合久久| 久久久久国产一级毛片高清牌| 最新美女视频免费是黄的| 99国产精品一区二区三区| 欧美一区二区精品小视频在线| 午夜福利欧美成人| 国产精品av久久久久免费| 真人一进一出gif抽搐免费| 99热这里只有精品一区 | 非洲黑人性xxxx精品又粗又长| 国产在线精品亚洲第一网站| 一边摸一边做爽爽视频免费| 久久精品国产清高在天天线| 后天国语完整版免费观看| 精品一区二区三区av网在线观看| 女同久久另类99精品国产91| 亚洲片人在线观看| 18禁裸乳无遮挡免费网站照片| 黄色a级毛片大全视频| 999久久久精品免费观看国产| 国产成年人精品一区二区| 搡老妇女老女人老熟妇| 黄色片一级片一级黄色片| 在线播放国产精品三级| 波多野结衣巨乳人妻| 视频区欧美日本亚洲| 国模一区二区三区四区视频 | 欧美3d第一页| 国产av麻豆久久久久久久| 日本黄色视频三级网站网址| 亚洲精品久久成人aⅴ小说| 丝袜美腿诱惑在线| 亚洲一区高清亚洲精品| 国产精品乱码一区二三区的特点| 一区福利在线观看| 在线观看午夜福利视频| 淫妇啪啪啪对白视频| 少妇粗大呻吟视频| 亚洲av日韩精品久久久久久密| www国产在线视频色| 欧美日韩精品网址| 男女床上黄色一级片免费看| 精品免费久久久久久久清纯| 国产区一区二久久| 国产精品一区二区三区四区免费观看 | 三级国产精品欧美在线观看 | 国产黄a三级三级三级人| 久久九九热精品免费| 美女扒开内裤让男人捅视频| 特级一级黄色大片| 人人妻,人人澡人人爽秒播| 一二三四社区在线视频社区8| 中亚洲国语对白在线视频| 精品久久蜜臀av无| 不卡av一区二区三区| 亚洲乱码一区二区免费版| 午夜精品在线福利| 中文亚洲av片在线观看爽| 搡老妇女老女人老熟妇| 欧美乱码精品一区二区三区| 宅男免费午夜| 两性夫妻黄色片| 可以免费在线观看a视频的电影网站| 美女大奶头视频| 亚洲精品久久国产高清桃花| 九色国产91popny在线| 国内少妇人妻偷人精品xxx网站 | 九色成人免费人妻av| 国产区一区二久久| 又紧又爽又黄一区二区| 国产黄a三级三级三级人| 99精品久久久久人妻精品| 啦啦啦韩国在线观看视频| 亚洲全国av大片| 亚洲国产精品成人综合色| 国产成人一区二区三区免费视频网站| 欧美精品啪啪一区二区三区| 亚洲成人国产一区在线观看| 国产成人aa在线观看| 欧美激情久久久久久爽电影| 国产黄a三级三级三级人| 国产激情久久老熟女| 好男人电影高清在线观看| 日韩三级视频一区二区三区| 欧美中文综合在线视频| 欧美成人午夜精品| 琪琪午夜伦伦电影理论片6080| 欧美中文日本在线观看视频| 在线观看免费视频日本深夜| a级毛片a级免费在线| 熟女少妇亚洲综合色aaa.| 成人特级黄色片久久久久久久| 亚洲18禁久久av| 成年女人毛片免费观看观看9| 国产视频一区二区在线看| 免费看美女性在线毛片视频| 久久久精品大字幕| 国产精品久久久av美女十八| 日韩高清综合在线| 久久久精品大字幕| 天天躁夜夜躁狠狠躁躁| 51午夜福利影视在线观看| 国产激情久久老熟女| 亚洲 国产 在线| 久久精品国产亚洲av高清一级| 观看免费一级毛片| 国产av在哪里看| a级毛片在线看网站| 国产成人啪精品午夜网站| 日本黄色视频三级网站网址| 久久中文看片网| 老司机午夜十八禁免费视频| 久久精品亚洲精品国产色婷小说| 国产主播在线观看一区二区| 免费观看人在逋| 99热这里只有精品一区 | 色尼玛亚洲综合影院| 一级黄色大片毛片| 日本精品一区二区三区蜜桃| 日韩有码中文字幕| 亚洲午夜理论影院| 国产三级中文精品| 一个人免费在线观看的高清视频| 欧美中文日本在线观看视频| 久久久久免费精品人妻一区二区| 国产在线观看jvid| 一边摸一边抽搐一进一小说| 精品久久久久久久久久久久久| 亚洲一区中文字幕在线| 欧美黑人精品巨大| 毛片女人毛片| 午夜精品一区二区三区免费看| 日本免费一区二区三区高清不卡| 淫秽高清视频在线观看| 99热6这里只有精品| 国内精品一区二区在线观看| 男女下面进入的视频免费午夜| 精品熟女少妇八av免费久了| 久久久久免费精品人妻一区二区| 亚洲美女视频黄频| 男人的好看免费观看在线视频 | 国产真人三级小视频在线观看| 日本 欧美在线| 黄色a级毛片大全视频| 国产视频一区二区在线看| 久久久久久国产a免费观看| 亚洲人成伊人成综合网2020| 成人永久免费在线观看视频| 两个人免费观看高清视频| 国模一区二区三区四区视频 | 日本三级黄在线观看| 国产一级毛片七仙女欲春2| 欧美一区二区国产精品久久精品 | 国内揄拍国产精品人妻在线| 国产精品 欧美亚洲| 午夜a级毛片| 老司机福利观看| 97人妻精品一区二区三区麻豆| 免费在线观看成人毛片| 国产三级中文精品| 热99re8久久精品国产| 悠悠久久av| 精品欧美国产一区二区三| 久久国产精品影院| 午夜福利视频1000在线观看| 久久婷婷成人综合色麻豆| 精品欧美国产一区二区三| 欧美日韩黄片免| 嫁个100分男人电影在线观看| 精品福利观看| 嫩草影院精品99| 国内久久婷婷六月综合欲色啪| 国产一级毛片七仙女欲春2| a级毛片a级免费在线| 欧美日韩亚洲国产一区二区在线观看| 亚洲专区国产一区二区| 俄罗斯特黄特色一大片| svipshipincom国产片| 久久欧美精品欧美久久欧美| 欧美乱妇无乱码| 成人欧美大片| 悠悠久久av| 麻豆国产97在线/欧美 | 国产在线精品亚洲第一网站| 亚洲真实伦在线观看| 香蕉国产在线看| 亚洲欧美精品综合一区二区三区| 叶爱在线成人免费视频播放| 一本精品99久久精品77| 我的老师免费观看完整版| 欧美性猛交╳xxx乱大交人| 国产精品一区二区免费欧美| 国产真人三级小视频在线观看| 18禁黄网站禁片午夜丰满| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人精品久久二区二区91| 欧美大码av| 久久国产精品影院| 精品乱码久久久久久99久播| 女人高潮潮喷娇喘18禁视频| 日韩高清综合在线| 久久 成人 亚洲| 美女免费视频网站| 51午夜福利影视在线观看| 国产熟女xx| 国产91精品成人一区二区三区| 亚洲第一欧美日韩一区二区三区| 国产精品影院久久| 久久香蕉激情| 亚洲电影在线观看av| 日韩av在线大香蕉| 波多野结衣巨乳人妻| 中文字幕人妻丝袜一区二区| 国产片内射在线| 少妇人妻一区二区三区视频| 日韩有码中文字幕| 国语自产精品视频在线第100页| 亚洲,欧美精品.| 亚洲免费av在线视频| 亚洲精品在线美女| or卡值多少钱| 精品无人区乱码1区二区| 成人永久免费在线观看视频| 村上凉子中文字幕在线| а√天堂www在线а√下载| 亚洲男人的天堂狠狠| 亚洲 国产 在线| 国产黄色小视频在线观看| 精品久久久久久久久久免费视频| 人人妻,人人澡人人爽秒播| 久久九九热精品免费| 搡老熟女国产l中国老女人| 午夜免费观看网址| 亚洲免费av在线视频| 欧美日韩黄片免| 亚洲一码二码三码区别大吗| 一本精品99久久精品77| 好男人电影高清在线观看| 久久精品成人免费网站| 熟妇人妻久久中文字幕3abv| 亚洲专区中文字幕在线| 国产成人影院久久av| 日本熟妇午夜| 国产精品日韩av在线免费观看| 国产又黄又爽又无遮挡在线| 中文字幕人成人乱码亚洲影| 免费在线观看亚洲国产| 每晚都被弄得嗷嗷叫到高潮| 久久精品成人免费网站| 欧美日韩瑟瑟在线播放| 香蕉丝袜av| 国产激情偷乱视频一区二区| 亚洲美女视频黄频| 老司机午夜福利在线观看视频| 亚洲精品久久成人aⅴ小说| 最新美女视频免费是黄的| 黄色视频不卡| 日韩国内少妇激情av| 国产精品久久视频播放| 日本黄大片高清| 免费在线观看成人毛片| 久久亚洲精品不卡| 看免费av毛片| 日本免费a在线| 黄色成人免费大全| 在线观看免费午夜福利视频| 丁香欧美五月| 日本在线视频免费播放| 一二三四社区在线视频社区8| 人人妻人人看人人澡| 日日干狠狠操夜夜爽| 一边摸一边做爽爽视频免费| 国产成人av教育| 亚洲成人中文字幕在线播放| xxx96com| av在线天堂中文字幕| 精品福利观看| 99精品久久久久人妻精品| 村上凉子中文字幕在线| 欧美大码av| 十八禁网站免费在线| 亚洲中文日韩欧美视频| 亚洲黑人精品在线| 成人av一区二区三区在线看| 免费看日本二区| 1024香蕉在线观看| 日韩欧美在线乱码| a级毛片在线看网站| 两个人的视频大全免费| 国产成人欧美在线观看| 免费在线观看完整版高清| 国产激情偷乱视频一区二区| 大型av网站在线播放| 亚洲人成网站在线播放欧美日韩| 女警被强在线播放| 在线观看一区二区三区| 脱女人内裤的视频| 亚洲七黄色美女视频| 久久精品91蜜桃| 免费在线观看亚洲国产| 国产精品久久久人人做人人爽| 成人欧美大片| 久久久久久久精品吃奶| 亚洲成人久久性| 成年女人毛片免费观看观看9| 国产精品,欧美在线| 黄色毛片三级朝国网站| 国产伦人伦偷精品视频| 国产亚洲av高清不卡| 日韩有码中文字幕| av欧美777| 欧美最黄视频在线播放免费| 国产高清有码在线观看视频 | 国产欧美日韩精品亚洲av| 欧美乱色亚洲激情| 禁无遮挡网站| 人人妻人人澡欧美一区二区| 18禁黄网站禁片午夜丰满| 国产三级在线视频| 午夜久久久久精精品| 中文字幕熟女人妻在线| 黑人巨大精品欧美一区二区mp4| 无人区码免费观看不卡| 99久久精品热视频| 看黄色毛片网站| 亚洲国产欧美一区二区综合| 久久精品人妻少妇| svipshipincom国产片| av有码第一页| 国产精品一区二区三区四区免费观看 | 欧美黑人欧美精品刺激| 欧美乱码精品一区二区三区| a在线观看视频网站| 精品人妻1区二区| 天堂影院成人在线观看| 叶爱在线成人免费视频播放| 国产亚洲精品久久久久久毛片| aaaaa片日本免费| 国产欧美日韩一区二区三| 日韩欧美在线乱码| 99riav亚洲国产免费| 国产男靠女视频免费网站| 国产精品永久免费网站| 欧美日韩中文字幕国产精品一区二区三区| 国产黄片美女视频| 国内精品久久久久久久电影| 久久精品国产清高在天天线| 欧美日韩国产亚洲二区| 欧美乱妇无乱码| 国产在线观看jvid| 国产精品电影一区二区三区| 国产精品久久久久久人妻精品电影| 午夜福利高清视频| 精品久久久久久成人av| 欧美性猛交黑人性爽| 三级男女做爰猛烈吃奶摸视频| 久久久精品国产亚洲av高清涩受| 一进一出好大好爽视频| 9191精品国产免费久久| 亚洲五月婷婷丁香| 亚洲成人中文字幕在线播放| 亚洲 欧美一区二区三区| 国产精品久久久久久人妻精品电影| 精品电影一区二区在线| 高清在线国产一区| 免费看美女性在线毛片视频| 色哟哟哟哟哟哟| 一卡2卡三卡四卡精品乱码亚洲| 免费高清视频大片| 午夜激情av网站| 免费在线观看亚洲国产| 亚洲av美国av| 国产精品国产高清国产av| 国产精品美女特级片免费视频播放器 | 国产高清视频在线观看网站| 成人高潮视频无遮挡免费网站| 精品熟女少妇八av免费久了| 久久99热这里只有精品18| 中文资源天堂在线| 一本一本综合久久| 日韩精品免费视频一区二区三区| 人人妻人人看人人澡| 男人的好看免费观看在线视频 | 久久久久久久久免费视频了| 日日干狠狠操夜夜爽| 亚洲全国av大片| 一本精品99久久精品77| 18禁美女被吸乳视频| 久久久久久九九精品二区国产 | 九九热线精品视视频播放| 久久香蕉精品热| 精品久久蜜臀av无| 久久精品综合一区二区三区| 久久香蕉精品热| 欧美一级毛片孕妇| 久久久国产精品麻豆| 日韩中文字幕欧美一区二区| 精品午夜福利视频在线观看一区| 床上黄色一级片| 日本成人三级电影网站| 免费看日本二区| 久久久久久久午夜电影| 国产精品久久久久久久电影 | 日本撒尿小便嘘嘘汇集6| 日本精品一区二区三区蜜桃| 精品福利观看| 久久久久久亚洲精品国产蜜桃av| 国产av不卡久久| 一级黄色大片毛片| 可以免费在线观看a视频的电影网站| 国产精品九九99| 全区人妻精品视频| 色av中文字幕| 国产精品自产拍在线观看55亚洲| 亚洲精品中文字幕在线视频| 亚洲国产精品久久男人天堂| 日韩欧美免费精品| 天天躁夜夜躁狠狠躁躁| 精品第一国产精品| 亚洲黑人精品在线| 村上凉子中文字幕在线| 免费一级毛片在线播放高清视频| 午夜免费激情av| 日韩精品免费视频一区二区三区| 搡老熟女国产l中国老女人| 国产真实乱freesex|