• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Fully Flexible Potential Model for Carbon Dioxide*

    2009-05-12 03:33:04ZhuAimei朱愛梅ZhangXinbo張新波LiuQinglin劉慶林andZhangQiugen張秋根

    ZhuAimei (朱愛梅), Zhang Xinbo (張新波), Liu Qinglin (劉慶林) and Zhang Qiugen (張秋根)

    ?

    A Fully Flexible Potential Model for Carbon Dioxide*

    ZhuAimei (朱愛梅), Zhang Xinbo (張新波), Liu Qinglin (劉慶林)**and Zhang Qiugen (張秋根)

    National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, Department of Chemical and Biochemical Engineering, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, China

    molecular simulations, radial distributions, fully flexible potential model, carbon dioxide

    1 Introduction

    Carbon dioxide, especially, supercritical carbon dioxide (ScCO2) is widely studied as a “green solvent” in chemical reaction and catalysis because it is nonflammable, inexpensive, nontoxic, and has exceeding miscible ability.

    In order to improve the precision of physical models for solute solubility and reaction rates in a liquid and supercritical carbon dioxide, a model should include intermolecular interactions between carbon dioxide molecules and/or other solutes. For decades, the most acceptable models are fully rigid models, such as the rescaling the potential parameters of the elementary physical model (EPM2) [1], one of three different atom-atom intermolecular potentials developed by Murthy, Singer, and McDonald (MSM) [2, 3], and transferable potentials for phase equilibria (TraPPE) [4],and several optimized potential models with improvement in some aspects [5-7] have been proposed. For example, Vrabec. [5] developed the two-centers+ quadrupole model that predicted saturated vapor pressures with a better precision (10%) than the EPM2 model. Draghi. [7] added bond stretching and bending potentials and developed a fully flexible model on the basis of the EPM2 model, however, there were 11% and 15% average deviation of the saturated pressure and the saturated vapor density, respectively.

    Although several potential models have been proposed for carbon dioxide, unfortunately, none of them can meet all requirements.and Car-Parrinello molecular-dynamics (CPMD) calculations on charged CO2clusters [8, 9], and neutron diffraction experiments on supercritical carbon dioxide [9-11] have shown a similar deviation. The CPMD simulations of carbon dioxide have been employed within a plane-wave- basis density functional theory (DFT). Comparing with neutron diffraction experiments, the CPMD simulations [8] on the microscopic structure of carbon dioxide are quite good, while they are unable to describe the phase behaviors accurately since they have employed only 32 molecules in the system.

    The aim of this study is to find a suitable potential model for carbon dioxide, which will accurately predict both the microscopic structure and the phase behavior under high and low temperatures and pressures. For the proposed model, the ways to obtain the parameters, the methodologies, and the simulation details were provided. The simulation results of carbon dioxide obtained by the present potential and the best-known potential EPM2 were discussed, including vapor-liquid equilibra (VLE), structural properties, PVT properties, and dynamic properties.

    2 Potential models

    The non-bonded interactions are described by pair wise-additive Lennard-Jones (L-J) 12-6 potentials and Coulombic interactions of partial charges.

    where,r,ε,σ,q,q, and0are the separation, L-J well depth, L-J size, partial charges, and? permittivity of free space, respectively, for the pair of atomsand. The parameters for unlike L-J interactions are determined by Lorentz-Berthelot combining rules [13].

    The long-range interactions using a Group based summation method [14-16] were compared with the Ewald summation. The intramolecular part consists of harmonic bond stretching and bond angle vibration terms in the equation below

    where,,0,, and0are the measured bending length, the equilibrium bending length, the measured bending angle, and the equilibrium bending angle, respectively; andkandkare the force constants.

    The force field parameters are obtained using the optimization method proposed by Zhang [6] and Khare. [16]. Firstly, we understand how the parameters affect the simulations results. The initial force constants are obtained from quantum chemical calculations, and the other initial parameters are obtained from the EPM2 model. For example, the PVT properties at supercritical conditions for carbon dioxide are calculated to get a prerequisite knowledge of the parameter spaces. Then, the Lennard-Jones parameters of oxygen or carbon atom are changed, and the PVT properties of carbon dioxide that are the most sensitive to the Lennard-Jones parameter of oxygen atoms are slightly changed to get good results. The analysis of the carbon dioxide structure shows that the equilibrium bending length is short, which is consequently increased. The process described above was repeated to obtain all the optimized parameters that were different from the initial parameters. All the parameters for carbon dioxide in this study are listed in Table 1.

    3 Simulation Details

    3.1 Phase equilibrium simulations

    Pure component vapor-liquid equilibria were obtained using the NVT-Gibbs ensemble Monte Carlo (GEMC) method [17] with periodic boundary conditions. The intra and intermolecular force field parameters adopted are shown in Table 1. The simulation system contained 400-500 molecules. Simulations for the vapor-liquid equilibria at high temperature consisted of 1.2′107moves, and longer simulations (1.5′107) were required at low temperatures. The ratio of the different types of Monte Carlo moves was 13%-16% translation moves, 13%-16% rotation moves, 8%-12% volume moves, and the rest were transfer moves that were employed. The temperature increases with the decreasing of the ratio of transfer moves. A cutoff distance of 1.05 nm was used for the non-bonded interactions, with long-range corrections applied beyond this distance for the van der Waals interactions. Initial configurations were based on the face centered cubic (fcc) lattice. Then, enough Monte Carlo cycles (1×104moves) at an elevated temperature were used to “melt” the crystal structure, and the system was then “cooled” to the desired temperature.

    Owing to the large fluctuations near the critical point, it is not possible to determine its location explicitly. Simulation data at subcritical conditions are used to estimate the critical point by invoking the following scaling law

    where,is a constant, andcis the critical density. The critical pressures were found by extrapolating the vapor pressure curve to the critical temperature. The vapor pressures were fitted to the semi-empirical equation [18]

    where,0-3are the fitting constants.

    3.2 Pressure, self-diffusion coefficient, and structure of pure carbon dioxide

    In our molecular dynamics simulations, 400 molecules were placed in a cubic simulation box. The conventional periodic boundary conditions and minimum image conventions were used in the simulations. Velocity Verlet algorithm was adopted to propagate the statistical trajectory. Long-range electrostatic forces and energies were calculatedthe group based method, which was compared with the Ewald method in calculating the pressures of VLE. The constant number of atom, pressure and temperature ensemble molecular dynamics (NPT-MD) simulations proposed by Khare. [14-16] were used to calculate the vapor pressures (the saturated pressures), and then the pressure-density data were fitted linearly to determine the vapor pressure corresponding to the equilibrium vapor density from coexisting calculations. The NPT-MD ensemble was also used to calculate the dynamic properties, and the self-diffusion coefficients were calculated by the Einstein equation [19]:

    where,r() is the molecular positionat time, and ther(0) is the initial position.

    The constant number of atom, volume and temperature ensemble molecular dynamics (NVT-MD) ensemble was used to investigate the structural properties of pure carbon dioxide. All the simulations were run at the time step of 1 fs for 120 ps, using the method of Andersen and Berendsen for the temperature control and the pressure control, respectively. The choice of the simulation length, number of molecules,., in this study is made on the basis of Ref. [14-16].

    Table 1 Parameters for carbon dioxide in this study

    4 Results and Discussion

    Figure 1 shows the simulated coexistence envelopes, the experimental observations [20], and the literature simulation data [5, 21]. At 230 K, the deviations of the saturated liquid and vapor density are 0.5% and 17% (EPM2), and 0.2% and 18% (TraPPE), respectively. At 290 K, the maximums are 3.3% and 8.7% (EPM2), and 3.5% and 18.6% (TraPPE), respectively. The present model shows as good results as the EPM2 and TraPPE models below 260 K. The deviations of the saturated liquid and vapor density by the present model are 0.6% and 1.3% (230 K), and 0.7% and 2.0% (290 K), respectively. The average absolute deviation by the EPM2, TraPPE, and the present model are 2.3% and 6.3%, 1.7% and 19.1%, and 0.3% and 2.0%, respectively. Generally, the present model produces improved saturated liquid and vapor density over the two well-known models in a wide temperature range, especially at higher temperatures.

    Figure 1 Pure carbon dioxide phase equilibria——?Exp. [20];△?TraPPE [6];■?EPM2 [21];●?this work

    The experimental data [20], the literature simulation data [1, 4, 6], and the predictions in this study for the critical properties are shown in Table 2. The EPM2 predictions agree with the experimental data for the critical density and pressure, however, there is significant deviation for the critical temperature. The critical pressure predicted by the MSM and TraPPE models is either considerably lower or higher than the experimental data. The critical properties obtained by the Errington and the present model agree with the experimental values. In this study, the deviation ofc,c, andcare only 0.09 K, 0.0003 g×cm-3, and 0.01 MPa, respectively.

    Table 2 Critical properties of carbon dioxide reproduced by different models

    The simulated densities by the present model and the experimental data [20] from 5 to 800 MPa are shownin Fig. 2. The relative errors for other models increased almost parallel with increasing the pressures [5]. The largest deviation for the EPM2 model is almost 7 % at 980.65 K and 800 MPa. Below 100 MPa, the simulated densities of the present model agree with the experimental data. In the range of 100 to 800 MPa, the deviations increase slightly, and the largest deviation is 5 % at 1100 K and 800 MPa.

    Figure 3 Snapshot of CO2under the supercritical state from the NVT-MD simulations (Oxygen atoms are in white, and carbon atoms are in gray)

    Table 3 The structural features for ScCO2

    The self-diffusion coefficient estimated by the present model and the experimental observations [22] are shown in Table 4. The self-diffusion coefficient at supercritical condition is important for chemical industries, particularly at 10-15 MPa. The best prediction of the present model is at 13.79 MPa and the predicted results are also reasonable with increasing the pressures in the supercritical condition.

    Table 4 Self-diffusion coefficients estimated by this study and the experiments at 348.15 K

    5 Conclusions

    A new fully flexible potential model for carbon dioxide was optimized to reproduce experimental properties. The phase equilibrium of pure carbon dioxide was calculated by the GEMC over a wide temperature range. The densities of supercritical carbon dioxide and the structural properties (318.15 K and 0.703 g×cm-3) for carbon dioxide were calculated using the present method. Radial distribution functions for ScCO2were calculated. The critical properties were estimated from subcritical simulation data using the critical scaling laws.

    1 Harris, J.G., Yung, K.H., “Carbon dioxide’s liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model”,..., 99, 12021-12024 (1995).

    2 Murthy, C.S., Oshea, S.F., McDonald, I.R., “Electrostatic interactions in molecular crystals: lattice dynamics of solid nitrogen and carbon dioxide”,.., 50, 531-541 (1983).

    3 Geiger, L.C., Ladanyi, B.M., Chapin, M.E., “A comparison of models for depolarized light scattering in supercritical CO2”,..., 93, 4533-4542 (1990).

    4 Potoff, J.J., Siepmann, J.I., “Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen”,., 47, 1676-1682 (2001).

    5 Vrabec, J., Stoll, J., Hasse, H., “A set of molecular models for symmetric quadrupolar fluids”,..., 105, 12126-12133 (2001).

    6 Zhang, Z., Duan, Z., “An optimized molecular potential for carbon dioxide”,..., 122, 214507-214522 (2005).

    7 Draghi, C.N., Bruin, T.D., Pellitero, J.P., Avalos, J.B., Mackie, A.D., “Thermodynamic and transport properties of carbon dioxide from molecular simulation”,..., 126, 064509-1-8 (2007).

    8 Saharay, M., Balasubramanian, S., “molecular-dynamics study of supercritical carbon dioxide”,..., 120, 9694-9702 (2004).

    9 Zhang, Y., Yang, J., Yu, Y., “Dielectric constant and density dependence of the structure of supercritical carbon dioxide using a new modified empirical potential model: A Monte Carlo simulation study”,..., 109, 13375-13382 (2005).

    10 Ishii, R., Okazaki, S., Odawara, O., Okada, I., Misawa, M., Fukunaga, T., “Structural study of supercritical carbon dioxide by neutron diffraction”,., 104, 291-304 (1995).

    11 Ishii, R., Okazaki, S., Okada, I., Furusaka, M., Watanabe, N., Misawa, M., Fukunaga, T., “Density dependence of structure of supercritical carbon dioxide along an isotherm”,..., 105, 7011-7021 (1996).

    12 Fedchenia, I.I., Schr?der, J., “Local orientational correlations and short time anisotropic motion in molecular liquids: computer simulations of liquid CO2”,..., 106, 7749-7755 (1997).

    13 Kolafa, J., Nezbeda, I., Lisal, M., “Effect of short- and long-range forces on the properties of fluids. III. Dipolar and quadrupolar fluids”,.., 99, 1751-1764 (2001).

    14 Chen, B., Potoff, J.J., Siepmann, J.I., “Monte Carlo calculations for alcohol and their mixtures with alkanes. Transferable potential for phase equilibra.5.united-atom description of primary, secondary, and tertiary alcohols”,..., 105, 3093-3104 (2001).

    15 Nath, S.K., “Molecular simulation of vapor-liquid phase equilibria of hydrogen sulfide and its mixtures with alkanes”,..., 107, 9498-9504 (2003).

    16 Khare, R., Sum, A.K., Nath, S.K., de Pablo, J.J., “Simulation of vapor-liquid phase equilibria of primary alcohols and alcohol-alkane mixtures”,..., 108, 10071-10076 (2004).

    17 de Pablo, J.J., Laso, M., Suter, U.W., “Simulation of polyethylene above and below the melting point”,..., 96, 6157-6162 (1992).

    18 Errington, J.R., Panagiotopoulos, A.Z., “Phase equilibria of the modified Buckingham exponential-6 potential from Hamiltonian scaling grand canonical Monte Carlo”,..., 109, 1093-1100 (1998).

    19 Allen, M.P., Tildesley, D.J., Computer Simulation of Liquids, Oxford Science, Oxford (1989).

    20 National Institute of Standards and Technology, NIST Chemistry WebBook, http://webbook.nist.gov/chemistry

    21 Vorholz, J., Harismiadis, V.I., Rumpf, B., Panagiotopoulos, A.Z., Maurer, G., “Vapor plus liquid equilibrium of water, carbon dioxide, and the binary system, water plus carbon dioxide, from molecular simulation”,, 170, 203-234 (2000).

    22 Etesse, P., Zega, J.A., Kobayashi, R., “High pressure nuclear magnetic resonance measurement of spin-lattice relaxation and self-diffusion in carbon dioxide”,..., 97, 2022-2029 (1992).

    2008-07-30,

    2008-12-01.

    the National Natural Science Foundation of China (50573063), the Program for New Century Excellent Talents in University of the State Ministry of Education (NCET-05-0566) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (2005038401).

    ** To whom correspondence should be addressed. E-mail: qlliu@xmu.edu.cn

    国产av国产精品国产| 卡戴珊不雅视频在线播放| 夜夜骑夜夜射夜夜干| 999久久久国产精品视频| 日本91视频免费播放| 欧美激情极品国产一区二区三区| 久久99蜜桃精品久久| 18禁裸乳无遮挡动漫免费视频| 久久精品久久精品一区二区三区| 老汉色∧v一级毛片| 日韩视频在线欧美| 肉色欧美久久久久久久蜜桃| 日韩大片免费观看网站| av电影中文网址| 久久久久久久国产电影| 国产精品.久久久| 制服诱惑二区| 久久青草综合色| 黄网站色视频无遮挡免费观看| 亚洲国产毛片av蜜桃av| 人体艺术视频欧美日本| 青春草视频在线免费观看| 国产白丝娇喘喷水9色精品| 欧美人与性动交α欧美精品济南到 | 免费女性裸体啪啪无遮挡网站| 国产精品无大码| 搡老乐熟女国产| 午夜激情av网站| 老司机影院毛片| 中文字幕人妻熟女乱码| 丝袜美足系列| 亚洲精品国产av蜜桃| 亚洲成av片中文字幕在线观看 | 精品久久久精品久久久| 精品亚洲乱码少妇综合久久| 国产有黄有色有爽视频| 日韩中文字幕视频在线看片| a级毛片黄视频| 日韩视频在线欧美| 日韩av不卡免费在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 人妻人人澡人人爽人人| 一个人免费看片子| 高清视频免费观看一区二区| 久久青草综合色| 黄色 视频免费看| 国产高清不卡午夜福利| 99久久中文字幕三级久久日本| 国产免费视频播放在线视频| 国产在线一区二区三区精| 性高湖久久久久久久久免费观看| 亚洲色图 男人天堂 中文字幕| 日本wwww免费看| 女人被躁到高潮嗷嗷叫费观| 如何舔出高潮| 中文字幕制服av| 久久国产精品男人的天堂亚洲| 亚洲欧美成人精品一区二区| 亚洲av电影在线进入| 视频区图区小说| 91在线精品国自产拍蜜月| 欧美亚洲日本最大视频资源| 岛国毛片在线播放| 亚洲av男天堂| 男人爽女人下面视频在线观看| 美女午夜性视频免费| 亚洲一码二码三码区别大吗| 亚洲欧洲精品一区二区精品久久久 | 我的亚洲天堂| 成人二区视频| 国产成人一区二区在线| 欧美日韩一级在线毛片| 午夜91福利影院| 精品亚洲乱码少妇综合久久| 最近最新中文字幕大全免费视频 | 桃花免费在线播放| 亚洲精品日本国产第一区| 夫妻性生交免费视频一级片| 亚洲国产欧美在线一区| 黄色视频在线播放观看不卡| 宅男免费午夜| 成人国产麻豆网| 精品卡一卡二卡四卡免费| 熟妇人妻不卡中文字幕| 在线天堂最新版资源| 成人国语在线视频| 国产老妇伦熟女老妇高清| 精品一区二区三卡| 亚洲激情五月婷婷啪啪| xxxhd国产人妻xxx| 十八禁高潮呻吟视频| 99精国产麻豆久久婷婷| 午夜激情久久久久久久| 国产精品一二三区在线看| 久久亚洲国产成人精品v| 91国产中文字幕| 黄片播放在线免费| 亚洲美女搞黄在线观看| 肉色欧美久久久久久久蜜桃| 伦理电影免费视频| 丝袜在线中文字幕| 国产男女超爽视频在线观看| 日韩av免费高清视频| 国产精品免费视频内射| 捣出白浆h1v1| 最近最新中文字幕免费大全7| 又黄又粗又硬又大视频| 午夜免费男女啪啪视频观看| 观看av在线不卡| 免费观看无遮挡的男女| 天天影视国产精品| 久久久亚洲精品成人影院| 欧美少妇被猛烈插入视频| 麻豆乱淫一区二区| 亚洲,欧美,日韩| 精品国产乱码久久久久久小说| 9191精品国产免费久久| videos熟女内射| 男女免费视频国产| 成人18禁高潮啪啪吃奶动态图| 国产精品久久久久久久久免| av.在线天堂| 国产男女内射视频| 999精品在线视频| 日韩,欧美,国产一区二区三区| 搡女人真爽免费视频火全软件| 一级毛片我不卡| 青春草视频在线免费观看| 婷婷色麻豆天堂久久| 亚洲精品国产色婷婷电影| 在线观看www视频免费| 久久久久国产网址| av网站在线播放免费| 久久精品夜色国产| 国产一区二区激情短视频 | 国产又爽黄色视频| 超色免费av| 久久青草综合色| 九九爱精品视频在线观看| 黑丝袜美女国产一区| 日韩三级伦理在线观看| 三级国产精品片| 国产日韩欧美亚洲二区| 丝袜美腿诱惑在线| 精品一区二区免费观看| 91在线精品国自产拍蜜月| 极品少妇高潮喷水抽搐| 国产精品国产三级专区第一集| 国产成人av激情在线播放| 丝瓜视频免费看黄片| 亚洲国产精品一区二区三区在线| 成人漫画全彩无遮挡| 久久久久久久国产电影| 精品福利永久在线观看| 啦啦啦视频在线资源免费观看| 在线观看人妻少妇| 街头女战士在线观看网站| 男男h啪啪无遮挡| 亚洲第一av免费看| 亚洲色图 男人天堂 中文字幕| 亚洲欧美一区二区三区久久| 赤兔流量卡办理| 哪个播放器可以免费观看大片| 久久人人爽av亚洲精品天堂| 波多野结衣av一区二区av| 亚洲一区二区三区欧美精品| 欧美日韩国产mv在线观看视频| 男人添女人高潮全过程视频| 中文字幕人妻熟女乱码| 丝袜脚勾引网站| 精品人妻熟女毛片av久久网站| 日本vs欧美在线观看视频| 亚洲国产色片| 国产精品.久久久| 欧美精品国产亚洲| 中文字幕亚洲精品专区| 久久久久久久久久久久大奶| 精品卡一卡二卡四卡免费| 亚洲精品久久成人aⅴ小说| 2022亚洲国产成人精品| 婷婷色综合www| 热99久久久久精品小说推荐| 中国三级夫妇交换| 一边摸一边做爽爽视频免费| 日本免费在线观看一区| 免费观看性生交大片5| 久久久国产欧美日韩av| 亚洲熟女精品中文字幕| 成年人午夜在线观看视频| 午夜福利,免费看| 免费在线观看黄色视频的| 最近的中文字幕免费完整| 女性生殖器流出的白浆| 国产精品免费大片| 国产在线一区二区三区精| 日韩人妻精品一区2区三区| 最近的中文字幕免费完整| 精品酒店卫生间| 啦啦啦在线观看免费高清www| 精品国产超薄肉色丝袜足j| 成人亚洲欧美一区二区av| 黑人猛操日本美女一级片| 熟妇人妻不卡中文字幕| 在线观看免费日韩欧美大片| 中文字幕精品免费在线观看视频| 国产欧美亚洲国产| 丰满乱子伦码专区| 欧美精品高潮呻吟av久久| 青草久久国产| 欧美日韩av久久| 伦理电影大哥的女人| 又粗又硬又长又爽又黄的视频| 亚洲成人一二三区av| 成年美女黄网站色视频大全免费| 中文字幕av电影在线播放| 美女中出高潮动态图| 免费在线观看黄色视频的| 丝袜脚勾引网站| 日韩熟女老妇一区二区性免费视频| 国产男女内射视频| 免费黄频网站在线观看国产| 日韩伦理黄色片| 水蜜桃什么品种好| 人体艺术视频欧美日本| 黄色毛片三级朝国网站| 高清视频免费观看一区二区| 欧美另类一区| 天天影视国产精品| 性少妇av在线| 亚洲国产成人一精品久久久| 91国产中文字幕| av不卡在线播放| 精品人妻熟女毛片av久久网站| 亚洲av福利一区| 亚洲av综合色区一区| 亚洲一码二码三码区别大吗| 人妻人人澡人人爽人人| 亚洲经典国产精华液单| 男女国产视频网站| 成年女人在线观看亚洲视频| 日日撸夜夜添| 免费黄网站久久成人精品| 亚洲激情五月婷婷啪啪| 美国免费a级毛片| 黄片小视频在线播放| 爱豆传媒免费全集在线观看| 久久久久久久国产电影| 国产 一区精品| 热99国产精品久久久久久7| 亚洲,欧美,日韩| 久久久久精品久久久久真实原创| 亚洲av综合色区一区| 人成视频在线观看免费观看| 午夜老司机福利剧场| 高清视频免费观看一区二区| 午夜久久久在线观看| 精品人妻一区二区三区麻豆| 亚洲欧美成人综合另类久久久| 亚洲五月色婷婷综合| 精品国产乱码久久久久久男人| 在线观看美女被高潮喷水网站| 男女无遮挡免费网站观看| 精品国产一区二区久久| 亚洲国产欧美日韩在线播放| 成人毛片a级毛片在线播放| 男男h啪啪无遮挡| 亚洲国产精品999| 欧美日韩亚洲国产一区二区在线观看 | 日韩中文字幕视频在线看片| 97在线人人人人妻| 视频区图区小说| 国产亚洲一区二区精品| 婷婷色麻豆天堂久久| 热99国产精品久久久久久7| 性高湖久久久久久久久免费观看| 在线观看美女被高潮喷水网站| 久久婷婷青草| 大片电影免费在线观看免费| 久久久久久久亚洲中文字幕| 少妇人妻久久综合中文| 熟妇人妻不卡中文字幕| 欧美日韩一级在线毛片| 黄色 视频免费看| 亚洲一区二区三区欧美精品| 国产成人aa在线观看| 人体艺术视频欧美日本| videossex国产| 欧美日本中文国产一区发布| 国产成人av激情在线播放| 人妻 亚洲 视频| 一本色道久久久久久精品综合| 久久久久久人妻| av在线观看视频网站免费| 久久久久精品性色| 国产有黄有色有爽视频| 人妻人人澡人人爽人人| 性高湖久久久久久久久免费观看| 高清不卡的av网站| 久久鲁丝午夜福利片| 国产视频首页在线观看| 久久毛片免费看一区二区三区| 99久久中文字幕三级久久日本| 老司机亚洲免费影院| 国产精品二区激情视频| 国产精品一区二区在线不卡| 99久久人妻综合| 电影成人av| 免费日韩欧美在线观看| 制服丝袜香蕉在线| 国产精品久久久久成人av| 成人亚洲精品一区在线观看| 亚洲,一卡二卡三卡| 赤兔流量卡办理| 少妇的丰满在线观看| 久久久久久人妻| 一区在线观看完整版| 韩国av在线不卡| 亚洲av欧美aⅴ国产| 午夜91福利影院| 国产精品.久久久| 亚洲精品久久午夜乱码| 亚洲精品美女久久av网站| 国产一区二区 视频在线| 国产av一区二区精品久久| 一本色道久久久久久精品综合| 国产在线一区二区三区精| 日韩伦理黄色片| 欧美亚洲日本最大视频资源| 哪个播放器可以免费观看大片| 日韩中文字幕欧美一区二区 | 欧美日韩一区二区视频在线观看视频在线| 亚洲综合精品二区| 免费女性裸体啪啪无遮挡网站| 丰满少妇做爰视频| 精品国产一区二区三区久久久樱花| 日日摸夜夜添夜夜爱| 99re6热这里在线精品视频| 久久久久人妻精品一区果冻| 18禁国产床啪视频网站| 精品一区在线观看国产| 欧美在线黄色| av网站在线播放免费| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久视频综合| av在线app专区| 日韩一卡2卡3卡4卡2021年| 国产爽快片一区二区三区| 男人操女人黄网站| 国产欧美日韩一区二区三区在线| 久久精品久久久久久噜噜老黄| 亚洲三区欧美一区| 在线观看免费日韩欧美大片| 国产一级毛片在线| 少妇被粗大猛烈的视频| 熟妇人妻不卡中文字幕| 一区二区av电影网| 亚洲少妇的诱惑av| 亚洲av成人精品一二三区| 国产 精品1| 成人亚洲精品一区在线观看| 国产高清国产精品国产三级| 午夜影院在线不卡| 国产熟女午夜一区二区三区| 亚洲av免费高清在线观看| 亚洲在久久综合| 99久久中文字幕三级久久日本| 国产无遮挡羞羞视频在线观看| 99国产综合亚洲精品| 国产一区二区 视频在线| 一级爰片在线观看| 国产精品成人在线| 精品久久久精品久久久| 亚洲精品美女久久久久99蜜臀 | 不卡视频在线观看欧美| 久久久久久伊人网av| 成人二区视频| 久久99一区二区三区| 啦啦啦中文免费视频观看日本| 日韩视频在线欧美| 日韩伦理黄色片| 免费黄色在线免费观看| 波野结衣二区三区在线| 中国国产av一级| 91成人精品电影| 黄片无遮挡物在线观看| 欧美人与性动交α欧美软件| 国产在线视频一区二区| 91久久精品国产一区二区三区| 熟妇人妻不卡中文字幕| 一区二区三区精品91| 欧美日韩av久久| 看十八女毛片水多多多| 亚洲精品国产色婷婷电影| 涩涩av久久男人的天堂| 欧美精品一区二区免费开放| 免费日韩欧美在线观看| 在线天堂中文资源库| 亚洲综合色网址| 纯流量卡能插随身wifi吗| 老鸭窝网址在线观看| videossex国产| 捣出白浆h1v1| 男女边吃奶边做爰视频| 97在线人人人人妻| av免费观看日本| 性色av一级| 男女啪啪激烈高潮av片| 人妻系列 视频| 亚洲人成电影观看| 亚洲精品中文字幕在线视频| 精品国产一区二区久久| 天天影视国产精品| 国产片内射在线| 国产毛片在线视频| 热re99久久国产66热| 人体艺术视频欧美日本| 丝袜脚勾引网站| 国产极品天堂在线| 国产欧美日韩一区二区三区在线| 一级毛片 在线播放| 波多野结衣av一区二区av| 久久久国产一区二区| 久久毛片免费看一区二区三区| 久久久久久久久免费视频了| 色94色欧美一区二区| av电影中文网址| 免费观看在线日韩| 国产片特级美女逼逼视频| 一级,二级,三级黄色视频| 韩国高清视频一区二区三区| 国产国语露脸激情在线看| 精品人妻一区二区三区麻豆| 午夜久久久在线观看| 亚洲第一青青草原| av卡一久久| 你懂的网址亚洲精品在线观看| 美女国产高潮福利片在线看| 91午夜精品亚洲一区二区三区| 黄网站色视频无遮挡免费观看| av免费观看日本| 精品亚洲乱码少妇综合久久| 亚洲精品国产一区二区精华液| 精品视频人人做人人爽| 黄片播放在线免费| 国产高清不卡午夜福利| 人妻少妇偷人精品九色| 久久青草综合色| 人妻一区二区av| av天堂久久9| 久久av网站| 91精品伊人久久大香线蕉| 中文字幕另类日韩欧美亚洲嫩草| 国产精品99久久99久久久不卡 | 在线观看美女被高潮喷水网站| 性高湖久久久久久久久免费观看| 2021少妇久久久久久久久久久| 寂寞人妻少妇视频99o| 午夜福利影视在线免费观看| 五月开心婷婷网| 青春草亚洲视频在线观看| 午夜影院在线不卡| 女人精品久久久久毛片| 欧美成人午夜免费资源| 哪个播放器可以免费观看大片| 秋霞在线观看毛片| 中文字幕人妻丝袜制服| 日韩成人av中文字幕在线观看| 在线精品无人区一区二区三| 欧美日韩视频高清一区二区三区二| 亚洲欧美成人精品一区二区| 亚洲av电影在线观看一区二区三区| 精品人妻在线不人妻| 又粗又硬又长又爽又黄的视频| 丝袜喷水一区| 成人国产av品久久久| 亚洲综合色惰| 国产成人欧美| 亚洲人成电影观看| 一二三四在线观看免费中文在| 永久网站在线| 精品久久久精品久久久| 欧美最新免费一区二区三区| 日日摸夜夜添夜夜爱| 亚洲国产日韩一区二区| 久久人人爽av亚洲精品天堂| 亚洲欧美成人精品一区二区| av天堂久久9| kizo精华| av天堂久久9| 宅男免费午夜| 久久午夜综合久久蜜桃| 国产又色又爽无遮挡免| 男女高潮啪啪啪动态图| 考比视频在线观看| 国产精品 欧美亚洲| 另类亚洲欧美激情| 中文字幕最新亚洲高清| 不卡视频在线观看欧美| 超碰成人久久| 国产精品一国产av| 波多野结衣av一区二区av| 久久久久人妻精品一区果冻| 免费高清在线观看日韩| 免费黄色在线免费观看| 久久久精品国产亚洲av高清涩受| 一区二区日韩欧美中文字幕| 亚洲,一卡二卡三卡| 久久精品国产亚洲av高清一级| 久久久精品区二区三区| 亚洲一级一片aⅴ在线观看| 亚洲精华国产精华液的使用体验| 亚洲成人手机| 日韩av不卡免费在线播放| 精品99又大又爽又粗少妇毛片| 精品午夜福利在线看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲国产看品久久| 日本爱情动作片www.在线观看| 肉色欧美久久久久久久蜜桃| 国产亚洲一区二区精品| 亚洲一级一片aⅴ在线观看| 尾随美女入室| 一区二区三区乱码不卡18| 2022亚洲国产成人精品| 国产日韩欧美亚洲二区| 精品第一国产精品| av.在线天堂| 精品国产超薄肉色丝袜足j| 十分钟在线观看高清视频www| 久久亚洲国产成人精品v| 咕卡用的链子| 在线观看免费日韩欧美大片| 午夜福利视频在线观看免费| 久久久久久久久免费视频了| 免费观看在线日韩| 成人二区视频| av网站在线播放免费| 亚洲精品美女久久av网站| 成年人午夜在线观看视频| 69精品国产乱码久久久| 久久婷婷青草| 亚洲婷婷狠狠爱综合网| 最新的欧美精品一区二区| 涩涩av久久男人的天堂| 久久久久久久久免费视频了| 亚洲欧美精品自产自拍| 女人被躁到高潮嗷嗷叫费观| 久久精品亚洲av国产电影网| av在线app专区| 中文字幕最新亚洲高清| 你懂的网址亚洲精品在线观看| 丰满饥渴人妻一区二区三| 亚洲av男天堂| 高清视频免费观看一区二区| 免费日韩欧美在线观看| 欧美bdsm另类| 久久毛片免费看一区二区三区| 精品国产国语对白av| 免费人妻精品一区二区三区视频| 亚洲国产毛片av蜜桃av| 啦啦啦中文免费视频观看日本| 欧美精品一区二区大全| 99久久人妻综合| 丰满迷人的少妇在线观看| 天堂中文最新版在线下载| 王馨瑶露胸无遮挡在线观看| 免费高清在线观看视频在线观看| 亚洲国产毛片av蜜桃av| 最近中文字幕高清免费大全6| 天天操日日干夜夜撸| www.自偷自拍.com| 中国国产av一级| 欧美xxⅹ黑人| 国产爽快片一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 欧美老熟妇乱子伦牲交| 欧美人与性动交α欧美软件| 五月伊人婷婷丁香| h视频一区二区三区| 午夜日韩欧美国产| 最新的欧美精品一区二区| 少妇精品久久久久久久| 国精品久久久久久国模美| 一级片免费观看大全| 极品少妇高潮喷水抽搐| 午夜免费鲁丝| 精品人妻偷拍中文字幕| 新久久久久国产一级毛片| 日韩成人av中文字幕在线观看| 精品福利永久在线观看| 十八禁高潮呻吟视频| 人人妻人人添人人爽欧美一区卜| 亚洲成人av在线免费| 亚洲精品在线美女| 国产男女内射视频| 色网站视频免费| 丝袜在线中文字幕| 丰满乱子伦码专区| 狠狠婷婷综合久久久久久88av| 女的被弄到高潮叫床怎么办| 国产片内射在线| 日本-黄色视频高清免费观看| 女人被躁到高潮嗷嗷叫费观| 男女高潮啪啪啪动态图| 黄频高清免费视频| 中文字幕亚洲精品专区| 国产精品一区二区在线不卡| 亚洲av日韩在线播放| 久久久久久久大尺度免费视频| 精品一区在线观看国产| 欧美xxⅹ黑人| 99久久人妻综合| 校园人妻丝袜中文字幕| 视频在线观看一区二区三区| 亚洲国产精品国产精品|