• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Activity Coefficient Models to Describe Vapor-Liquid Equilibrium in Ternary Hydro-Alcoholic Solutions*

    2009-05-12 03:33:12ClaudioFandezandJosValderrama
    關(guān)鍵詞:滿堂關(guān)鍵問題毛病

    Claudio A. Faúndezand José O. Valderrama

    ?

    Activity Coefficient Models to Describe Vapor-Liquid Equilibrium in Ternary Hydro-Alcoholic Solutions*

    Claudio A. Faúndez1and José O. Valderrama2,3,**

    1Universidad de Concepción, Fac. de Cs. Físicas y Matemáticas, Casilla 160-C, Concepción, Chile2Universidad de La Serena, Fac. de Ingeniería, Casilla 554, La Serena, Chile3Centro de Información Tecnológica (CIT), Casilla 724, La Serena, Chile

    In this study, three semipredictive activity coefficient models: Wilson, non-random-two liquid model (NRTL), and universal quasi-chemical model (UNIQUAC), have been used for modeling vapor-liquid equilibrium properties of ternary mixtures that include substances found in alcoholic distillation processes of wine and musts. In particular, vapor-liquid equilibrium in ternary mixtures containing water?+?ethanol?+?congener has been modeled using parameters obtained from binary and ternary mixture data. The congeners are substances that although present in very low concentrations, of the order of part per million, are important enological parameters. The results given by these different models have been compared with literature data and conclusions about the accuracy of the models studied are drawn, recommending the best models for correlating and predicting phase equilibrium properties of this type of mixtures.

    wine distillation, activity coefficient models, vapor-liquid equilibrium

    1 Introduction

    To design and simulate alcoholic distillation processes, knowledge of the equilibrium conditions is of special importance. This is because the driving force that produces component separation is the difference between the actual concentration and the concentration at thermodynamic equilibrium. Therefore, knowledge of vapor-liquid equilibrium conditions (VLE) is necessary to design and optimize distillation processes. In wine and must distillation, the great amount of substances found in the mixture to be distilled and the very low concentration of several other components (different from ethanol and water), called congeners, makes it difficult to correlate and predict the concentration of the distilled product, considered to be the most important variable in the produced spirit[1, 2]. Several congener compounds form an essential part of the aroma of the distilled product and therefore their concentrations are important enological parameters [3]. These congener substances are usually present in concentrations of part per million, 10-6to 10-4mg·L-1[4, 5].

    As known, the phase equilibrium problem to be solved consists of the calculation of some variables of the set,,,(temperature, pressure, liquid-phase concentration, and vapor-phase concentration, respectively), when some of them are known. For a vapor- liquid mixture in thermodynamic equilibrium, the temperature and the pressure are the same in both phases, and the remaining variables are defined by the material balance and the “fundamental equation of phase equilibrium”. The application of this fundamental equation requires the use of thermodynamic models, which normally include binary interaction parameters.

    The operating pressure in most alcoholic distillation processes is of the order of the atmospheric pressure and most of the substances involved are highly polar. The classical thermodynamic models commonly used in the literature to treat these mixtures at low pressure require a great amount of binary parameters, which must be determined from binary experimental data [6]. Theoretically, once these binary parameters are known, one can predict the behavior of multicomponent mixtures using standard thermodynamic relations and thermodynamics models.

    Binary mixtures containing water?+?congeners and ethanol?+?congeners have been studied in literature [7-10] and values of the binary parameters have been provided for several models. However, the use of binary parameters to treat mixtures with more than two components in wine distillation process has not been thoroughly analyzed. The authors have analyzed selected ternary mixtures water?+?congener?+?congener and ethanol?+?congener?+?congener [11], however, the strong interaction between ethanol and water in ternary mixtures was not analyzed. This article considers the study of twelve ternary mixtures containing water+?ethanol?+?congener. The twelve congeners are: acetaldehyde, ethyl acetate, furfural, methanol, 3-methyl-1-butanol, 2-methyl-1-propanol, 1-pentanol, 1-propanol, 2-propanol, methyl acetate, 1-butanol, and butyl acetate. The first 8 congeners mentioned are considered as legal compounds by the Chilean legislation for the production of a spirit called “Pisco” and are controlled by the Chilean Health Ministry. As stated above, in wine distillation process, the congeners are present in low concentrations and modeling studies should consider this aspect. However, the limited experimental data available in open literature place an additional difficulty to more accurately correlate these mixtures in the congener infinite dilution region. Therefore in these cases where data is not available in the low concentration range for the congeners, we rely on the extrapolation capabilities of the models used.

    The fundamental equations of phase equilibrium are described as follows.

    Equality of fugacities of each component in the mixture in both phases:

    The fugacity is related to the temperature, the pressure, the volume, and the concentration through a standard thermodynamic relation [12]. If the fugacity coefficient is used in both phases, the method of solution of the phase equilibrium problem is known as “the equation of state method”. If the fugacity coefficient is used for the vapor phase and the activity coefficient is used for the liquid phase, the equilibrium problem is known as “the gamma-phi method”. If the equation of state method is used, an equation of state and a set of mixing rules are needed, to express the fugacity coefficient as a function of the temperature, the pressure, and the concentration. Modern equation of state methods include an excess Gibbs free energy model (E) in the mixing rules of the equation of state, giving origin to the so-called “equation of state?+Emodel” [13].

    Most models available in literature for the activity coefficient are of the correlating type (Van Laar, Margules, Redlich-Kister, NRTL, UNIQUAC, and Wilson), indicating that experimental data are needed to calculate certain empirical parameters; although some predictive models are also available [universal functional activity coefficient model (UNIFAC), analytical solution of groups (ASOG)]. An interesting model to explore for predicting VLE in mixtures of interest in wine distillation is the predictive Soave- Redlich-Kwong (PSRK) of the group “equation of state?+Emodel”, proposed by Holderbaum and Gmehling [15]. This predictive model has been used in several applications including mixtures containing ethanol, water, and congeners [16]. However, to the best of the authors’s knowledge, no systematic study on ternary mixtures, as the one presented here, has been published.

    In the study detailed in this article, ternary mixtures congener?+?ethanol?+?water were considered. Three activity coefficient models, Wilson, non-random-two liquid model (NRTL), and universal quasi-chemical model (UNIQUAC), are analyzed and the result compared with experimental data available in literature. Two approaches are considered: i) ternary data are predicted using parameters obtained from binary VLE data only; and ii) ternary data are correlated using the ternary VLE data. In both cases, it is assumed in the modeling that the model parameters are independent on concentration and temperature. The first approach makes use of the so-called pair wise additivity concept. This indicates that the pair interactions coefficients do not depend on the presence of other components in the mixture, therefore, interaction between molecules 1 and 2, for instance, are the same in a ternary or multicomponent mixture in which the components 1 and 2 are present. The second approach represents a simple correlation procedure in which the binary interaction parameters,Afor Wilson,Bandαfor NRTL, andUfor UNIQUAC, are calculated using ternary VLE data.

    2 Model Description

    The main equations for the three models studied (Wilson, NRTL, and UNIQUAC) and the meaning of the different variables and parameters are described in the following.

    2.1 Wilson model

    Wilson (1964) [18] presented the following expression for the liquid phase activity coefficients:

    The details of the Wilson model are given below.

    whereV, liquid molar volume of component;,empirical energy term;x, mole fraction of component.

    UNIQUAC model

    2.2 NRTL model

    The NRTL model for the activity coefficient at a given absolute temperaturein Kelvin has the following form [19]:

    The termsB,B, andrepresent adjustable parameters usually calculated from the experimental vapor- liquid equilibrium data.

    2.3 UNIQUAC model

    The Universal Quasi-Chemical theory, from which the UNIQUAC model is derived, can be expressed in terms of the activity coefficients as Ref. [20]:

    3 Ternary mixtures

    Twelve ternary ethanol?+?water?+?congener mixtures were considered for the study. The congeners included in these mixtures are acetaldehyde, ethyl acetate, furfural, methanol, 3-methyl-1-butanol, 2-methyl-1-propanol, 1-pentanol, 1-propanol, 2-propanol, methyl acetate, 1-butanol, and butyl acetate.

    Table 1 shows some pure component properties for all the substances involved in this study. In the table,Wis the molecular weight,bis the normal boiling temperature,cis the critical temperature,cis the critical pressure,cis the critical volume, andis the acentric factor. The data were obtained from Refs. [21, 22].

    教學(xué)中要以緊扣教學(xué)重點為基礎(chǔ),精選關(guān)鍵問題,改變重點不突出、滿堂問的毛病,調(diào)動學(xué)生學(xué)習(xí)的積極性,以讀為主,有足夠思考的空間,進(jìn)行創(chuàng)造性學(xué)習(xí)。一堂課的教學(xué)不能離開主線、重點,否則支離破碎,達(dá)不到效果,教學(xué)目標(biāo)難以達(dá)成。

    Table 2 provides some details on the experimental data used in the study. In this table, Δis the temperature range (in K) in the data set, Δxis the liquid mole fraction range for the component “”, and Δyis the vapor mole fraction range for the component “”. The experimental data used in the study were obtained from Refs. [6, 22-24], as detailed in Table 2.

    Although values of the interaction parameters in the Wilson, NRTL, and UNIQUAC models [Eq. (4) for Wilson, Eq. (7) for NRTL, and Eq. (5) for UNIQUAC], are given in literature for most binary pairs, in this study, these parameters were obtained from available experimental binary and ternary VLE data. This was done because the range of temperature and pressure for the data presented in the literature are not necessarily the same as for the data used in this study. This is the recommended way to analyze these types of systems if better results are desired [7]. The new binary and ternary mixture parameters are shown in Table 3 for the three models.

    Table 1 Some properties for the substances involved in this study

    According to the Phase Rule for a three-component mixture, three variables must be set to calculate the rest[12]. Here, pressure () and concentration of water in both phases (3and3) are given, while the temperature () and concentration of the other components (1,1,2and2) are calculated, thereby determining the optimum binary parameters .

    4 Results and Discussion

    In these tables, the deviations for water concentration3are not shown since the water concentrations in both phases are the data given in the bubble temperature calculations. Since for wine distillation, the congener concentration is of more interest, the results and discussion refer to this variable. The temperature is generally well predicted by all models; however, it is better when the model parameters (given in Table 3) are obtained from ternary data. Table 4, also shows the deviations calculated using the activity coefficient models Wilson, NRTL, and UNIQUAC with parameter obtained from VLE binary and ternary data.

    Table 2 Temperature and mole fraction ranges for the experimental data employed in the analysis

    Table 3 Parameters (Aij, Bij, Uij and αij) for the models Wilson, NRTL and UNIQUAC calculated from experimental binary (bin) and ternary (ter) VLE data

    Table 4 Minimum, maximum, and average deviations for the vapor phase mole fraction of components (1) and (2) for the ternary system: congener (1)?+?ethanol (2)?+?water (3), using binary and ternary parameters with the models Wilson,NRTL and UNIQUAC

    Table 4 (Continued)

    As observed in the Table, the Wilson model with parameters obtained from VLE data of binary systems, predicts concentration (1) with relative and absolute deviations below 30% for only seven of the twelve systems analyzed. The highest absolute deviations, between 39% and 85%, are found for the mixtures acetaldehyde (1)?+?ethanol (2)?+?water (3), furfural (1)?+?ethanol (2)?+?water (3), 3-methyl-1-butanol (1)?+?ethanol (2)?+?water (3), 2-methyl-1-propanol (1)?+?ethanol (2)?+?water (3) and 1-pentanol (1)?+?ethanol (2)?+?water (3). These models provide lower deviations for the ethanol concentration in the gas phase (below 14%).

    When the Wilson model is used with parameters obtained from VLE data of ternary systems, the concentration values1present relative and absolute deviations below 30% for ten of the twelve systems analyzed. The highest absolute deviations, between 44% and 57%, are found for the mixtures 3-methyl-1- butanol (1)?+?ethanol (2)?+?water (3) and 1-pentanol (1)?+?ethanol (2)?+?water (3). Wilson model gives lower deviations for the ethanol concentration in the gas phase (below 7%).

    The NRTL model used with parameters obtained from VLE data of binary systems, predicts the concentration1with relative and absolute deviations below 30% for eight of the twelve systems analyzed. The highest absolute deviations, between 45% and 76%, are found for the mixtures acetaldehyde (1)?+?ethanol (2)?+?water (3), 3-methyl-1-butanol (1)?+?ethanol (2)?+?water (3), 2-methyl-1-propanol (1)?+?ethanol (2)?+?water (3) and 1-pentanol (1)?+?ethanol (2)?+?water (3). When NRTL model is used with parameters obtained from VLE data of ternary systems, it predicts concentration1with relative and absolute deviations below 30% for eleven of the twelve systems analyzed. The high absolute deviation, of 45% is found for the mixtures 1-pentanol (1)?+?ethanol (2)?+?water (3).

    The UNIQUAC model used with parameters obtained from VLE data of binary systems, predicts the concentration1with relative and absolute deviations below 30% for seven of the twelve systems analyzed. The highest absolute deviations, between 34% and 70%, are found for the mixtures acetaldehyde (1)?+?ethanol (2)?+?water (3), furfural (1)?+?ethanol (2)?+?water (3), 3-methyl-1-butanol (1)?+?ethanol (2)?+?water (3), 2-methyl-1-propanol (1)?+?ethanol (2)?+?water (3) and 1-pentanol (1)?+?ethanol (2)?+?water (3).

    Now, if we use the UNIQUAC model with parameters obtained from VLE data of ternary systems, this model predicts the concentration1with relative and absolute deviations below 30% for eleven of the twelve systems analyzed. For the mixture 1-pentanol (1)?+?ethanol (2)?+?water (3), the high absolute deviation (38%) is found. In all the cases analyzed and discussed above, the ethanol concentration in the gas phase is obtained with relative low deviations (below 15% for the predictive models and below 7% for the correlating models).

    As seen in Table 4, Wilson, NRTL, and UNIQUAC models give better results when the parameters obtained from experimental data of ternary systems are used, as expected. Although, theoretically, the use of parameters obtained from binary mixture data can be used to predict VLE in ternary mixtures containing the binary mixture substances, however, this is not true in practice. This fact indicates the inaccuracy of the approach and the limitations of the model to capture these inaccuracies. For example, in the system acetaldehyde (1)?+?ethanol (2)?+?water (3), prediction of concentration1is considerably improved when the three models are used with parameters obtained from ternary data. This is also true for the prediction of concentration of ethanol in the gas phase2in which deviations are lower. Similarly, better results of2are obtained for the system 1-butanol (1)?+?ethanol (2)?+?water (3). On the whole, the NRTL and the UNIQUAC models give similar deviations.

    In Figs. 2 and 3, the results obtained with parameters calculated from ternary data are shown, for the three models. Fig. 2 shows the individual relative deviations of the predicted congener concentration in the gas phase1in the mixture 3-methyl-1-butanol (1)?+?ethanol (2)?+?water (3). Experimental data are taken from Hausen [23] and the calculated values are obtained from the models NRTL, UNIQUAC, and Wilson. As observed in the figure, to lower concentrations of1, the Wilson model gives higher individual relative deviations. The three models did not satisfactorily reproduce the highest concentration of1. In this case, individual relative deviations are about 90%. For this system, the models NRTL and UNIQUAC give similar deviations.

    Figure 2 Individual relative deviations of the predicted congener concentration in the gas phase (1) in the mixture 3-methyl-1-butanol (1)?+?ethanol (2)?+?water (3)

    ●?NRTL;△?UNIQUAC; ?+??Wilson

    Figure 3 Individual relative deviations of the predicted congener concentration in the gas phase (1) in the mixture methyl acetate (1)?+?ethanol (2)?+?water (3)

    ●?NRTL;△?UNIQUAC; ?+??Wilson

    Although one model gives better results for some particular cases, it is not possible to generalize the results and select one of the models used as the best one for this type of complex mixtures that appear in wine distillation processes. If better results are desired, further studies are needed with data restricted to narrower ranges of temperature, pressure, and concentration. Also, more complex models, hopefully specific for hydro-alcoholic mixtures, should be used.

    It should be finally mentioned that although there are numerous data on compositions of wine distillates [25-27], the information provided is not given in the required form for the type of modeling needed in alcoholic distillation processes. In the Dechema Database [6], the only multicomponent mixture ethanol?+?water?+?congeners is the five-component mixture water?+?ethanol?+?methyl acetate?+?ethyl acetate?+-propanol. This mixture includes congeners of interest in other distillation processes but not in the production of “Pisco”.

    5 Conclusions

    Vapor-liquid equilibrium in ternary mixtures containing water?+?ethanol?+?congener has been modeled using parameters obtained from binary and ternary mixture data. The study allows to obtain two main conclusions: i) as expected, the predictions of the concentrations of1and2with parameters obtained from ternary systems, give better results than those determined with parameters obtained from binary data; and ii) the NRTL and UNIQUAC models give better overall results for the systems studied.

    AcknowledgEments

    ,,,.

    Nomenclature

    AWilson parameter

    BNRTL parameter

    Eexcess Gibbs free energy

    pressure

    q van der Waals area parameter

    ideal gas constant

    r van der Waals volume parameter

    temperature

    ccritical temperature

    UUNIQUAC parameter

    volume

    xexperimental mole fraction of congener in the liquid phase (component)

    ymole fraction of congener in the vapor phase (component)

    expexperimental mole fraction of a congener in the vapor phase

    NRTL parameter

    activity coefficient

    Δ interval (for temperature, pressure, and mole fraction)

    percent deviation

    acentric factor

    Superscripts

    cal calculated

    exp experimental

    Subscripts

    ,components

    1 Hikari, A., Kubo, R., “Behavior of various impurities in simple distillation of aqueous solutions of ethanol”,..., 8, 294-299 (1975).

    2 Lillo, M.P.I., Latrille, E., Casaubon, G., Agosin, E., Bordeu, E., Martin, N., “Comparison between odour and aroma profiles of Chilean Pisco spirit”,, 16, 59-70 (2005).

    3 Lora, J., Iborra, M.I., Perez, R., Carbonell, I., “Simulación del proceso de destilación para la concentración de aromas del vino”,....., 32, 621-633 (1992).

    4 Herraiz, M., Reglero, G., Herraiz, T., Loyola, E., “Analysis of wine distillates made from muscat grapes (Pisco) by multidimensional gas chromatography and mass spectrometry”,..., 38, 1540-1543 (1990).

    5 Osorio, D., Perez-Correa, R., Belancic, A., Agosin, E., “Rigorous dynamic modeling and simulation of wine distillations”,.,15, 515-521 (2004).

    6 Gmehling, J., Onken, U., Arlt, W., Vapor-Liquid Equilibrium Data Collection, DECHEMA, Verlag?+?Druckerei Friedrich Bischoff, Frankfurt (1982).

    7 Valderrama, J.O., Pizarro, C., Rojas, R., “Equilibrio líquido-vapor en mezclas complejas para la simulación de procesos de destilación de mostos y vinos”,, 39, 151-156 (2001).

    8 Faúndez, C.A., Valderrama, J.O., “Phase equilibrium modeling in binary mixtures found in wine and must distillation”,., 65, 577-583 (2004).

    9 Faúndez, C.A., Alvarez, V.H., Valderrama, J.O., “Phase equilibrium in binary aqueous mixtures of interest in alcoholic distillation using a modified PSRK equation of state”,..., 25, 230-236 (2004).

    10 Alvarez, V.H., Faúndez, C.A., Valderrama, J.O., “Vapor-liquid equilibrium in binary aqueous mixtures using a modified Regular Solution model”,...., 83, 485-492 (2005).

    11 Faúndez, C.A., Valderrama, J.O., “Ecuaciones de Estado vs modelos de coeficientes de actividad para describir el equilibrio líquido-vapor en mezclas ternarias de interés en destilación alcohólica”,, 352, 141-146 (2004).

    12 Walas, S.M., Phase Equilibria in Chemical Engineering, Butterworth Pub., Storeham (1985).

    13 Valderrama, J.O., “The state of the cubic equation of state”,...., 42, 1603-1618 (2003).

    14 Orbey, H., Sandler, S.I., Modeling Vapor-Liquid Equilibria: Cubic Equations of State and Their Mixing Rules, Cambridge University Press, USA (1998).

    15 Holderbaun, T., Gmehling, J., “PSRK: A group contribution equation of state based on UNIFAC”,., 70, 251-256 (1991).

    16 Faúndez, C.A., Alvarez, V.H., Valderrama, J.O., “Predictive models to describe VLE in ternary mixtures water?+?ethanol?+?congener for wine distillation”,, 450, 110-117 (2006).

    17 Soave, G., “Equilibrium constants from a modified Redlich-Kwong equation of state”,..., 27, 1197-1203 (1972).

    18 Wilson, G.M., “Vapour-liquid equilibrium. XI. A new expression for the excess free energy of mixing”,...., 86, 127-139 (1964).

    19 Prausnitz, J.M., Lichtenthaler, R.N., Gomes de Azevedo, E., Molecular Thermodynamics of Fluid-Phase Equilibria, Prentice Hall International Series, New Jersey, USA (1999).

    20 Abrams, D.S., Prausnitz, J.M., “Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems”,., 21, 116-128 (1975).

    21 Daubert, T.E., Danner, R.P., Sibul, H.M., Stebbins, C.C., Physical and Thermodynamic Properties of Pure Chemicals: Data compilation, Taylor&Francis, London, UK (1996).

    22 Chu, J.C., Getty, R.J., Brennecke, L.F., Paul, R., Distillation Equilibrium Data, Reinhold Publishing Corporation, New York, USA (1950).

    23 Hausen, H., Numerical Data and Functional Relationships in Science and Technology, Volume 3, Thermodynamic Equilibria of Boiling Mixtures, Springer, Berlin-Germany (1975).

    24 Fernández, M.J., Gomis, V., Loras, S., Ruiz, F., “Isobaric vapor-liquid equilibria for the system 1-pentanol?+?ethanol?+?water at 101.3 kPa”,...., 46, 665-667 (2001).

    25 Conner, J.M., Paterson, A., Piggott, J.R., “Interactions between ethyl esters and aroma compounds in model spirit solutions”,..., 42, 2231-2234 (1994).

    26 Conner, J.M., Paterson, A., Piggott, J.R., “Release of distillate flavour compounds in Scotch malt whisky”,..., 79, 1015-1020 (1999).

    27 Conner, J.M., Birkmyre, L., Paterson, A., Piggott, J.R., “Headspace concentrations of ethyl esters at different alcoholic strengths”,..., 77, 121-126 (1998).

    2008-08-26,

    2009-01-04.

    the Direction of Research of the University of La Serena-Chile (220-2-05 and 220-2-21), and the National Council for Scientific and Technological Research, CONICYT (FONDECYT 3020020).

    ** To whom correspondence should be addressed. E-mail: jvalderr@userena.cl

    猜你喜歡
    滿堂關(guān)鍵問題毛病
    肝不好,脾胃就鬧毛病
    防治水霉病的幾點關(guān)鍵問題
    幸福滿堂
    幸福滿堂
    燃燒吧!小羽宙
    關(guān)于滿堂支架受力驗算的探討
    江西建材(2018年1期)2018-04-04 05:26:30
    沒毛病
    毛病
    NFV技術(shù)及其引入VoLTE IMS中的關(guān)鍵問題研究
    解決好改革關(guān)鍵問題
    两性午夜刺激爽爽歪歪视频在线观看| 国产伦精品一区二区三区视频9| 欧美性猛交黑人性爽| 亚洲五月天丁香| 国产69精品久久久久777片| 日韩欧美国产在线观看| 岛国毛片在线播放| 成人三级黄色视频| 日本av手机在线免费观看| av女优亚洲男人天堂| 中文在线观看免费www的网站| 欧美激情国产日韩精品一区| 哪个播放器可以免费观看大片| 国产黄a三级三级三级人| 亚洲熟妇中文字幕五十中出| av在线天堂中文字幕| 国产精品久久视频播放| 国产综合懂色| 寂寞人妻少妇视频99o| 高清日韩中文字幕在线| 国内精品宾馆在线| 日韩大尺度精品在线看网址| 精品人妻偷拍中文字幕| АⅤ资源中文在线天堂| 国产精华一区二区三区| 又爽又黄a免费视频| 国产精品国产高清国产av| 精品人妻视频免费看| 舔av片在线| 熟女人妻精品中文字幕| 在线播放无遮挡| 国内少妇人妻偷人精品xxx网站| 深夜精品福利| 久久午夜亚洲精品久久| 老女人水多毛片| 成人亚洲欧美一区二区av| 国内揄拍国产精品人妻在线| 日韩欧美精品免费久久| 国产真实乱freesex| 麻豆乱淫一区二区| 亚洲无线观看免费| 婷婷色综合大香蕉| 好男人视频免费观看在线| 蜜桃久久精品国产亚洲av| 九草在线视频观看| 久久这里只有精品中国| 美女cb高潮喷水在线观看| 国内久久婷婷六月综合欲色啪| 免费无遮挡裸体视频| 最新中文字幕久久久久| 丝袜美腿在线中文| 日韩欧美国产在线观看| 午夜福利高清视频| 久久久久久国产a免费观看| 在线免费十八禁| 亚洲欧美日韩高清在线视频| 亚洲电影在线观看av| 高清在线视频一区二区三区 | 亚洲成a人片在线一区二区| 看片在线看免费视频| 久久热精品热| 嫩草影院精品99| 99热6这里只有精品| 久久久久久久久中文| 日本免费一区二区三区高清不卡| 有码 亚洲区| 日韩成人av中文字幕在线观看| 亚州av有码| 亚洲丝袜综合中文字幕| 国产精品野战在线观看| 成人午夜精彩视频在线观看| 搞女人的毛片| 免费无遮挡裸体视频| 国产午夜福利久久久久久| 亚洲真实伦在线观看| 国产三级中文精品| 自拍偷自拍亚洲精品老妇| 国产高清激情床上av| 亚洲内射少妇av| 国产精品精品国产色婷婷| 午夜福利在线观看吧| 午夜福利视频1000在线观看| 韩国av在线不卡| 看黄色毛片网站| 亚洲精品乱码久久久久久按摩| 亚洲精品国产成人久久av| 一级黄片播放器| 人人妻人人看人人澡| 日韩精品青青久久久久久| a级毛片免费高清观看在线播放| 少妇熟女欧美另类| 中国美白少妇内射xxxbb| 男人舔奶头视频| 欧美三级亚洲精品| 久久久久性生活片| 三级毛片av免费| 精品一区二区三区视频在线| 人妻系列 视频| 日本在线视频免费播放| 校园春色视频在线观看| 国产在视频线在精品| 小说图片视频综合网站| 亚洲精品国产成人久久av| 国产69精品久久久久777片| 免费看光身美女| 国产一区二区在线观看日韩| videossex国产| 亚洲第一电影网av| 天堂中文最新版在线下载 | 欧美xxxx黑人xx丫x性爽| 日韩欧美国产在线观看| 日韩精品青青久久久久久| 青春草亚洲视频在线观看| 成年免费大片在线观看| 成人亚洲欧美一区二区av| 亚洲精品色激情综合| 国产老妇伦熟女老妇高清| 赤兔流量卡办理| 自拍偷自拍亚洲精品老妇| av在线播放精品| 精品久久久久久成人av| 1000部很黄的大片| 校园人妻丝袜中文字幕| 男女那种视频在线观看| av天堂在线播放| а√天堂www在线а√下载| 欧美另类亚洲清纯唯美| 国产爱豆传媒在线观看| 少妇裸体淫交视频免费看高清| 国产一级毛片在线| 成年女人看的毛片在线观看| 成年女人永久免费观看视频| 欧美另类亚洲清纯唯美| ponron亚洲| 国产精品精品国产色婷婷| 欧美极品一区二区三区四区| 成年女人看的毛片在线观看| 听说在线观看完整版免费高清| 人妻久久中文字幕网| 九草在线视频观看| 久久久久久国产a免费观看| 欧美3d第一页| 国语自产精品视频在线第100页| 国产精品国产三级国产av玫瑰| 国产精品久久久久久精品电影小说 | 成年av动漫网址| 人体艺术视频欧美日本| 国产一区二区三区在线臀色熟女| 久久精品国产亚洲av天美| 国产极品精品免费视频能看的| 色综合站精品国产| 国产av一区在线观看免费| 三级国产精品欧美在线观看| 中国国产av一级| 中文字幕免费在线视频6| 在线天堂最新版资源| 亚洲内射少妇av| 欧美3d第一页| 欧美激情久久久久久爽电影| 99久久精品热视频| 午夜激情福利司机影院| 小说图片视频综合网站| 日韩强制内射视频| 九九爱精品视频在线观看| 国产一级毛片七仙女欲春2| 国产精品爽爽va在线观看网站| 如何舔出高潮| 亚洲中文字幕一区二区三区有码在线看| 亚洲无线在线观看| 国内久久婷婷六月综合欲色啪| 国产女主播在线喷水免费视频网站 | 99热精品在线国产| 高清午夜精品一区二区三区 | 老师上课跳d突然被开到最大视频| 三级国产精品欧美在线观看| 卡戴珊不雅视频在线播放| 成人美女网站在线观看视频| 日韩中字成人| 男人的好看免费观看在线视频| 欧美变态另类bdsm刘玥| 亚洲综合色惰| 日本黄色片子视频| 一区二区三区高清视频在线| 天天躁日日操中文字幕| 亚洲人成网站在线观看播放| 国产成人91sexporn| 成人性生交大片免费视频hd| 人人妻人人澡人人爽人人夜夜 | 久久久久久久亚洲中文字幕| av女优亚洲男人天堂| 欧美成人一区二区免费高清观看| 美女内射精品一级片tv| 99热全是精品| 欧美变态另类bdsm刘玥| 不卡一级毛片| 国产精品,欧美在线| 岛国在线免费视频观看| 国产成人aa在线观看| 精品久久久噜噜| 国产精品一区二区三区四区免费观看| 蜜臀久久99精品久久宅男| 国产一区二区激情短视频| 午夜精品在线福利| 又黄又爽又刺激的免费视频.| 人人妻人人澡人人爽人人夜夜 | 日日撸夜夜添| .国产精品久久| 深夜a级毛片| 国产精品精品国产色婷婷| 中文字幕精品亚洲无线码一区| 精品久久久久久久久久免费视频| 小说图片视频综合网站| 日本与韩国留学比较| 又粗又硬又长又爽又黄的视频 | 99久国产av精品国产电影| 最近最新中文字幕大全电影3| 婷婷精品国产亚洲av| 精品国产三级普通话版| 毛片一级片免费看久久久久| 久久人妻av系列| 欧美最新免费一区二区三区| 深夜a级毛片| 性插视频无遮挡在线免费观看| 亚洲国产精品国产精品| 久久精品91蜜桃| 在线免费观看的www视频| 69人妻影院| 欧美成人精品欧美一级黄| 波野结衣二区三区在线| 少妇被粗大猛烈的视频| av免费在线看不卡| 亚洲aⅴ乱码一区二区在线播放| 国产麻豆成人av免费视频| 别揉我奶头 嗯啊视频| av福利片在线观看| 精品国产三级普通话版| 69av精品久久久久久| 99久国产av精品| 国产伦在线观看视频一区| 免费看a级黄色片| 黄色视频,在线免费观看| 精品无人区乱码1区二区| 天堂av国产一区二区熟女人妻| 1000部很黄的大片| 亚洲内射少妇av| 成人鲁丝片一二三区免费| av在线蜜桃| 岛国在线免费视频观看| 亚洲无线观看免费| 一级毛片电影观看 | 欧美最黄视频在线播放免费| 色吧在线观看| 99久久人妻综合| 蜜臀久久99精品久久宅男| 亚洲最大成人手机在线| 三级男女做爰猛烈吃奶摸视频| 国产一区二区三区在线臀色熟女| 亚洲丝袜综合中文字幕| 色综合亚洲欧美另类图片| 麻豆精品久久久久久蜜桃| 身体一侧抽搐| 亚洲欧美清纯卡通| 亚洲av二区三区四区| 深爱激情五月婷婷| 免费av观看视频| 日韩欧美三级三区| 尤物成人国产欧美一区二区三区| 色噜噜av男人的天堂激情| 在线免费观看不下载黄p国产| 熟女电影av网| 一区二区三区免费毛片| 九草在线视频观看| а√天堂www在线а√下载| 少妇的逼水好多| 色吧在线观看| 级片在线观看| 国产蜜桃级精品一区二区三区| 欧美3d第一页| 只有这里有精品99| 99热6这里只有精品| 亚洲欧美精品自产自拍| 亚洲婷婷狠狠爱综合网| 九草在线视频观看| 狠狠狠狠99中文字幕| 波多野结衣巨乳人妻| 日韩三级伦理在线观看| 亚洲不卡免费看| 国产三级在线视频| 亚洲成人久久爱视频| 夜夜看夜夜爽夜夜摸| 欧美在线一区亚洲| 国产精品乱码一区二三区的特点| 一级二级三级毛片免费看| 日韩大尺度精品在线看网址| 91麻豆精品激情在线观看国产| 1000部很黄的大片| 国产成人影院久久av| 欧美激情久久久久久爽电影| 国产高清有码在线观看视频| 国产探花极品一区二区| 久久综合国产亚洲精品| 97超碰精品成人国产| 国产一区二区在线av高清观看| 国产色爽女视频免费观看| 亚洲欧美成人综合另类久久久 | 久久亚洲国产成人精品v| 国产黄a三级三级三级人| 国产色爽女视频免费观看| 成人国产麻豆网| 最近2019中文字幕mv第一页| 国产成人一区二区在线| 五月伊人婷婷丁香| 日韩亚洲欧美综合| 三级男女做爰猛烈吃奶摸视频| 岛国在线免费视频观看| a级一级毛片免费在线观看| 免费不卡的大黄色大毛片视频在线观看 | or卡值多少钱| 亚洲av中文字字幕乱码综合| 国国产精品蜜臀av免费| 成人一区二区视频在线观看| 深夜精品福利| 日韩大尺度精品在线看网址| 国产av不卡久久| 国产精品麻豆人妻色哟哟久久 | 久久99蜜桃精品久久| 成人av在线播放网站| 亚洲欧美精品自产自拍| 插阴视频在线观看视频| 国产熟女欧美一区二区| 禁无遮挡网站| 国产成人精品久久久久久| 日韩欧美精品免费久久| 亚洲成人av在线免费| 91久久精品国产一区二区成人| 免费看光身美女| 我要搜黄色片| 麻豆成人av视频| 淫秽高清视频在线观看| 久久亚洲国产成人精品v| 综合色av麻豆| 国产精品不卡视频一区二区| 免费大片18禁| 久久鲁丝午夜福利片| 欧美性猛交╳xxx乱大交人| 欧美高清成人免费视频www| 久久久久久国产a免费观看| 联通29元200g的流量卡| 国产一区二区激情短视频| 精品国内亚洲2022精品成人| 亚洲精品粉嫩美女一区| 国产伦精品一区二区三区四那| 国产国拍精品亚洲av在线观看| 最近最新中文字幕大全电影3| 91麻豆精品激情在线观看国产| 在线播放国产精品三级| 亚洲美女视频黄频| 内地一区二区视频在线| 久久久久久伊人网av| 亚洲美女搞黄在线观看| 免费av毛片视频| 亚洲人成网站在线播| 18禁黄网站禁片免费观看直播| 婷婷色av中文字幕| 在线观看一区二区三区| 在线播放国产精品三级| 日韩三级伦理在线观看| 国产精品电影一区二区三区| a级毛片a级免费在线| 少妇的逼水好多| a级毛片a级免费在线| 中文字幕av在线有码专区| 一级毛片电影观看 | 白带黄色成豆腐渣| 一边摸一边抽搐一进一小说| 欧美日韩一区二区视频在线观看视频在线 | 亚洲精品乱码久久久v下载方式| 黄片wwwwww| 校园春色视频在线观看| 国产成人91sexporn| 中文字幕人妻熟人妻熟丝袜美| 精品一区二区免费观看| 亚洲av成人精品一区久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 只有这里有精品99| 国产精品久久久久久久久免| 久久精品国产自在天天线| 欧美极品一区二区三区四区| 国产精品久久久久久精品电影| 在线播放国产精品三级| 国产精品一区二区三区四区久久| 天堂av国产一区二区熟女人妻| 欧美性猛交黑人性爽| 亚洲欧美成人精品一区二区| 最近中文字幕高清免费大全6| 亚洲国产精品合色在线| 毛片一级片免费看久久久久| 成人特级黄色片久久久久久久| 国产亚洲av嫩草精品影院| 亚洲第一区二区三区不卡| 日韩亚洲欧美综合| 日韩精品青青久久久久久| 欧美色欧美亚洲另类二区| 久久人人精品亚洲av| 男人狂女人下面高潮的视频| 草草在线视频免费看| 中文字幕人妻熟人妻熟丝袜美| 免费不卡的大黄色大毛片视频在线观看 | 亚洲精品国产av成人精品| 永久网站在线| 在线免费观看不下载黄p国产| 亚洲真实伦在线观看| 免费看av在线观看网站| 精品国产三级普通话版| 国产高清三级在线| 欧美精品国产亚洲| 中文字幕av在线有码专区| 一级二级三级毛片免费看| 一个人看视频在线观看www免费| 91久久精品国产一区二区三区| 婷婷色av中文字幕| 18禁裸乳无遮挡免费网站照片| 99久久精品一区二区三区| 亚洲精品自拍成人| 一本一本综合久久| 别揉我奶头 嗯啊视频| 欧美日本亚洲视频在线播放| 在线免费观看不下载黄p国产| 久久热精品热| 麻豆成人午夜福利视频| 日韩一区二区视频免费看| 免费不卡的大黄色大毛片视频在线观看 | 乱码一卡2卡4卡精品| 看非洲黑人一级黄片| 亚洲成a人片在线一区二区| 欧美一区二区精品小视频在线| 美女xxoo啪啪120秒动态图| 精品久久久久久成人av| 亚洲国产高清在线一区二区三| 嫩草影院新地址| 国产欧美日韩精品一区二区| 99久久精品热视频| 国产美女午夜福利| 美女脱内裤让男人舔精品视频 | 中出人妻视频一区二区| 亚洲人成网站在线播放欧美日韩| АⅤ资源中文在线天堂| 老司机福利观看| 久久这里有精品视频免费| 日产精品乱码卡一卡2卡三| 高清毛片免费观看视频网站| a级一级毛片免费在线观看| 久久人人爽人人爽人人片va| 久久精品国产亚洲av天美| 天天躁夜夜躁狠狠久久av| 久久午夜福利片| 亚洲性久久影院| 精品久久久久久久久av| 亚洲图色成人| 亚洲自拍偷在线| 欧美色欧美亚洲另类二区| 最好的美女福利视频网| 可以在线观看的亚洲视频| 成人毛片a级毛片在线播放| 亚洲高清免费不卡视频| 18+在线观看网站| 深夜精品福利| 久久久久久久久久久丰满| 村上凉子中文字幕在线| 国产人妻一区二区三区在| 日本免费一区二区三区高清不卡| 日韩高清综合在线| 少妇熟女aⅴ在线视频| 亚洲精品粉嫩美女一区| 国产 一区 欧美 日韩| 深夜a级毛片| 能在线免费观看的黄片| 国产老妇女一区| 久久久久九九精品影院| 国产精品久久久久久久电影| 国产亚洲精品久久久com| av在线蜜桃| 乱系列少妇在线播放| 亚洲人成网站在线播放欧美日韩| 欧美日韩乱码在线| 国产色婷婷99| 午夜a级毛片| 久久人人爽人人片av| 欧美精品一区二区大全| 51国产日韩欧美| 精品人妻偷拍中文字幕| 亚洲国产精品成人久久小说 | 六月丁香七月| 欧美激情久久久久久爽电影| 亚洲婷婷狠狠爱综合网| 欧美区成人在线视频| 亚洲四区av| 日本免费一区二区三区高清不卡| 久久精品夜色国产| 亚洲真实伦在线观看| 最近的中文字幕免费完整| 欧美又色又爽又黄视频| 人妻系列 视频| 97人妻精品一区二区三区麻豆| 国产日本99.免费观看| 你懂的网址亚洲精品在线观看 | 熟女人妻精品中文字幕| 欧美又色又爽又黄视频| 国产亚洲欧美98| 成人三级黄色视频| 99久国产av精品| 精华霜和精华液先用哪个| 亚洲欧美精品综合久久99| 久久久午夜欧美精品| 国产黄色视频一区二区在线观看 | 日产精品乱码卡一卡2卡三| 好男人在线观看高清免费视频| 亚洲成人av在线免费| 午夜福利在线观看吧| 波野结衣二区三区在线| av卡一久久| 国产精品一区二区三区四区免费观看| 一级二级三级毛片免费看| 国产午夜精品论理片| 日本av手机在线免费观看| 亚洲性久久影院| 免费观看人在逋| 亚洲在久久综合| 狠狠狠狠99中文字幕| 国内精品一区二区在线观看| 18禁在线无遮挡免费观看视频| 亚洲第一区二区三区不卡| 精品欧美国产一区二区三| 国产乱人视频| 中文字幕精品亚洲无线码一区| 91aial.com中文字幕在线观看| 中出人妻视频一区二区| 中文欧美无线码| 99久国产av精品| 男女做爰动态图高潮gif福利片| 色尼玛亚洲综合影院| 国产精品一及| 黄色欧美视频在线观看| 国产成人福利小说| 久久亚洲国产成人精品v| 美女xxoo啪啪120秒动态图| 欧美+日韩+精品| 午夜亚洲福利在线播放| 欧美日本视频| 美女黄网站色视频| av在线老鸭窝| 成年女人永久免费观看视频| 国产探花极品一区二区| 一区二区三区免费毛片| 欧美日韩一区二区视频在线观看视频在线 | 亚洲欧美精品专区久久| 成人亚洲精品av一区二区| 日日撸夜夜添| 看片在线看免费视频| 天美传媒精品一区二区| 中国美白少妇内射xxxbb| 亚洲av一区综合| 久久鲁丝午夜福利片| 岛国在线免费视频观看| 久久久久久久久久久免费av| 岛国在线免费视频观看| 日本黄色视频三级网站网址| 亚洲欧美日韩高清专用| 日韩一本色道免费dvd| 日本撒尿小便嘘嘘汇集6| 精华霜和精华液先用哪个| 亚洲欧美精品综合久久99| 久久国产乱子免费精品| 亚洲国产精品国产精品| 又粗又硬又长又爽又黄的视频 | 国产三级在线视频| 中文字幕制服av| 成人国产麻豆网| 精品人妻一区二区三区麻豆| 婷婷色综合大香蕉| 亚洲久久久久久中文字幕| 国产精品福利在线免费观看| 久久久久久久久久久丰满| 久久久久久国产a免费观看| 岛国毛片在线播放| 亚洲高清免费不卡视频| 国产免费一级a男人的天堂| 亚洲五月天丁香| 永久网站在线| 人妻系列 视频| 婷婷色综合大香蕉| 在线播放国产精品三级| 又粗又硬又长又爽又黄的视频 | 91午夜精品亚洲一区二区三区| 嘟嘟电影网在线观看| 亚洲一级一片aⅴ在线观看| 免费av观看视频| 女人十人毛片免费观看3o分钟| 精品少妇黑人巨大在线播放 | 成人无遮挡网站| 国产一级毛片七仙女欲春2| 51国产日韩欧美| 91午夜精品亚洲一区二区三区| 最近的中文字幕免费完整| 此物有八面人人有两片| 亚洲欧美精品综合久久99| 国产精品人妻久久久影院| 久久久久久久久久成人| 能在线免费看毛片的网站| 国产爱豆传媒在线观看| 晚上一个人看的免费电影| 在线免费观看的www视频| 国产伦理片在线播放av一区 | 国产在线精品亚洲第一网站| 青春草亚洲视频在线观看|