• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Position Group Contribution Method for Predicting the Normal Boiling Point of Organic Compounds

    2009-05-12 03:33:12WANGQiang王強(qiáng)MAPeisheng馬沛生WANGChang王昶andXIAShuqian夏淑倩
    關(guān)鍵詞:王昶王強(qiáng)

    WANG Qiang (王強(qiáng)), MA Peisheng (馬沛生), WANG Chang (王昶) and XIA Shuqian (夏淑倩)

    ?

    Position Group Contribution Method for Predicting the Normal Boiling Point of Organic Compounds

    WANG Qiang (王強(qiáng))1,2, MA Peisheng (馬沛生)2, WANG Chang (王昶)1and XIA Shuqian (夏淑倩)2

    1School of Material Science and Chemical Engineering, Tianjin University of Science and Technology, Tianjin 300457, China2School of Chemical Engineering, Tianjin University, Tianjin 300072, China

    A new position group contribution model is proposed for the estimation of normal boiling data of organic compounds involving a carbon chain from C2to C18. The characteristic of this method is the use of position distribution function. It could distinguish most of isomers that include- or-structure from organic compounds. Contributions for hydrocarbons and hydrocarbon derivatives containing oxygen, nitrogen, chlorine, bromine and sulfur, are given. Compared with the predictions, results made use of the most common existing group contribution methods, the overall average absolute difference of boiling point predictions of 417 organic compounds is 4.2 K; and the average absolute percent derivation is 1.0%, which is compared with 12.3 K and 3.2% with the method of Joback, 12.1 K and 3.1% with the method of Constantinou-Gani. This new position contribution groups method is not only much more accurate but also has the advantages of simplicity and stability.

    normal boiling point, prediction, position group contribution

    1 Introduction

    Boiling point is one of the most important thermal properties. Almost other thermo chemical properties are predictable from boiling point and critical constants [1-5], so the precise forecast of boiling point is much needed. Joback and Reid [6] proposed a group contribution method that gives an approximate value of the boiling point of aliphatic and aromatic hydrocarbons. The boiling point is estimated with the sum of contributions of all structural groups found in the molecule. Joback tested this method on 353 compounds. The average error was 16.8 K or 5.0% with standard a deviation of 17.9 K.

    wherebis normal boiling point, K;Nis number ofgroups in molecule,?(b,k)?is Joback contribution of grouptob. Boiling point is used in the prediction of many other properties such as critical temperature. The errors inbwill be propagated to other properties calculated with it. It is recommended to get true value for this very important and fundamental property. Devotta and Pendyala [7] modified the Joback method to treatbof halogenated compounds much more accurately. They report that the average percent deviations for refrigerants and other substances was 12% in the original method.

    Constantinou and Gani [8, 9] developed an advanced group contribution method based on the UNIFAC groups but were enhanced by allowing more sophisticated functions of the desired properties and by providing contributions at a ‘‘Second order’’ level forb, the C-G equations are

    Here,b1,k,b2,jare contribution of groupandtob.

    The first order results are generally good at boiling but not at melting. The second order contributions improve the agreement for all butfpfor the dimethylpentanes, where the correction goes in the wrong direction.

    Marrero-Morejon and Pardillo-Fontdevila [10] give two equations for estimatingb. They call their preferred method a group interaction contribution technique. It can also be considered as a method of bond contributions. They tabulate contributions from 167 pairs of atoms alone or with hydrogen attached. Forb, their basic equation is

    whereWis the molecular weight, andNis the number of atoms of typewith contributionsbbk.

    Table 1 Summary of comparison of estimation methods for Tb [14]

    The advantages of group contribution methods are simple and general. Since organic compounds used in chemical industry consist about only 100 groups, group contribution methods can be applied to a great real number of substances. However, most of group contribution methods have serious problems that they cannot distinguish from structural isomers because the isomers have the same number and kind of groups so that the calculated results are inevitably the same.

    This work proposes a new method for estimating the physical properties such as normal boiling point, and defining and utilizing the position parameter of group in organics structure that the most accurate existing method used for predicting the normal boiling point parameters of formation.

    2 Experimental data

    Total of 417 compounds containing carbon, hydrogen, oxygen, nitrogen, chlorine, bromine, and sulfur were used for the determination of group contributions. The complete list is given in the following table and includes linear and branched alkanes (146), cycloalkanes (26), alkenes (32), aromatics (26), alcohols (27), aldehydes and ketones (31), acids (12), phenols and ether oxides(14), esters (22), chloro and bromoalkanes (19), amines (27), nitriles (9), pyridines (10), thiols (14), and thioethers (17). The experiment data from the TRC Thermodynamic Tables [15] priority are used in calculation,which give the critical properties, normal boiling points, and melting point for a large number of hydrocarbons and derivatives; Ma and Poling’s handbooks [14, 16] provide a abundance of properties data about organic compound.

    3 Computations

    3.1 Calculated method

    The ?rst step consists testing correlations to represent the properties. Only one-parameter contribution was considered for each group. The normal boiling point function is constructed by all groups’ contribution, as well as position correction. Benson’s second order groups [17] and a few of third order groups [14] were applied into these works. Here, normal boiling point is expressed as follows [18-20]

    ParameterAorArevealsorgroup contributions, and the set of contributions that allowed minimizing the residual estimation error were then computed by regressive simulation.Nrepresents the number of groups that carbon element forms the center of the group,Nrepresents the number of groups that noncarbon element forms the center.is total number of groups.Pcharacterizes position factor [18].b0is 4775.5907 K,Wis molecular weight.

    Not only were group contributions considered here but also corrections used by position to take into account longer distance interactions were considered. Some corrections for interactions through benzene or pyridine rings were obtained, resulting in a better distinction between series of chain-branched aromatic isomers. Parameters for ?ve-membered and six-membered saturated hydrocarbon rings were also determined. We retained the correlations that were found to statistically give the best estimations.

    3.2 Application samples

    The examples ofbcomputation for the organics is given as follows.

    Example 1 Estimation of the boiling point of 2,3,4,4-tetramethylhexane:

    This compound is decomposed in position groups as follows:

    Molecular weight: 142.285

    From the contributions in Table 2, the normal boiling point is estimated by Eq. (5):

    Hence, the calculated result is 430.4 K, whereas the experimental boiling point is 434.75 K.

    Example 2 Estimation of the boiling point of 3-heptanol:

    This compound is decomposed in position groups as follows:

    The position of (OH) group: the compensated factor is 3

    Molecular weight: 116.203

    From the contributions in Table 2, the normal boiling point is calculated by Eq. (5):

    Hence, the calculated result is 431.95 K, whereas the experimental boiling point is 425.15 K.

    Example 3 Estimation of the boiling point of-1,3-dimethylcyclohexane

    This compound could be decomposed in position groups as follows:

    1 cyclohexane correction

    From the contributions in Table 1, the critical temperature is estimated by Eq. (5):

    Hence, the calculated result is 397.18 K, whereas the experimental boiling point is 397.61 K.

    4 Results and discussion

    The excellent results were obtained for all the chemical families that were under investigation. The mean estimation error being of 4.2 K12.3 K obtained the use of Joback’s correlation. This con?rms the greater precision of methods based on second order Benson’s groups for thermochemical data prediction. The second order method of Constantinou and Gani resulted in a mean error of 12.1 K, slightly higher than the accuracy claimed by these authors. It should also be pointed out that Constantinou’sbestimation method gives higher discrepancies than Joback’s for the pyridine derivatives, the amines, and the nitriles, indicating that some contributions need to be revised.

    The prediction value in Table 3 indicates that the normal boiling temperature can be described by Eq. (5) very well. Its relation coefficient is 0.9935, and then, we can obtain confident level from incomplete beta function, which can be calculated from incomplete Gamma function. The confidence level is as high as 0.9990, which is the most significance level.

    One complementary sets of position group contributions were developed for the predictive estimation of normal boiling point of organic compounds. The second order groups is de?ned by Benson, whose ideas have been recognized for a long time as more accurate than ?rst order groups for thermochemical predictions, which were used for this purpose. Position factor could distinguish most isomers that include- or-structure of organic compounds for their properties. Contributions for compounds containing carbon, hydrogen, oxygen, nitrogen, sulfur, chlorine, and bromine were reported, and results were evaluated with regard to predictive methods developed previously. Normal ?boiling ?point ?predictions ?exhibit ?an ?averagedeviation of about 4.2 K, less than three times of the well known ?rst order method of Joback and Reid and more than three times of the more precise second order method of Constantinou and Gani.

    This method also can be applied for estimation of critical properties of organics effectively [18-20].

    Table 2 Position group contributions for the prediction of Tb

    ①- and-corrections consider interactions between alkyl chains through a benzene ring.

    ②Corrections for pyridines:,, andpyridine corrections take into account alkyl ligands in position,, andwith respect to the N element, respectively.

    Table 3 Comparison of Tb predicted with our method and with the methods of Joback and Constantinou

    5 Conclusions

    It is proposed that a quantitative relationship for normal boiling point based on position group contribution method and that position distribution function has been developed, which could distinguish most isomers including- or-structure of organic compounds for their thermodynamics properties. The estimated results for 417 different types of organics show that the position group contribution method is more precise than an existing method that uses ?rst or second order groups.

    1 Sanghvi, R., Yalkowsky, S.H., “Estimation of normal boiling point of organic compounds”,...., 45, 2856-2861 (2006).

    2 Tadeusz, H., “Prediction of thermodynamic properties of the systems formed by-alkanes, aliphatic monoethers, and I-chloralkanes using a cell-hole group contribution model”,..., 108, 2383-2397 (2004).

    3 Rebelo, L.P., Canongia, J.N., Esperanca, J.M., Filipe, E., “On the critical temperature normal boiling point and vapor pressure of ionic liquids”,..., 109, 6040-6043 (2005).

    4 Valderrama, J.D., Robles, P.A., “Critical properties, normal boiling temperature and acentric factors of fifty ionic liquids”,...., 46, 1338-1344 (2007).

    5 Dearden, J.C., “Quantitative structure-property relationships for prediction of boiling point, vapor pressure and melting point”,..., 22, 1696 (2003).

    6 Joback, K.G., Reid, R., “Estimation of pure-component properties from group-contributions”,..., 57, 233-243 (1987).

    7 Davotta, S., Pendyala, V.R., “Modified Joback group contribution method for normal boiling point of aliphatic halogenated compounds”,...., 31, 2042-2046 (1992).

    8 Constantinou, L., Pricken, S.E., Mavrovouniotis, M.L., “Estimation of thermodynamic and physical properties of acyclic hydrocarbons using the ABC approach and conjugation operators”,...., 32, 1734-1742 (1993).

    9 Constantinou, L., Gani, R., “A new group contribution method for estimation of properties of pure compounds”,., 40, 1697-1710 (1994).

    10 Marrero-Morejon, J., Pardillo-Fontdevila, E., “Estimation of pure compound properties using group-interaction contributions”,., 45, 615-621 (1999).

    11 Krzyzaniak, J.F., Myrdal, P., Simamora, P., Yalkowsky, S.H., “Boiling point and melting point prediction for alphatic nonhydrogen bonding compounds”,...., 34, 2530-2535 (1995).

    12 Yalkowsky, S.H., Danmenfelser, P., Myrdal, P., Simamora, P., “Unified physical property estimation relationships”,, 28, 1657 (1994).

    13 Zhao, L., Yalkowsky, S.H., “A combined group contribution and molecular geometry approach for predicting melting point of alphatic compounds”,...., 38, 3581 (1999).

    14 Poling, E.B., Prausnitz, J.M., O’Connell, P.J., “The Properties of Gases and Liquids, 5th ed.., McGraw-Hill, Inc., New York (2001).

    15 Frenkel, M., Gadalla, N.M., Hall, K.R., Hong, X., Marsh, K.N., Wilhoit, R.C., TRC Thermodynamic Tables: Hydrocarbon; Non-Hydrocarbon, Thermodynamic Research Center, The Texas A&M University System (1997).

    16 Ma, P.S., Handbook of Property Data of Organic Compound, Chemical Industry Press, Beijing (2006).

    17 Benson, S.W., Thermochemical Kinetics, 2nd ed., John Wiley and Sons, New York (1976).

    18 Wang, Q., Ma, P.S., “Position group contribution method for the prediction of critical temperatures of organic compounds”,..., 53, 1103-1109 (2008).

    19 Wang, Q., Ma, P.S., “Position group contribution method for the prediction of critical pressure of organic compounds”,..., 53, 1877-1885 (2008).

    20 Jia, Q.Z., Wang, Q., Ma, P.S., “Position group contribution method for the prediction of critical volume of organic compounds”,..., 53, 2606-2612 (2008).

    2008-09-23,

    2008-12-13.

    * To whom correspondence should be addressed. E-mail: wang_q@tust.edu.cn

    猜你喜歡
    王昶王強(qiáng)
    乾嘉之際浙西詞派思想之嬗變及其詞史意義
    江淮論壇(2024年5期)2024-01-01 00:00:00
    王昶與姚鼐及桐城派關(guān)系考論*
    花錢請(qǐng)人幫忙“自殺” 對(duì)方拿錢后跑了
    閩康宗的詩與遠(yuǎn)方
    閩康宗的詩與遠(yuǎn)方
    邸子健/王昶: 成熟與少年之間的“王子”
    羽毛球(2020年11期)2020-11-10 14:20:02
    Tricks of the Trade
    Inventors and Inventions
    The universal characteristic water content of aqueous solutions?
    這事兒鬧大了
    97超级碰碰碰精品色视频在线观看| 少妇熟女aⅴ在线视频| 两人在一起打扑克的视频| 精品人妻1区二区| 一边摸一边做爽爽视频免费| 黑人巨大精品欧美一区二区mp4| 亚洲午夜精品一区,二区,三区| 看黄色毛片网站| 91九色精品人成在线观看| 韩国av一区二区三区四区| www日本在线高清视频| 国产精品乱码一区二三区的特点| 免费在线观看视频国产中文字幕亚洲| 观看免费一级毛片| 精品国内亚洲2022精品成人| 国产av麻豆久久久久久久| 亚洲专区国产一区二区| 国产精品一及| 中国美女看黄片| 法律面前人人平等表现在哪些方面| 日韩精品免费视频一区二区三区| 国产黄色小视频在线观看| 免费在线观看亚洲国产| 麻豆一二三区av精品| 午夜视频精品福利| 一二三四社区在线视频社区8| 午夜福利视频1000在线观看| 脱女人内裤的视频| 亚洲精品中文字幕在线视频| 欧美黑人欧美精品刺激| 欧美乱妇无乱码| 国产aⅴ精品一区二区三区波| 午夜激情av网站| 日韩 欧美 亚洲 中文字幕| 黄频高清免费视频| 国内久久婷婷六月综合欲色啪| 岛国在线观看网站| 一进一出好大好爽视频| 欧美成狂野欧美在线观看| svipshipincom国产片| 手机成人av网站| 国产又色又爽无遮挡免费看| 日本a在线网址| 欧美黄色淫秽网站| 欧美不卡视频在线免费观看 | 97超级碰碰碰精品色视频在线观看| 国产成人精品久久二区二区免费| 又粗又爽又猛毛片免费看| 国产av一区二区精品久久| 99久久无色码亚洲精品果冻| 校园春色视频在线观看| 国产乱人伦免费视频| 亚洲国产看品久久| 久久久久久久精品吃奶| 正在播放国产对白刺激| 麻豆久久精品国产亚洲av| 99精品欧美一区二区三区四区| 黄片大片在线免费观看| 正在播放国产对白刺激| 国产爱豆传媒在线观看 | 欧美 亚洲 国产 日韩一| 欧美日本亚洲视频在线播放| 亚洲aⅴ乱码一区二区在线播放 | 淫秽高清视频在线观看| 热99re8久久精品国产| 国产激情欧美一区二区| 国产三级在线视频| 夜夜爽天天搞| 欧美一级a爱片免费观看看 | 高清在线国产一区| 小说图片视频综合网站| 九色成人免费人妻av| 亚洲人成电影免费在线| 国产精品亚洲美女久久久| 久久人人精品亚洲av| 91av网站免费观看| 久久久久精品国产欧美久久久| 黄色成人免费大全| 深夜精品福利| 久久久久性生活片| 99国产精品一区二区三区| 国产真人三级小视频在线观看| cao死你这个sao货| 日韩欧美国产在线观看| 亚洲成人久久性| 国产av不卡久久| 三级毛片av免费| 国产亚洲精品综合一区在线观看 | 精品午夜福利视频在线观看一区| 亚洲av五月六月丁香网| 国产91精品成人一区二区三区| 国产精华一区二区三区| 中文字幕高清在线视频| 亚洲精品在线观看二区| 午夜亚洲福利在线播放| 特大巨黑吊av在线直播| 一边摸一边做爽爽视频免费| 久久久久久久午夜电影| 首页视频小说图片口味搜索| 国产精品国产高清国产av| 久久亚洲精品不卡| 好男人在线观看高清免费视频| 国产精品野战在线观看| 亚洲精品在线观看二区| 亚洲五月天丁香| 正在播放国产对白刺激| 欧美一区二区精品小视频在线| 亚洲av电影在线进入| 久久久久久亚洲精品国产蜜桃av| 又紧又爽又黄一区二区| 变态另类丝袜制服| 亚洲第一欧美日韩一区二区三区| 婷婷精品国产亚洲av| 91麻豆精品激情在线观看国产| 国产亚洲av嫩草精品影院| 免费在线观看日本一区| av中文乱码字幕在线| 国产黄色小视频在线观看| 国产激情久久老熟女| 熟女电影av网| 视频区欧美日本亚洲| 桃色一区二区三区在线观看| av福利片在线观看| 久久久久久国产a免费观看| 国产亚洲欧美98| 又黄又爽又免费观看的视频| 日本精品一区二区三区蜜桃| 亚洲免费av在线视频| 亚洲色图av天堂| 国产精品一及| 97超级碰碰碰精品色视频在线观看| 中文字幕高清在线视频| 亚洲精品中文字幕在线视频| 午夜免费成人在线视频| 国产精品免费一区二区三区在线| 亚洲人与动物交配视频| 激情在线观看视频在线高清| 床上黄色一级片| 精品无人区乱码1区二区| 超碰成人久久| 亚洲精品美女久久av网站| 老司机午夜十八禁免费视频| 精品少妇一区二区三区视频日本电影| 视频区欧美日本亚洲| 老司机午夜福利在线观看视频| 麻豆成人av在线观看| 久久精品国产清高在天天线| 三级毛片av免费| 久久久久国产精品人妻aⅴ院| 精华霜和精华液先用哪个| 免费看美女性在线毛片视频| 国产99白浆流出| 我的老师免费观看完整版| 久久久久亚洲av毛片大全| 国产精品一及| cao死你这个sao货| 精品久久久久久久久久久久久| 日韩大尺度精品在线看网址| 国产精品久久久久久久电影 | 99精品久久久久人妻精品| www.熟女人妻精品国产| 老司机在亚洲福利影院| 国产又色又爽无遮挡免费看| 国产午夜精品久久久久久| 人成视频在线观看免费观看| 欧美色欧美亚洲另类二区| 久久久久国产精品人妻aⅴ院| 深夜精品福利| 熟女少妇亚洲综合色aaa.| 在线观看www视频免费| 天天添夜夜摸| 夜夜躁狠狠躁天天躁| 女人高潮潮喷娇喘18禁视频| 午夜免费激情av| 国产亚洲精品综合一区在线观看 | 人妻丰满熟妇av一区二区三区| 国产三级中文精品| 男人的好看免费观看在线视频 | 男女视频在线观看网站免费 | 一夜夜www| 久久热在线av| 国产一区二区在线观看日韩 | 黄片小视频在线播放| 在线看三级毛片| 久热爱精品视频在线9| 变态另类丝袜制服| 亚洲欧洲精品一区二区精品久久久| 成人av一区二区三区在线看| 久久久久久久精品吃奶| 中文字幕久久专区| 亚洲自拍偷在线| 夜夜爽天天搞| 日日摸夜夜添夜夜添小说| 男女午夜视频在线观看| 国产av又大| 亚洲va日本ⅴa欧美va伊人久久| 免费在线观看完整版高清| 老司机午夜十八禁免费视频| 久久婷婷成人综合色麻豆| 日韩欧美免费精品| 亚洲精品av麻豆狂野| 国产一区在线观看成人免费| 最近在线观看免费完整版| 日韩国内少妇激情av| 日韩欧美三级三区| 欧美日韩亚洲国产一区二区在线观看| 亚洲全国av大片| 99久久无色码亚洲精品果冻| 欧美日韩国产亚洲二区| 精品国产美女av久久久久小说| 精品无人区乱码1区二区| 久久国产精品影院| 黄频高清免费视频| 午夜日韩欧美国产| 亚洲成人国产一区在线观看| 女人被狂操c到高潮| 亚洲精品在线美女| 99久久无色码亚洲精品果冻| 国产伦一二天堂av在线观看| 欧美黄色片欧美黄色片| 亚洲一区高清亚洲精品| www.自偷自拍.com| 后天国语完整版免费观看| 欧美日韩瑟瑟在线播放| 舔av片在线| 亚洲天堂国产精品一区在线| 国内揄拍国产精品人妻在线| 免费看日本二区| 12—13女人毛片做爰片一| cao死你这个sao货| 亚洲自偷自拍图片 自拍| 岛国视频午夜一区免费看| 中出人妻视频一区二区| 国产精品影院久久| 久久久国产成人免费| 午夜激情av网站| 国产精品爽爽va在线观看网站| 国产精品 欧美亚洲| 欧美又色又爽又黄视频| 亚洲欧美日韩高清专用| 国产精品亚洲一级av第二区| 人成视频在线观看免费观看| 老司机深夜福利视频在线观看| 久久久水蜜桃国产精品网| 国产激情久久老熟女| 午夜福利在线在线| 在线观看日韩欧美| 亚洲精品中文字幕在线视频| 桃红色精品国产亚洲av| 老熟妇乱子伦视频在线观看| 亚洲av第一区精品v没综合| 啦啦啦观看免费观看视频高清| www日本黄色视频网| 国产麻豆成人av免费视频| 国产精品亚洲一级av第二区| 国产精品 国内视频| 中文资源天堂在线| 久久久久久国产a免费观看| 国产人伦9x9x在线观看| 国产高清激情床上av| 夜夜夜夜夜久久久久| 亚洲精品在线美女| 国产成人影院久久av| 无限看片的www在线观看| 亚洲精品粉嫩美女一区| 午夜精品一区二区三区免费看| av在线播放免费不卡| 午夜老司机福利片| 成人av一区二区三区在线看| 亚洲成av人片免费观看| 夜夜看夜夜爽夜夜摸| 亚洲七黄色美女视频| 国产成人精品久久二区二区免费| 国产精品九九99| 最近最新中文字幕大全电影3| 一级a爱片免费观看的视频| 免费在线观看黄色视频的| 白带黄色成豆腐渣| cao死你这个sao货| 久久精品亚洲精品国产色婷小说| 色噜噜av男人的天堂激情| av欧美777| 两个人的视频大全免费| 国产欧美日韩一区二区三| 久久精品综合一区二区三区| 最近在线观看免费完整版| 99精品在免费线老司机午夜| 又紧又爽又黄一区二区| 免费av毛片视频| 国模一区二区三区四区视频 | 后天国语完整版免费观看| 国内久久婷婷六月综合欲色啪| 日韩精品中文字幕看吧| 无遮挡黄片免费观看| 亚洲精品粉嫩美女一区| 国产成人一区二区三区免费视频网站| 亚洲一区二区三区不卡视频| 亚洲熟妇熟女久久| 日韩欧美国产在线观看| 男人舔女人下体高潮全视频| 在线看三级毛片| 久久精品91蜜桃| 黄频高清免费视频| 精品午夜福利视频在线观看一区| 人人妻,人人澡人人爽秒播| 日韩精品青青久久久久久| 亚洲一码二码三码区别大吗| 人人妻人人看人人澡| 精品乱码久久久久久99久播| 精品久久蜜臀av无| 人人妻人人澡欧美一区二区| 男人的好看免费观看在线视频 | 日日干狠狠操夜夜爽| 亚洲av中文字字幕乱码综合| 在线免费观看的www视频| 免费看日本二区| 精品电影一区二区在线| 国模一区二区三区四区视频 | 国产精品99久久99久久久不卡| 91av网站免费观看| 免费在线观看视频国产中文字幕亚洲| 99国产综合亚洲精品| 波多野结衣巨乳人妻| www.999成人在线观看| 正在播放国产对白刺激| 久久精品国产亚洲av香蕉五月| 久久草成人影院| 欧美日本亚洲视频在线播放| 久久久国产成人精品二区| 日韩精品青青久久久久久| 欧美日韩福利视频一区二区| 久久精品人妻少妇| 亚洲欧美激情综合另类| 嫩草影视91久久| 亚洲成人久久爱视频| 国产一级毛片七仙女欲春2| 在线观看午夜福利视频| 一级黄色大片毛片| 国产精品 国内视频| 亚洲午夜精品一区,二区,三区| 亚洲欧美一区二区三区黑人| 亚洲一区中文字幕在线| cao死你这个sao货| 久热爱精品视频在线9| 亚洲五月天丁香| 国语自产精品视频在线第100页| 18禁美女被吸乳视频| 老司机深夜福利视频在线观看| 欧美日韩亚洲综合一区二区三区_| 人人妻人人看人人澡| 亚洲精品美女久久久久99蜜臀| 最近最新中文字幕大全电影3| 久久这里只有精品中国| 欧美国产日韩亚洲一区| av在线播放免费不卡| 国产成人一区二区三区免费视频网站| 精品乱码久久久久久99久播| 国产视频一区二区在线看| 少妇被粗大的猛进出69影院| 久久九九热精品免费| 国产熟女xx| 日韩欧美一区二区三区在线观看| 给我免费播放毛片高清在线观看| 日韩欧美在线乱码| 亚洲成人中文字幕在线播放| 高清毛片免费观看视频网站| 日日摸夜夜添夜夜添小说| 2021天堂中文幕一二区在线观| 欧美zozozo另类| 久久久精品大字幕| 日本五十路高清| 午夜福利在线观看吧| 麻豆一二三区av精品| 日韩精品免费视频一区二区三区| 国产av又大| 国产伦在线观看视频一区| 国产蜜桃级精品一区二区三区| 欧美黄色淫秽网站| 搡老岳熟女国产| 国产日本99.免费观看| 久久久久久免费高清国产稀缺| 亚洲av熟女| 精品国产乱子伦一区二区三区| 人人妻人人澡欧美一区二区| 长腿黑丝高跟| 国产蜜桃级精品一区二区三区| 欧美乱妇无乱码| 久久精品国产综合久久久| 在线永久观看黄色视频| www国产在线视频色| 男人舔奶头视频| 国产成人影院久久av| 无限看片的www在线观看| 天堂动漫精品| 久久久国产成人精品二区| 中文亚洲av片在线观看爽| 国产91精品成人一区二区三区| 麻豆国产av国片精品| 国产亚洲精品一区二区www| av在线播放免费不卡| 亚洲成av人片免费观看| 国产亚洲精品av在线| www日本黄色视频网| www.999成人在线观看| 午夜福利成人在线免费观看| 午夜激情av网站| 国产三级在线视频| 久久久久国内视频| 亚洲中文日韩欧美视频| 国产av在哪里看| 99久久无色码亚洲精品果冻| 色尼玛亚洲综合影院| 男人舔奶头视频| 高清毛片免费观看视频网站| 久久精品亚洲精品国产色婷小说| 少妇被粗大的猛进出69影院| av片东京热男人的天堂| 中文亚洲av片在线观看爽| 一夜夜www| 精品久久久久久久久久免费视频| 亚洲国产精品999在线| 高清毛片免费观看视频网站| 无限看片的www在线观看| 美女高潮喷水抽搐中文字幕| 老司机午夜十八禁免费视频| 人妻夜夜爽99麻豆av| 夜夜爽天天搞| 亚洲人成网站在线播放欧美日韩| 亚洲欧美日韩高清专用| 国产av在哪里看| 99久久综合精品五月天人人| 1024香蕉在线观看| 国产精品野战在线观看| 国产伦人伦偷精品视频| 黄色成人免费大全| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美日本亚洲视频在线播放| 亚洲国产精品久久男人天堂| 天堂影院成人在线观看| 久9热在线精品视频| 天天一区二区日本电影三级| 国产精品日韩av在线免费观看| svipshipincom国产片| 午夜免费成人在线视频| 99riav亚洲国产免费| 欧美精品啪啪一区二区三区| 亚洲av电影在线进入| 国产人伦9x9x在线观看| 日本精品一区二区三区蜜桃| 国产亚洲精品av在线| 大型av网站在线播放| 麻豆成人av在线观看| 国产熟女午夜一区二区三区| 无遮挡黄片免费观看| 国产久久久一区二区三区| 88av欧美| 久久久久免费精品人妻一区二区| 成熟少妇高潮喷水视频| 国产私拍福利视频在线观看| 看片在线看免费视频| 午夜亚洲福利在线播放| 在线观看免费视频日本深夜| 久9热在线精品视频| 免费看a级黄色片| 国产精品久久电影中文字幕| 国产精品一区二区三区四区久久| 亚洲av成人一区二区三| 欧美在线一区亚洲| 人妻夜夜爽99麻豆av| 两人在一起打扑克的视频| 亚洲精品久久成人aⅴ小说| 国产又黄又爽又无遮挡在线| 欧美一区二区国产精品久久精品 | www日本黄色视频网| 中文字幕最新亚洲高清| 亚洲无线在线观看| 老司机在亚洲福利影院| 午夜精品久久久久久毛片777| 人人妻人人澡欧美一区二区| 国内久久婷婷六月综合欲色啪| 哪里可以看免费的av片| 搞女人的毛片| 青草久久国产| 村上凉子中文字幕在线| 欧美大码av| 淫秽高清视频在线观看| 国语自产精品视频在线第100页| 亚洲色图 男人天堂 中文字幕| 2021天堂中文幕一二区在线观| 午夜成年电影在线免费观看| 久久久水蜜桃国产精品网| 又黄又粗又硬又大视频| 又大又爽又粗| 欧美+亚洲+日韩+国产| 欧美另类亚洲清纯唯美| 久久久水蜜桃国产精品网| 两性午夜刺激爽爽歪歪视频在线观看 | 色播亚洲综合网| 三级国产精品欧美在线观看 | 99国产精品一区二区三区| 黄片大片在线免费观看| 亚洲精品一区av在线观看| 蜜桃久久精品国产亚洲av| 亚洲熟妇中文字幕五十中出| 超碰成人久久| 国产av又大| 亚洲国产精品sss在线观看| 日韩欧美国产在线观看| 久久久精品欧美日韩精品| 久久久久久久久中文| 久久久精品欧美日韩精品| 少妇熟女aⅴ在线视频| 久久九九热精品免费| 午夜视频精品福利| 精品一区二区三区四区五区乱码| 人人妻人人澡欧美一区二区| 91大片在线观看| 久久久精品欧美日韩精品| 一级黄色大片毛片| 国产日本99.免费观看| 色综合亚洲欧美另类图片| 精品久久久久久久人妻蜜臀av| 大型av网站在线播放| 悠悠久久av| 可以免费在线观看a视频的电影网站| 18禁国产床啪视频网站| 国产熟女xx| 18禁裸乳无遮挡免费网站照片| 好男人电影高清在线观看| 法律面前人人平等表现在哪些方面| 亚洲国产欧美人成| 国产精品99久久99久久久不卡| 18禁黄网站禁片午夜丰满| 亚洲片人在线观看| 中文字幕高清在线视频| 久久精品成人免费网站| 精品人妻1区二区| 一本精品99久久精品77| 天天添夜夜摸| 久久精品91蜜桃| www国产在线视频色| 亚洲熟妇中文字幕五十中出| 757午夜福利合集在线观看| 1024手机看黄色片| 男女下面进入的视频免费午夜| 国产av麻豆久久久久久久| 国产精品久久久久久人妻精品电影| 两个人的视频大全免费| 99热这里只有精品一区 | av视频在线观看入口| 午夜视频精品福利| 国产精品 欧美亚洲| 一个人免费在线观看的高清视频| 一边摸一边做爽爽视频免费| 成人国语在线视频| 老汉色av国产亚洲站长工具| 白带黄色成豆腐渣| 很黄的视频免费| 1024香蕉在线观看| 搞女人的毛片| 成人av在线播放网站| 男女下面进入的视频免费午夜| 亚洲av中文字字幕乱码综合| 一边摸一边抽搐一进一小说| 女人高潮潮喷娇喘18禁视频| 精品一区二区三区av网在线观看| 最近最新中文字幕大全免费视频| 日本免费一区二区三区高清不卡| 欧美成人免费av一区二区三区| АⅤ资源中文在线天堂| 国语自产精品视频在线第100页| 99热6这里只有精品| 精品乱码久久久久久99久播| 天天一区二区日本电影三级| 国产成人aa在线观看| 99久久精品热视频| 在线观看舔阴道视频| 久久久久九九精品影院| 美女免费视频网站| 精品久久久久久久人妻蜜臀av| 又大又爽又粗| 一级a爱片免费观看的视频| 成人欧美大片| 精品久久久久久久末码| 最好的美女福利视频网| 啦啦啦观看免费观看视频高清| 久久亚洲真实| 国产野战对白在线观看| 欧美最黄视频在线播放免费| 国产精品久久久久久人妻精品电影| 欧美又色又爽又黄视频| 黄色a级毛片大全视频| 欧美成人性av电影在线观看| 日本免费一区二区三区高清不卡| 日韩欧美国产在线观看| 亚洲欧美一区二区三区黑人| 欧美+亚洲+日韩+国产| 两个人看的免费小视频| 亚洲一码二码三码区别大吗| 亚洲av成人不卡在线观看播放网| 久久久久久久久免费视频了| 免费搜索国产男女视频| 国产亚洲精品第一综合不卡| 亚洲av成人精品一区久久| 亚洲国产精品成人综合色| 波多野结衣高清无吗| 50天的宝宝边吃奶边哭怎么回事| 99久久无色码亚洲精品果冻| 2021天堂中文幕一二区在线观| 亚洲 欧美一区二区三区| 日本 欧美在线| 欧美av亚洲av综合av国产av| 精品久久久久久久人妻蜜臀av| 在线观看免费日韩欧美大片| 男人舔女人下体高潮全视频|