• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Direct Urca Processes Involving Proton1S0Superfluidity in Neutron Star Cooling?

    2018-05-02 01:51:40YanXu許妍ZiYu喻孜XiaoJunZhang張曉軍CunBoFan范存波
    Communications in Theoretical Physics 2018年4期
    關鍵詞:張曉軍

    Yan Xu(許妍), Zi Yu(喻孜),Xiao-Jun Zhang(張曉軍),Cun-Bo Fan(范存波),

    Guang-Zhou Liu(劉廣洲),3En-Guang Zhao(趙恩廣),4Xiu-Lin Huang(黃修林),1,? and Cheng-Zhi Liu(劉承志)1,§

    1Changchun Observatory,National Astronomical Observatories,CAS,Changchun 130117,China

    2College of Science,Nanjing Forestry University,Nanjing 210037,China

    3Center for Theoretical Physics,Jilin University,Changchun 130023,China

    4Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190,China

    1 Introduction

    Neutron star(NS)constitutes one of the best astrophysical laboratories for studying dense matter physics.It arises at the end of life of a(8–20)M⊙massive stars and forms in the aftermath of the core collapse supernovae explosion.A newly born NS is very hot with temperature as high as(1011–1012)K,but rapidly cools to a temperature of less than 1010K within minutes.The cooling process of an NS is dominated by a combination of surface photon emission and interior neutrino emission.The latter is responsible for about(105–106)years until the interior temperature reaches 106K.It is generally known that photon luminosity is obviously lower than neutrino luminosity,meaning that the thermal radiation from an NS surface reflects the intensity of interior neutrino emission.[1?3]While neutrino emisision depends strongly on the composition of superdense matter in NSs.It is well known that NSs cores are dense enough to allow for emerging exotic matter with the strangeness quantum number through weak equilibrium,such as Λ,Σ0,Σ+,Σ?,Ξ0,Ξ?hyperons,referred as npheμmatter,except for the conventional nucleons and leptons(npeμ matter).[4?16]It means that all the possible baryon neutrino emission processes would happen during the neutrino cooling stage.[17?26]Among them,the most powerful enhancement of neutrino emission is provided by the nucleon direct Urca processes,secondarily is the hyperon direct Urca processes.[27?34]Prakash et al.(1992)have already indicated that NS matter with any proton/nucleon ratio can rapidly cool by the baryon direct Urca processes if Λ hyperons are present.[35?36]Besides,the degrees of freedom of hyperons tend to soften the equation of state(EOS)calculated in the relativistic mean field(RMF)model based on SU(6)spin-flavor symmetry(quark model for the vector mesonhyperon coupling constants),then reduce the maximum mass of NS to about(1.6–1.7)M⊙.[37?44]However,Demorest et al.in 2010[45]indicated that the binary millisecond pulsar PSR J1614-2230 expanded the maximum observational mass from 1.67±0.02 M⊙to 1.97±0.04 M⊙using the Shapiro delay measurements from radio timing observations.Antoniadis et al.in 2013[46]observed another massive neutron star PSR J0348+0432,whose mass is 2.01±0.04 M⊙.It is clear that the inclusion of hyperons in such heavy NS cores is difficult to explain by SU(6)spinlf avor symmetry in RMF model.And for this reason,the SU(3)flavor symmetry is widely applied to RMF model.It changes the strength of the isoscalar,vector-meson(ω and ?)couplings to the octet states,which can sustain an NS with mass of(1.8–2.1)M⊙even if hyperons exist in NS core.[47?50]Furthermore,baryons in NS interior can become the superfluid state related to the generation of Baryon-Baryon Cooper pairs under attractive interaction.The baryon superfluidity could suppress considerably the baryon direct Urca processes and thus affect the cooling rate of NS remarkably.[5,51]As we all know,the neutrons in the crust and protons,hyperons in the core undergo Cooper pair in1S0state,while neutrons in the core can pair in3P2state.

    It is well known that the EOS of hot nuclear matter plays important roles in determining the evolution of the NS at the birth stage,namely a protoneutron star is a finite temperature system.After birth,its neutrinos are trapped due to their short mean free paths.Then,neutrinos quickly diffuse and leave behind much of their energy which causes significant heating of ambient matter.[52?53]Beyond that,the effects of magnetic fields on NS have been a subject of interest from long time ago.The EOS for magnetized matter is important for the NS structure and the cooling of magnetized stars including and not including the anomalous magnetic moments.Moreover,since neutrinos are a fundamental piece in cooling processes,its emission and transport properties in the presence of magnetic fields were studied in detail.The results also show that the possibility for the baryon direct Urca processes to be open in the presence of a magnetic field B,even if the proton fraction is too low to open the process at B=0.[54?57]In this paper,because that we will mainly consider the influence of the hyperons and the hyperon direct Urca processes on the nucleon direct Urca processes and the proton1S0superfluidity in cold neutron star matter.We will further study the influence of temperature,neutrinos and magnetic fields on the properties of the NS cooling in the future work.This paper is arranged as follows.In Sec.2,we make a brief review for RMF and NS cooling theories as well as the gap equation for the proton1S0superfluid.The numerical results are discussed in Sec.3.Finally,we summarize our conclusions in Sec.4.

    2 Theoretical Framework

    2.1 RMF Theory

    In this calculation,we adopt RMF model to describe NS matter.The constituents of NSs fall into two categories:npeμ and npheμ matter.The strong interaction between baryons is mediated by the exchange of isoscalar scalar and vector mesons σ, ω,isovector vector meson ρ.The two additional strange mesons are also included,namely isoscalar scalar σ?and vector ? mesons.[41?42,58]The total Lagrangian is given by

    Here Wμv= ?μωv? ?vωμ,Rμv= ?μρv? ?vρμ,and Pμv= ?μ?v? ?v?μdenote the field tensors of ω,ρ and ? mesons,respectively.The sum on B and l runs over the octet baryons and leptons,namely,n,p,Λ,Σ0,Σ+,Σ?,Ξ0,Ξ?,e,μ. ψBand ψlare the Dirac fields of baryons and leptons,respectively.mBand mldenote the masses of baryon and lepton,respectively.γushows the Dirac matrice.The meson fields are replaced by their expectation values at the mean field level.Now we can solve the Euler-Lagrange equations by plugging in the above Lagrangian

    The equations of motion for each baryon and meson fields can be obtained in RMF approximation

    Here JBand I3Bexpress the spin and isospin projections of baryons,respectively.The Dirac effective mass of baryon is given by

    The scalar density nSBand baryon density nBare given by

    For a fixed total baryon number density

    The hadron phase should meet the local charge neutrality and beta-equilibrium conditions.The former is given by

    In the latter the chemical potentials of particles are related to each other by,

    where qBis the electric charge of baryon(in unit of e).

    We can solve Eqs.(3)–(14)self-consistently at a fixed total baryon number density nb.The total energy density and pressure of NS matter are

    Equations(15)and(16)as inputs,we can obtain the mass-radius relation by solving the Tolman-Oppenheimer-Volko ff(TOV)equation[59?60]

    We adopt two successful RMF parameter sets to describe NS matter,GM1 and TM1,as listed in Table 1.[48]These parameters have been determined by fitting to some ground state properties of nuclear matter.As for the couplings of the isoscalar vector mesons ω and ? to baryons,we adopt SU(6)spin-flavor symmetry based on the naive quark model and general SU(3)flavor symmetry as listed in Table 2,[49]respectively.

    Table 1 The parameter sets GM1 and TM1.The relations,gσ?N=gρΛ =0,are assumed.We take mω=783 MeV,mρ=770 MeV,mN=938 MeV.For the GM1 and TM1 models,mσ=550 MeV and 511.198 MeV,respectively.[48?49]

    Table 2 The other coupling constants for hyperons.The relations,gρN=(1/2)gρΣ =gρΞ,are assumed.[48?49]

    2.2 NS Cooling Theory

    The baryon direct Urca processes consist of two successive reactions,beta decay and capture,are listed in Table 3.[35]

    Here B1and B2represent baryons.Due to the EOSs of NSs are derived by RMF model,so the neutrino energy losses must be consistent with the used relativistic EOSs.In the free relativistic gas,the energy and momentum conservations require a large effective mass differece of B1and100 MeV,which is unlikely to appear in the reactions A,D,and G.The reason is that the effective masses of hyperons with the same species but the different isospins are same(see Eq.(9)for details).Therefore,in the relativistic regime,the energy conservation should be assured by considering the potential energy difference of B1and B2.The neutrino emissivity can be given by the Fermi Golden Rule

    where pj,εjexpress the momentum and kinetic energy of particle species j(j=1,2,3,and 4 refer to B1,B2,e and),respectively.fjis the Fermi-Dirac distribution functions of baryons and electrons,

    The delta functions δ(E1? E2? ε3? ε4)and δ(p1?p2?p3?p4)describe the energy and momentum conservation,respectively. E1,2=ε1,2+U1,2denote the single-particle energies of baryons,U1,2are the selfconsistent potentials of baryons,which can be obtained in Subsec.2.1 and have the following form

    Namely,

    |Mfi|2is the squared matrix element of the baryon direct Urca processes summed over spins of initial and final particles

    where Pj=(εj,pj).GF=1.436 × 10?49erg·cm3is the weak-coupling constant.f1,g1and C are the vector,axial-vector constants and Cabibbo angle,which are given in Table 3.

    Table 3 The constants of the baryon direct Urca processes.We take sinθc=0.231± 0.003,F=0.477±0.012,D=0.756±0.011.

    The relativistic expression of the energy loss Q per unit volume and time in NS matter is found to be[61?62]

    In this expression,pF1,pF2,and pF3are the Fermi momenta of baryons and leptons. εF1and εF2are the kinetic energy of baryon at the Fermi surface.Θ=1 if the Fermi momenta pF1,pF2,pF3satisfy the triangle condition and Θ=0 otherwise.The situation of muons is similar to that of electrons.

    The cooling equation based on the approximation of isothermal interior is,

    Here Lνand Lrare the total neutrino and photon luminosities,respectively.Cvis the total thermal capacity of NS matter.They are where σ is the Stefan-Boltzmann constant, eΦ=

    2.3 1S0Superfluidity of Protons

    The key quantity in determining the onset of the proton1S0superfluid is the gap function?(p),

    where ε(p)=E(p) ? E(pFp).V(p,p′)is the protonproton potential matrix element.In this work,we use the Reid soft core(RSC)potential for the proton-proton potential,[63?66]as an example to demonstrate the influence of hyperons on the proton1S0pairing gaps.The critical temperature Tcpof the proton1S0superfluid is given by the pairing gap?(p)at zero temperature approximation,

    As a result,the neutrino emissivity and thermal capacity can be written as

    Here RBand RCB0are the superfluid reduction factors of the neutrino emissivity and thermal capacity,respectively.

    For the proton1S0superfluid,the reduction factors Rpand RCp0are

    According to the discussion of the RMF approach above,we can obtain the EOS,the mass-radius relations,the neutrino emissivities of the baryon direct Urca processes,the Fermi momenta and the single particle energies of protons,the pairing gap and the critical temperature of the proton1S0superfluid as well as the speed of NS cooling.

    3 Results and Discussion

    In this section,we give three cases in Eq.(1)for RMF theory:(i)The non-strange σ,ω,ρ mesons are included in SU(6)spin-flavor symmetry;(ii)The σ,ω,ρ mesons including strange mesons σ?and ? are considered in SU(6)spin-flavor symmetry;(iii) σ,ω,ρ,σ?and ? mesons are taken into account in SU(3)flavor symmetry.We mainly study the effects of the degrees of freedom of hyperons and the reactions B,C on the EOS,the neutrino emissivity,the neutrino luminosity,the energy gap of the proton1S0superfluid and NS cooling.Then we compare our results with PSR J1614-2230 and J0348+0432,whose measured masses are used as reference values.

    Fig.1 EOSs including hyperons in NS matter.

    Fig.2 Mass of NS as a function of the total baryon number density nb.

    Fig.3 Neutrino emissivities of the reactions A,B and C as a function of the total baryon number density nbin npheμmatter.

    Fig.4 Total neutrino emissivities of the reactions AF as a function of the total baryon number density nb.The solid and dotted lines are the neutrino emissivity of the reaction A in npeμ and npheμ matter,respectively.The dashed line is the total neutrino emissivities of the reactions A-F in npheμmatter.

    Fig.5 Radial distributions of the total neutrino emissivities with different mass NSs in npeμ(solid lines)and npheμmatter(dotted lines)for the GM1 model.

    Figure 1 shows the EOSs in the three cases.Figure 2 shows the mass-radius relations of NSs by solving the TOV equation.The softest and hardest EOSs are obtained by cases(i)and(iii),respectively.Though the coupling gωNfor case(iii)is smaller than the corresponding value for case(i)as shown in Table 1,the total repulsive force is attributed not only to ω meson but also to ? meson.As seen in Figs.1 and 2,though we consider the contribution of the strange mesons σ?and ? on the EOS in case(ii),the coupling g?N=0.It means that ? meson only couples to hyperons and makes the EOS be not enough stiff.So the hardest EOS is obtained only through the ? meson in case(iii).From case(i)to(iii),the maximum mass of NS(the corresponding center density)sequently increases from 1.820(0.771),1.863(0.817)to 2.141 M⊙(0.871)for the GM1 model,1.686(0.673),1.729(0.754)to 2.038 M⊙(0.848)for the TM1 model,respectively(Fig.2).Namely,the EOS in SU(3)flavor symmetry could be consistent with the observed values of PSR J1614-2230 and J0348+0432 when hyperons appear in NS core.Figure 3 depicts the neutrino emissivities of the reactions A,B and C in npheμmatter for the three cases.As can be seen from Fig.3,the neutrino emissivity of the reaction A has a tendency to decrease with increasing of the total baryon number density nbwhich is due to that the presence of the degrees of freedom of hyperons in NS matter decreases the nucleon and lepton fractions in accordance with the charge neutrality and β equilibium conditions(Eqs.(13)and(14)).The neutrino emissivities of the reactions B and C are obviously less than that of the reaction A because of the smaller matrix elements of the reactions B and C in Eq.(23).The strongest neutrino emissivities of the reactions A and B are obtained in case(iii),while the weakest neutrino emissivities of the reactions A and B are given in case(i).For the reaction C,the neutrino emissivity in case(iii)is less than the corresponding values in cases(i)and(ii) firstly and then increases,equals or exceeds the values in cases(i)and(ii).In order to make the effects of hyperons more intuitive,the total neutrino emissivity of the reactions A-F in npheμmatter comparing with the neutrino emissivity of the reactions A in npeμmatter is depicted in Fig.4.We can see that the neutrino emissivity of the reactions A has been conspicuously suppressed because of the appearance of the degrees of freedom of hyperons.From Figs.2,3,and 4,the mass ranges of the reactions B and C in case(iii)are(1.671–2.141)M⊙and(1.888–2.141)M⊙for the GM1 model,(1.579–2.038)M⊙and(1.849–2.038)M⊙for TM1 model,respectively.Furthermore,the threshold densities of the reactions D-F are larger than the center densities for the maximum masses of NSs,it leads to that the reactions D-F would never happen within stable NSs.Given the above,we only consider the reactions A,B,and C in case(iii)for the following discussion.

    Figure 5 gives the radial distributions of the total neutrino emissivities of the reactions A,B,and C for the GM1 model in case(iii),we choose the mass of NS m=(1.98,2.00,2.10,and 2.12)M⊙.The radial distributions of the total neutrino emissivities for a fixed mass NS are nearly invariable when radius r is relatively large(sse Part I for details)with and without the degrees of freedom of hyperons.However,the reactions B and C happen in succession with the reduction of the radius(see Part II and III for details)which leads to that the radial distributions of the total neutrino emissivities with the degrees of freedom of hyperons are significantly larger than the corresponding values without the degrees of freedom of hyperons.Yet with growing mass,the appearance of hyperons obviously shrinks the scope of radius for the growth of the radial distributions of the total neutrino emissivities.The situation of the TM1 model is like the above in GM1 model.Figure 6 shows the total neutrino luminosity as a function of the NS’s mass for the GM1 and TM1 models in case(iii).As seen from Fig.6,whether hyperons are included or not,the neutrino luminosity increases firstly and then decreases with increasing of the NS’s mass.Once the NS’s mass reaches a value,one value of the neutrino luminosity corresponds to two different NSs.And the total neutrino luminosities of reactions A,B and C within the mass range(1.603–2.067)M⊙and(1.515–1.840)M⊙will be larger than the corresponding values in npeμmatter for the GM1 and TM1 models,respectively.Figure 7 shows the critical temperature of the proton1S0superfluid as a function of the total baryon number density nbfor case(iii)including and not including the degrees of freedom of hyperons,respectively.

    Fig.6 Total neutrino luminosities of the reactions A,B and C as a function of the NS’s mass m.The solid and dotted lines are the neutrino luminosity of the reaction A in npeμ and npheμ matter,respectively.The dashed line is the total neutrino luminositits of the reactions A,B and C in npheμmatter.

    Fig.7 The critical temperature Tcpof the proton1S0 superfluid as a function of the NS’s mass m in npeμ matter(solid lines)and npheμmatter(dashed lines),respectively.

    Fig.8 Observational data(error bars)on surface temperatures of 8 NSs as compared with theoretical cooling curves obtained by the proton1S0superfluid for the GM1 and TM1 models,respectively.The solid lines correspond to npeμmatter,the dashed lines correspond to npheμmatter with masses(from top to bottom)(1.7,1.95 and 2.03)M⊙for the GM1 model((1.6,1.93 and 2.0)M⊙for the TM1 model),respectively.The dotted lines represent cooling curves in the non-superfluid NS matter.

    In Fig.7,one can see that whether or not the NS core appears hyperons,the critical temperature of the proton1S0superfluid increases first,but it gradually decreases after it reaches maximum along with increasing of the total baryon number density nb.While when hyperons appear in NS core,the critical temperature of the proton1S0superfluid is first below and then above the corresponding values in npeμmatter within the density ranges of nb=(0.0–0.454)fm?3(nb=(0.0–0.418)fm?3for the TM1 model)and nb≥ 0.454 fm?3(nb≥ 0.418 fm?3for the TM1 model)for the GM1 model,respectively.This is because the total contributions of the Fermi momentum,the effective mass and the single-particle e nergy of protons result in the change of the critical temperature of the proton1S0superfluid.Furthermore,the appearance of hyperons widens the scope of the baryon number density for the proton1S0superfluid in NS matter,which can further inhibit the baryon direct Urca processes as well as affect the cooling of NSs.The theoretical cooling curves with the proton1S0superfluid assuming the isothermal stars are obtained in Fig.8 for the GM1 and TM1 models,respectively.Observational data of 8 isolated NSs whose effective surface temperatures have been measured or constrained is listed as compared with the theoretical cooling curves.[67?75]As you can see from Fig.8,the cooling curve of an NS with the moderate mass can be a great way to explain the observational data,while the cooling curves of massive NSs are difficult to explain the existing observational data due to the low surface temperature.The continued decline in the cooling curves along with the growth of the NS’s mass means that a massive NS will go through the fast cooling process whether the degrees of freedom of hyperons appear.In addition,from Fig.6 we can see that the neutrino luminosities of(1.70,1.95,2.03)M⊙NSs for the GM1 model((1.60,1.93,2.00)M⊙NSs for the TM1 model)in npheμmatter are greater than the corresponding values in npeμmatter,respectively.While from Fig.7,we can also see that the critical temperatures Tcpof(1.70,1.95,2.03)M⊙NS for the GM1 model((1.60,1.93,2.00)M⊙NSs for the TM1 model)in npheμmatter are lower than the corresponding values in npeμmatter.It results in the fact that the suppression of the neutrino emissivities for the reactions A and B is delayed in npheμmatter,so the cooling speeds of(1.70,1.95,2.03)M⊙NS for the GM1 model((1.60,1.93,2.00)M⊙NSs for the TM1 model)with the degrees of freedom of hyperons(dashed lines)are quicker than the corresponding values without the degrees of freedom of hyperons(solid lines).The proton1S0superfluid does not affect the reaction C in(1.70,1.95,2.03)M⊙NS for the GM1 model((1.60,1.93,2.00)M⊙NSs for the TM1 model),which is due to that the threshold density of the reaction C in the above NSs is higher than the baryon number density of the appearance of the proton1S0superfluid in the above NSs.Therefore,although the neutrino emissivities of the reactions A and B are suppressed with the presence of the proton1S0superfluid,the total contributions of reactions A,B and C can still speed up a massive NS cooling.Our model may be a simplification because it adopts the lowest level of approximation in the gap equation as well as neglecting the possible influence of inhomogeneity in NS crust and hyperon superfluidity in NS core on the reactions A,B and C,however,it can still clearly describe the effects of the proton1S0superfluid on the reactions A,B and C in NS matter.We will analyze more complicated models in future studies.

    4 Conclusion

    We have studied the effects of the degrees of freedom of hyperons,the reactions B and C on the reaction A in NS matter using the two popular RMF parameter sets,GM1 and TM1,respectively.Firstly,we used the SU(3)flavor symmetry to obtain the stiffEOS which led to the degrees of freedom of hyperons appearing in PSR J1614-2230 and J0348+0432.Secondly,the total neutrino luminosities of the reactions A,B and C were calculated in npeμand npheμmatter,respectively.We found that the presence of the reactions B and C made the total neutrino luminosities higher than the corresponding values without the reactions B and C within the mass range(1.603–2.067)M⊙for the GM1 model and(1.515–1.840)M⊙for the TM1 model,respectively.The cooling rate with hyperons was faster than the corresponding value without hyperons for a fixed NS.It illustrated that though the appearance of hyperons has obviously suppressed the neutrino emissivity of the reaction A,which had the highest neutrino emissivity in npeμmatter,the contribution of the reactions B and C could still lead to the rapid cooling for the massive NSs.In particular,because the threshold densities of the reaction C in PSR J1614-2230 and J0348+0432 were significantly higher than the baryon number density for the proton1S0superfluid,thus the reaction C was not suppressed by the proton1S0superfluid which will further speed up the two pulsars cooling.These features maybe can help to prove the presence of hyperons in the cores of PSR J1614-2230 and J0348+0432.

    [1]D.G.Yakovlev and C.J.Pethick,Ann.Rev.Astron.Astrophys.42(2004)169.

    [2]D.G.Yakovlev,et al.,AIP Conf.Series.983(2008)379.

    [3]J.J.Liu,Q.H.Peng,and D.M.Liu,Chin.Phys.C 41(2017)095101.

    [4]C.R.Ji and D.P.Min,Phys.Rev.D 57(1998)5963.

    [5]D.G.Yakovlev,K.P.Leven fish,and Y.A.Shibanov,Phys.Uspek.42(1999)737.

    [6]E.G.Zhao and F.Wang,Chin.Sci.Bull.56(2011)3797.

    [7]Z.F.Gao,et al.,Astrophys.Space Sci.334(2011)281.

    [8]H.Sotani,T.Maruyama,and T.Tatsumi,Nucl.Phys.A 906(2013)37.

    [9]C.Schaab,S.Balberg,and J.Schaffner-Bielich,Astrophys.J.504(1998)L99.

    [10]Y.N.Wang and H.Shen,Phys.Rev.C 81(2010)025801.

    [11]Y.Xu,et al.,Research in Astron.Astrophys.15(2015)725.

    [12]C.J.Xia,G.X.Peng,E.G.Zhao,and S.G.Zhou,Phys.Rev.D 93(2016)085025.

    [13]Z.F.Gao,H.Shan,W.Wang,and N.Wang,Astron.Nachr.338(2017)1066.

    [14]Y.Xu,et al.,Mon.Not.R.Astron.Soc.474(2018)3576.

    [15]C.J.Xia and S.G.Zhou,Nucl.Phys.B 916(2017)669.

    [16]C.Zhu,Z.F.Gao,X.D.Li,et al.,Mod.Phys.Lett.A 31(2016)1650070.

    [17]S.Tsuruta,Phd.Thesis,Columbia University(1964).

    [18]E.Flowers,M.Ruderman,and P.Sutherland,Astrophys.J.205(1976)541.

    [19]O.V.Maxwell,Astrophys.J.231(1979)201.

    [20]E.H.Gudmundsson,C.J.Pethick,and R.I.Epstein,Astrophys.J.272(1983)286.

    [21]D.Page and J.H.Applegate,Astrophys.J.394(1992)17.

    [22]A.D.Kaminker,P.Haensel,and D.G.Yakovlev,Astron.Astrophys.373(2001)L17.

    [23]D.G.Yakovlev,et al.,Nucl.Phys.A 752(2005)90.

    [24]C.Kouvaris,Phys.Rev.D 77(2008)023006.

    [25]D.Blaschke,H.Grigorian,D.N.Voskresensky,and F.Weber,Phys.Rev.C 85(2012)022802.

    [26]X.L.Mu,H.Y.Jia,X.Zhou,and H.Wang,Astrophys.J.846(2017)140.

    [27]J.M.Lattimer,C.J.Pethick,M.Prakash,and P.Haensel,Phys.Rev.Lett.66(1991)2701.

    [28]P.Haensel and O.Y.Gnedin,Astron.Astrophys.290(1994)458.

    [29]M.E.Gusakov,Astron.Astrophys.389(2002)702.

    [30]Y.Xu,et al.,Chin.Phys.Lett.28(2011)079701.

    [31]Y.Xu,et al.,Commun.Theor.Phys.56(2011)521.

    [32]X.Zhou,M.Kang,and N.Wang,Chin.Phys.C 37(2013)085101.

    [33]Y.Xu,et al.,Chin.Sci.Bull.59(2014)273.

    [34]X.Zhou,H.Jia,B.Hong,et al.,Int.J.Mod.Phys.D 26(2017)1750077.

    [35]M.Prakash,et al.,Astrophys.J.390(1992)77.

    [36]J.M.Lattimer,K.A.van Riper,M.Prakash,and M.Prakash,Astrophys.J.425(1994)802.

    [37]J.Boguta and A.R.Bodmer,Nucl.Phys.A 292(1977)413.

    [38]J.Boguta,Phys.Lett.B 106(1981)250.

    [39]J.Boguta and H.Stocker,Phys.Lett.B 120(1983)289.

    [40]W.Pannert,P.Ring,and J.Boguta,Phys.Rev.Lett.59(1987)2420.

    [41]J.Schaffner and I.N.Mishustin,Phys.Rev.C 53(1996)1416.

    [42]F.Yang and H.Shen,Phys.Rev.C 77(2008)025801.

    [43]Y.Xu,et al.,Chin.Phys.Lett.30(2013)129501.

    [44]Z.F.Gao,N.Wang,H.Shan,et al.,Astrophys.J.849(2017)19.

    [45]P.B.Demorest,et al.,Nature(London)467(2010)1081.

    [46]J.Antoniadis,et al.,Science 340(2013)448.

    [47]S.Weissenborn,D.Chatterjee,and J.Schaffner-Bielich,Phys.Rev.C 85(2012)065802.

    [48]T.Miyatsu,M.K.Cheoun,and K.Saito,Phys.Rev.C 88(2013)015802.

    [49]S.Weissenborn,D.Chatterjee,and J.Schaffner-Bielich,Nucl.Phys.A 914(2013)421.

    [50]L.L.Lopes and D.P.Menezes,Phys.Rev.C 89(2014)025805.

    [51]T.Takatsuka and R.Tamagaki,Nucl.Phys.A 738(2004)387.

    [52]J.J.Liu and D.M.Liu,arXiv:nucl-th/1711.01955.

    [53]J.J.Liu,Q.H.Peng,L.H.Hao,et al.,Research in Astron.Astrophys.17(2017)107.

    [54]Z.F.Gao,D.L.Song,Y.L.Liu,et al.,Accepted for Astron.Nachr.338(2017)1060.

    [55]Z.F.Gao,X.D.Li,N.Wang,et al.,Mon.Not.R.Astron.Soc.456(2016)55.

    [56]G.J.Mao,A.Iwamoto,and Z.X.Li,Chin.J.Astron.Astrophys.3(2003)359.

    [57]J.J.Liu and D.M.Liu,Chin.Phys.C 41(2017)125102.

    [58]Y.Xu,et al.,Chin.Phys.Lett.29(2012)059701.

    [59]J.R.Oppenheimer and G.M.Volko ff,Phys.Rev.55(1939)374.

    [60]R.C.Tolman,Phys.Rev.55(1939)364.

    [61]L.B.Leinson and A.P′erez,Phys.Lett.B 518(2001)15.

    [62]L.B.Leinson,Nucl.Phys.A 707(2002)543.

    [63]D.W.L.Sprung and P.K.Banerjee,Nucl.Phys.A 168(1971)273.

    [64]L.Amundsen and E.O/stgaard,Nucl.Phys.A 437(1985)487.

    [65]S.Nishizaki,T.Takatsuka,N.Yahagi,and J.Hiura,Prog.Theor.Phys.86(1991)853.

    [66]J.Wambach,T.L.Ainsworth,and D.Pines,Nucl.Phys.A 555(1993)128.

    [67]P.Slane,et al.,Astrophys.J.616(2004)403.

    [68]V.E.Zavlin,Astrophys.J.665(2007)L143.

    [69]J.P.Halpern,et al.,Astrophys.J.612(2004)398.

    [70]G.G.Pavlov,et al.,Astrophys.J.552(2001)129.

    [71]K.E.McGowan,et al.,Astrophys.J.600(2004)343.

    [72]V.E.Zavlin and G.G.Pavlov,Mem.Soc.Astron.Ital.75(2004)458.

    [73]A.Possenti,S.Mereghetti,and M.Colpi,Astron.Astrophys.313(1996)565.

    [74]O.Y.Kargaltsev,et al.,Astrophys.J.625(2005)307.

    [75]W.C.G.Ho,et al.,Astrophys.J.375(2007)821.

    猜你喜歡
    張曉軍
    小麥品系CH7034中耐鹽QTL定位
    作物學報(2022年10期)2022-07-21 03:14:30
    小長詩
    滇池(2022年4期)2022-03-24 01:43:42
    愛的直線
    小讀者(2021年8期)2021-11-24 05:59:50
    愛的直線
    啤酒里的“秘密”
    檢察風云(2021年21期)2021-01-13 08:23:49
    Neuroanatomy and morphological diversity of brain cells from adult crayfish Cherax quadricarinatus*
    愛的直線
    愛的直線
    故事會(2014年21期)2014-05-14 15:24:23
    3wmmmm亚洲av在线观看| 在线观看美女被高潮喷水网站| 日本 欧美在线| 夜夜夜夜夜久久久久| 天堂av国产一区二区熟女人妻| 国产白丝娇喘喷水9色精品| 又粗又爽又猛毛片免费看| 国产精品一区二区三区四区久久| 亚洲精品久久国产高清桃花| 老师上课跳d突然被开到最大视频| 日韩精品中文字幕看吧| 国产高清激情床上av| 观看美女的网站| 久久久久性生活片| 91在线观看av| 一区二区三区高清视频在线| 欧美性猛交黑人性爽| 最近在线观看免费完整版| 国产又黄又爽又无遮挡在线| 在线观看免费视频日本深夜| 草草在线视频免费看| 久久6这里有精品| 午夜激情福利司机影院| 亚洲性久久影院| 一区二区三区高清视频在线| 日韩强制内射视频| 干丝袜人妻中文字幕| 在线国产一区二区在线| 亚洲成人精品中文字幕电影| 欧美成人性av电影在线观看| 欧美中文日本在线观看视频| 国产精品国产高清国产av| 搡老岳熟女国产| 少妇裸体淫交视频免费看高清| 在线看三级毛片| 午夜视频国产福利| 免费看a级黄色片| 露出奶头的视频| 日韩 亚洲 欧美在线| 欧美潮喷喷水| 男女啪啪激烈高潮av片| 久久久久久久午夜电影| 能在线免费观看的黄片| 国产精品人妻久久久久久| 大型黄色视频在线免费观看| 国产精品女同一区二区软件 | 美女免费视频网站| 性插视频无遮挡在线免费观看| 午夜福利成人在线免费观看| 三级男女做爰猛烈吃奶摸视频| 午夜a级毛片| 国产高清有码在线观看视频| 久久久久久久久久久丰满 | 极品教师在线免费播放| 亚洲一区高清亚洲精品| 国产精品一区二区三区四区免费观看 | 人妻制服诱惑在线中文字幕| 男女做爰动态图高潮gif福利片| 色播亚洲综合网| 亚洲avbb在线观看| .国产精品久久| 国产高清激情床上av| 久久亚洲真实| 男女那种视频在线观看| 成人国产一区最新在线观看| 欧美日韩乱码在线| 在线播放国产精品三级| 精品一区二区三区人妻视频| 亚洲最大成人av| 国内精品久久久久久久电影| 国产精品乱码一区二三区的特点| 精品久久久久久,| 美女xxoo啪啪120秒动态图| 很黄的视频免费| 18+在线观看网站| av天堂在线播放| 黄色视频,在线免费观看| 亚洲成a人片在线一区二区| 亚洲无线观看免费| 久久精品夜夜夜夜夜久久蜜豆| 夜夜爽天天搞| 久久久久精品国产欧美久久久| 日本成人三级电影网站| 长腿黑丝高跟| bbb黄色大片| 色综合婷婷激情| 亚洲精品在线观看二区| 国产精品精品国产色婷婷| 亚洲成a人片在线一区二区| 欧美日韩国产亚洲二区| 成人欧美大片| 欧美又色又爽又黄视频| 女人十人毛片免费观看3o分钟| 精品久久久久久成人av| 国产一区二区三区视频了| 国产精品人妻久久久影院| 久久国内精品自在自线图片| 小蜜桃在线观看免费完整版高清| 3wmmmm亚洲av在线观看| 国产精华一区二区三区| 麻豆一二三区av精品| 又粗又爽又猛毛片免费看| av在线天堂中文字幕| 又爽又黄无遮挡网站| 天天一区二区日本电影三级| 亚洲综合色惰| 国产美女午夜福利| 在线播放无遮挡| 亚洲精品一区av在线观看| 男女之事视频高清在线观看| 蜜桃久久精品国产亚洲av| 小说图片视频综合网站| 久久久久久国产a免费观看| 非洲黑人性xxxx精品又粗又长| 91狼人影院| www日本黄色视频网| 亚洲黑人精品在线| 国产探花在线观看一区二区| 色在线成人网| 国产成人影院久久av| 免费在线观看日本一区| 亚洲精品一区av在线观看| 一夜夜www| 亚洲人成网站在线播| 在线观看免费视频日本深夜| 噜噜噜噜噜久久久久久91| 日本黄色片子视频| av天堂中文字幕网| 亚洲精品粉嫩美女一区| 欧美中文日本在线观看视频| 欧美三级亚洲精品| 久久久精品欧美日韩精品| 国产单亲对白刺激| 欧美最新免费一区二区三区| 琪琪午夜伦伦电影理论片6080| 日本撒尿小便嘘嘘汇集6| 亚洲最大成人中文| 亚洲国产欧洲综合997久久,| 国产视频内射| 亚洲人成网站在线播放欧美日韩| 国产精品爽爽va在线观看网站| 国产精品伦人一区二区| 永久网站在线| 听说在线观看完整版免费高清| 成人亚洲精品av一区二区| av福利片在线观看| 亚洲最大成人av| 欧美日韩亚洲国产一区二区在线观看| 全区人妻精品视频| 欧美一区二区亚洲| 欧美国产日韩亚洲一区| 久久精品人妻少妇| 久久天躁狠狠躁夜夜2o2o| 成人综合一区亚洲| 久久国产乱子免费精品| 欧美色视频一区免费| 日韩在线高清观看一区二区三区 | 亚洲人与动物交配视频| 看免费成人av毛片| 美女高潮喷水抽搐中文字幕| 亚洲成a人片在线一区二区| 亚洲av五月六月丁香网| 久久久久久国产a免费观看| 蜜桃亚洲精品一区二区三区| 人妻夜夜爽99麻豆av| 亚洲性夜色夜夜综合| 中文字幕免费在线视频6| 日本黄色视频三级网站网址| 嫩草影院新地址| 精品久久久久久久久久久久久| 99久久久亚洲精品蜜臀av| 99九九线精品视频在线观看视频| 亚洲人成网站在线播| 三级国产精品欧美在线观看| av视频在线观看入口| av在线老鸭窝| 欧美bdsm另类| 免费在线观看成人毛片| 成人特级黄色片久久久久久久| 亚洲精品国产成人久久av| 老司机午夜福利在线观看视频| 麻豆成人av在线观看| 亚洲国产欧美人成| 国内久久婷婷六月综合欲色啪| 人妻夜夜爽99麻豆av| 午夜亚洲福利在线播放| 精品国内亚洲2022精品成人| 无遮挡黄片免费观看| АⅤ资源中文在线天堂| 亚洲va在线va天堂va国产| 国产久久久一区二区三区| 999久久久精品免费观看国产| 九九热线精品视视频播放| 欧美日韩亚洲国产一区二区在线观看| 97碰自拍视频| 一本久久中文字幕| 少妇熟女aⅴ在线视频| 美女高潮喷水抽搐中文字幕| 中文字幕免费在线视频6| 人妻夜夜爽99麻豆av| 一夜夜www| 淫妇啪啪啪对白视频| 免费看a级黄色片| 国模一区二区三区四区视频| 国产伦在线观看视频一区| 美女黄网站色视频| 99久国产av精品| 亚洲国产高清在线一区二区三| 最近视频中文字幕2019在线8| 久久精品国产亚洲av天美| 久久久久久九九精品二区国产| 两个人视频免费观看高清| 黄色欧美视频在线观看| 搡女人真爽免费视频火全软件 | 麻豆精品久久久久久蜜桃| 欧美最新免费一区二区三区| 免费大片18禁| 国产精品野战在线观看| 在线免费观看的www视频| 日本撒尿小便嘘嘘汇集6| 欧美日韩综合久久久久久 | 国内精品久久久久精免费| 亚洲成人精品中文字幕电影| 乱系列少妇在线播放| 婷婷亚洲欧美| 亚洲狠狠婷婷综合久久图片| 蜜桃久久精品国产亚洲av| 久久久久国产精品人妻aⅴ院| 18禁黄网站禁片免费观看直播| 久久久久久久午夜电影| 精品久久久久久成人av| 久久人人精品亚洲av| 禁无遮挡网站| 国产白丝娇喘喷水9色精品| a级毛片免费高清观看在线播放| 精品99又大又爽又粗少妇毛片 | 欧美极品一区二区三区四区| 国产av在哪里看| 男人的好看免费观看在线视频| 欧美激情国产日韩精品一区| 性插视频无遮挡在线免费观看| 亚洲三级黄色毛片| 亚洲综合色惰| 亚洲男人的天堂狠狠| 国产三级中文精品| 毛片女人毛片| 欧美不卡视频在线免费观看| av在线天堂中文字幕| 99热这里只有是精品50| 久久久成人免费电影| 亚洲成a人片在线一区二区| 欧美日韩黄片免| 两个人视频免费观看高清| 看片在线看免费视频| 国产蜜桃级精品一区二区三区| 国产视频内射| 欧美+亚洲+日韩+国产| 中国美女看黄片| 看黄色毛片网站| 欧美又色又爽又黄视频| 男人的好看免费观看在线视频| 国产亚洲精品综合一区在线观看| 日韩中字成人| 精品人妻熟女av久视频| 亚洲av二区三区四区| 乱人视频在线观看| 久久久久久久久中文| 精品乱码久久久久久99久播| 精品欧美国产一区二区三| 麻豆一二三区av精品| 亚洲成人免费电影在线观看| www日本黄色视频网| 久久精品综合一区二区三区| 久久午夜福利片| 欧美中文日本在线观看视频| 欧美+日韩+精品| 亚洲真实伦在线观看| 国产一区二区三区在线臀色熟女| 国产美女午夜福利| 中文字幕高清在线视频| 欧美日本亚洲视频在线播放| 日本a在线网址| 中出人妻视频一区二区| 国产精品国产高清国产av| 国内揄拍国产精品人妻在线| 69人妻影院| 亚洲精品乱码久久久v下载方式| 国产精品98久久久久久宅男小说| 美女黄网站色视频| xxxwww97欧美| 成人特级黄色片久久久久久久| 偷拍熟女少妇极品色| 日本在线视频免费播放| 美女大奶头视频| 三级毛片av免费| 麻豆久久精品国产亚洲av| 精品久久久久久久末码| 免费无遮挡裸体视频| 黄色视频,在线免费观看| 国产探花在线观看一区二区| 免费高清视频大片| 国产色婷婷99| www.色视频.com| 极品教师在线视频| 国产男靠女视频免费网站| 久9热在线精品视频| 在线观看免费视频日本深夜| 日韩欧美精品免费久久| 国产精品1区2区在线观看.| 校园人妻丝袜中文字幕| 国产精品亚洲美女久久久| 成人特级av手机在线观看| 人妻丰满熟妇av一区二区三区| 久久久久久久久大av| 欧美3d第一页| 国产精品福利在线免费观看| 亚洲人成伊人成综合网2020| 欧美又色又爽又黄视频| 久久精品国产亚洲网站| 久久久久久九九精品二区国产| 国产精华一区二区三区| 欧美三级亚洲精品| 亚洲最大成人手机在线| 国产一级毛片七仙女欲春2| 日韩欧美精品免费久久| 99视频精品全部免费 在线| 91久久精品国产一区二区成人| 91狼人影院| 日韩强制内射视频| 亚洲国产日韩欧美精品在线观看| or卡值多少钱| 国产伦精品一区二区三区四那| 亚洲国产欧洲综合997久久,| 日韩大尺度精品在线看网址| 国产男人的电影天堂91| 黄色欧美视频在线观看| 少妇的逼好多水| 亚洲av成人精品一区久久| 丰满的人妻完整版| 国产大屁股一区二区在线视频| 热99在线观看视频| 黄色丝袜av网址大全| 日韩精品有码人妻一区| 日本在线视频免费播放| 久久久久久伊人网av| 久久精品国产亚洲av天美| 男女下面进入的视频免费午夜| 国产精品伦人一区二区| 精品久久久久久久久亚洲 | 美女免费视频网站| 欧美日韩亚洲国产一区二区在线观看| 日韩精品有码人妻一区| 内地一区二区视频在线| 久久99热这里只有精品18| 色av中文字幕| 午夜a级毛片| 校园春色视频在线观看| 美女免费视频网站| 亚洲久久久久久中文字幕| eeuss影院久久| 精品日产1卡2卡| 美女大奶头视频| 亚洲精品456在线播放app | 乱码一卡2卡4卡精品| 丰满的人妻完整版| 国产精品一区二区免费欧美| 哪里可以看免费的av片| 看片在线看免费视频| 国产一区二区亚洲精品在线观看| 午夜视频国产福利| 俄罗斯特黄特色一大片| 国产伦在线观看视频一区| 免费大片18禁| 久久久久国产精品人妻aⅴ院| 两个人视频免费观看高清| 欧美日韩瑟瑟在线播放| 中亚洲国语对白在线视频| 亚洲经典国产精华液单| 一本久久中文字幕| 免费在线观看影片大全网站| 18禁黄网站禁片午夜丰满| 97碰自拍视频| 欧美3d第一页| 男人舔女人下体高潮全视频| 久久精品国产鲁丝片午夜精品 | 99久久精品一区二区三区| 亚洲熟妇熟女久久| 午夜免费男女啪啪视频观看 | aaaaa片日本免费| av天堂在线播放| 国产亚洲欧美98| 无遮挡黄片免费观看| 成年女人毛片免费观看观看9| av国产免费在线观看| 国产v大片淫在线免费观看| 国产真实伦视频高清在线观看 | 在线免费观看的www视频| 亚洲人成网站高清观看| 有码 亚洲区| 赤兔流量卡办理| 最近视频中文字幕2019在线8| 久久久久免费精品人妻一区二区| 国产黄色小视频在线观看| 国产免费男女视频| 亚洲精品影视一区二区三区av| 又紧又爽又黄一区二区| 一本一本综合久久| 亚洲专区中文字幕在线| 亚洲一区高清亚洲精品| 日本 av在线| 国产av一区在线观看免费| 精品乱码久久久久久99久播| 美女被艹到高潮喷水动态| 九九热线精品视视频播放| 尾随美女入室| 91久久精品国产一区二区成人| .国产精品久久| 久久久久九九精品影院| 日本免费一区二区三区高清不卡| 桃色一区二区三区在线观看| 婷婷色综合大香蕉| 国内久久婷婷六月综合欲色啪| 国产高清有码在线观看视频| 欧美不卡视频在线免费观看| 美女cb高潮喷水在线观看| 免费在线观看影片大全网站| 日本撒尿小便嘘嘘汇集6| 亚洲国产精品sss在线观看| 欧美另类亚洲清纯唯美| 国产私拍福利视频在线观看| 免费在线观看日本一区| 亚洲性夜色夜夜综合| 亚洲va日本ⅴa欧美va伊人久久| 校园人妻丝袜中文字幕| 国产高清不卡午夜福利| 99在线视频只有这里精品首页| 日韩一本色道免费dvd| 亚洲成a人片在线一区二区| 日韩中字成人| 最近最新中文字幕大全电影3| 国产av不卡久久| 免费av观看视频| 搡老妇女老女人老熟妇| 亚洲精品一卡2卡三卡4卡5卡| 国产精华一区二区三区| 日韩精品青青久久久久久| 精品午夜福利在线看| 国产大屁股一区二区在线视频| 欧美精品国产亚洲| netflix在线观看网站| 在线观看美女被高潮喷水网站| 欧美不卡视频在线免费观看| 给我免费播放毛片高清在线观看| 久久精品人妻少妇| 亚洲av不卡在线观看| 日日撸夜夜添| a级一级毛片免费在线观看| 免费大片18禁| 日本成人三级电影网站| 可以在线观看的亚洲视频| 2021天堂中文幕一二区在线观| 中出人妻视频一区二区| 国产精品免费一区二区三区在线| 小蜜桃在线观看免费完整版高清| а√天堂www在线а√下载| 国语自产精品视频在线第100页| 亚洲最大成人手机在线| av在线观看视频网站免费| 午夜福利成人在线免费观看| 亚洲自偷自拍三级| 欧美日本视频| 久久亚洲真实| 12—13女人毛片做爰片一| 国内精品久久久久久久电影| 日韩精品有码人妻一区| 免费在线观看日本一区| 午夜亚洲福利在线播放| 亚洲中文字幕日韩| 精品无人区乱码1区二区| 精品久久久久久久久亚洲 | 舔av片在线| 国产精品一区二区三区四区免费观看 | 久久久色成人| 国产午夜精品久久久久久一区二区三区 | 中文字幕精品亚洲无线码一区| 美女免费视频网站| 国产在线精品亚洲第一网站| 俄罗斯特黄特色一大片| 麻豆成人av在线观看| 能在线免费观看的黄片| 日韩中字成人| 啦啦啦观看免费观看视频高清| 我要看日韩黄色一级片| 三级男女做爰猛烈吃奶摸视频| 精品人妻熟女av久视频| 色噜噜av男人的天堂激情| 亚洲在线自拍视频| 偷拍熟女少妇极品色| 亚洲专区国产一区二区| 国产麻豆成人av免费视频| 午夜福利欧美成人| 欧美一级a爱片免费观看看| 狂野欧美激情性xxxx在线观看| 亚洲av五月六月丁香网| 国产真实乱freesex| 91av网一区二区| av在线老鸭窝| 超碰av人人做人人爽久久| 国产老妇女一区| 美女 人体艺术 gogo| 久久精品久久久久久噜噜老黄 | 18禁在线播放成人免费| 国产视频一区二区在线看| 在线免费观看不下载黄p国产 | 国产精品电影一区二区三区| 国产黄色小视频在线观看| 亚洲国产高清在线一区二区三| 国产日本99.免费观看| 精品一区二区免费观看| 在线国产一区二区在线| 国产精品久久视频播放| 神马国产精品三级电影在线观看| 九九爱精品视频在线观看| 女生性感内裤真人,穿戴方法视频| 国产精品乱码一区二三区的特点| 精品欧美国产一区二区三| 美女大奶头视频| 淫妇啪啪啪对白视频| 观看美女的网站| 免费观看在线日韩| 日本黄色片子视频| 精品乱码久久久久久99久播| 国产成人一区二区在线| 毛片女人毛片| 亚洲成人中文字幕在线播放| 免费观看精品视频网站| 欧美zozozo另类| 三级国产精品欧美在线观看| 女的被弄到高潮叫床怎么办 | 日日摸夜夜添夜夜添av毛片 | 久久精品人妻少妇| 欧美国产日韩亚洲一区| 国产一区二区三区在线臀色熟女| 女同久久另类99精品国产91| 精品无人区乱码1区二区| 日韩欧美一区二区三区在线观看| 18+在线观看网站| 在线观看午夜福利视频| 自拍偷自拍亚洲精品老妇| 精品久久久久久久久久久久久| 久久久精品欧美日韩精品| 99视频精品全部免费 在线| 久久99热6这里只有精品| 国产91精品成人一区二区三区| 色5月婷婷丁香| 高清毛片免费观看视频网站| 久久人人精品亚洲av| 亚洲在线自拍视频| 成人午夜高清在线视频| 精品人妻偷拍中文字幕| 久久精品国产鲁丝片午夜精品 | av福利片在线观看| 日本撒尿小便嘘嘘汇集6| 亚洲一级一片aⅴ在线观看| 国产精品99久久久久久久久| 国产亚洲精品久久久com| 亚洲成人中文字幕在线播放| 美女被艹到高潮喷水动态| 嫩草影院入口| 亚洲精品一区av在线观看| 亚洲av成人精品一区久久| 日日干狠狠操夜夜爽| 国产高清视频在线播放一区| 别揉我奶头 嗯啊视频| 久久久久久大精品| 亚洲中文字幕日韩| 99久国产av精品| 精品久久国产蜜桃| 亚洲专区国产一区二区| 日本黄色片子视频| 免费高清视频大片| 国语自产精品视频在线第100页| 韩国av在线不卡| 深夜精品福利| 99久久九九国产精品国产免费| 少妇人妻精品综合一区二区 | 成年女人看的毛片在线观看| 成人二区视频| 哪里可以看免费的av片| .国产精品久久| 欧美丝袜亚洲另类 | 日韩一区二区视频免费看| 夜夜爽天天搞| 自拍偷自拍亚洲精品老妇| 国内精品久久久久精免费| 少妇猛男粗大的猛烈进出视频 | av在线蜜桃| 久久精品国产亚洲av天美| 18禁在线播放成人免费| 我的老师免费观看完整版| 久久精品国产亚洲av天美| 免费大片18禁| 老熟妇仑乱视频hdxx| 直男gayav资源| 欧美日韩乱码在线| 精品人妻偷拍中文字幕| 老师上课跳d突然被开到最大视频| 校园人妻丝袜中文字幕| 日韩人妻高清精品专区| 久久人妻av系列| 丝袜美腿在线中文| 免费看a级黄色片| 99精品在免费线老司机午夜| 成人无遮挡网站| av国产免费在线观看|