【DOI】10.16806/j. cnki. issn.1004-3934.2025.07.001
Application of Artificial Intelligence in Diagnosis of Coronary Atherosclerotic Heart Disease
SHI Yiqun,LIU Jian (Department of Cardiology,Peking University People's Hospital,Beijing 1OOo44,China)
【Abstract】Coroaryatheroleroticeartdisase(CH)rmiseofteldingglobalcsesofortalityecesiangcurate andfcitoelataslel theabilityofarlysrning,dgosisndpogosisevaluatioofCbyintegatingmutiodaldataandiagingaalysis.efeldof medicalimaging,asptiizedthntireorkflooforonaryomputedtomogaphagiographycludingiagedenosingsular segmentation,stenosis detection and plaque characterization.Notably,AI achieves over 95% accuracy in identifying vulnerable plaques and enablesfuctioalnttoghfractialseesilatiodngiteetioltsateseoding, AI-drivenriskpredictionmodelsintegratingelectrocardiogram,genomicdataandclinicalvariableshaveenhancedearlydetectioin asymptomaticolatiosnducdrgecraentelayshcallmostratesgcall,sie eficiencyucinglceoasiggapileomotingdadagosisiaycareigoweveg persist,ncugsutaddatidcbilitddeateatitul prioritizeulttelatioddcalatidptiof’tdinapesin andlong-tergsisaagntIousiotptefovtiosithcaldadisCiist a new era of precision and intelligence.
【Keywords】Artificial intellgence;Coronaryatherosclerotic heartdisease;Machineleaming;Diagnosis;Imageprocessing
心血管疾病是當(dāng)今世界威脅人類生存與影響生活質(zhì)量的主要因素之一,每年導(dǎo)致約1770萬人死亡[1],2019年報(bào)告死亡人數(shù)為1790萬[2-3]。動(dòng)脈粥樣硬化性心血管疾病目前占全球心血管疾病死亡病例的 60% 以上,且其疾病負(fù)擔(dān)仍以驚人的速度持續(xù)攀升。冠狀動(dòng)脈粥樣硬化性心臟?。╟oronaryatheroscleroticheartdisease,CHD)屬于心血管疾病中最常見的類型,其主要病因是冠狀動(dòng)脈粥樣硬化導(dǎo)致管腔狹窄進(jìn)而誘發(fā)心肌供血不足。CHD傳統(tǒng)的診斷方法依賴醫(yī)生對(duì)臨床特征和影像學(xué)數(shù)據(jù)「如心電圖(electrocardiogram,ECG)、冠狀動(dòng)脈CT血管造影(coronary computedtomography angiography,CCTA)、冠狀動(dòng)脈造影(coronaryangiography,CAG)]等的綜合分析,存在諸多局限性。
人工智能(artificial intelligence,AI)是對(duì)思想和智能行為背后計(jì)算原理的科學(xué)研究[4]。機(jī)器學(xué)習(xí)(machinelearning,ML)是AI的核心分支。近年來,快速發(fā)展的AI技術(shù)在CHD的檢出與診斷、影像分析、血流動(dòng)力學(xué)評(píng)價(jià)、危險(xiǎn)分層等方面取得大量研究成果[5-10],能從海量異構(gòu)數(shù)據(jù)中挖掘潛在規(guī)律,從各方面優(yōu)化臨床工作?,F(xiàn)系統(tǒng)梳理AI在CHD診斷中的應(yīng)用進(jìn)展,分析其臨床應(yīng)用潛力與局限性,并探討其未來發(fā)展方向。
1AI在處理單純數(shù)據(jù)資料中的應(yīng)用
AI在處理數(shù)據(jù)時(shí),較傳統(tǒng)統(tǒng)計(jì)學(xué)方法受限更少,可較好地處理具有內(nèi)在相關(guān)性的變量,在分析變量時(shí)不易受主觀因素影響,對(duì)分布偏倚較大、噪聲較多的數(shù)據(jù)具有更強(qiáng)的適應(yīng)性。這些優(yōu)點(diǎn)使得各類使用AI建立的模型在進(jìn)行單純數(shù)據(jù)資料分析時(shí)展現(xiàn)出良好的性能,可用于指導(dǎo)并改善CHD的臨床篩查工作[10-20],相關(guān)模型算法及其性能評(píng)價(jià)結(jié)果列于表1。這些研究普遍樣本量大,涉及變量多,且部分研究比較了多種算法生成模型的性能差異。如 Xu 等[18]收集了10533例糖尿病合并CHD患者和12634例糖尿病未合并CHD患者的臨床資料,選擇重要特征后使用5種算法建立老年糖尿病患者的CHD預(yù)測(cè)模型,其中以極限梯度提升(extreme gradientboosting,XGBoost)模型性能最優(yōu),模型召回率為0.792,特異度為0.808,AUC為0.880。Lee等[20]回顧性分析了11180例常規(guī)體檢中接受CCTA的受試者,基于體檢特征預(yù)測(cè)受試者是否存在冠狀動(dòng)脈嚴(yán)重狹窄(直徑狹窄率 ? 70% )?;诙嗳蝿?wù)學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò)建立的模型性能最佳,召回率與特異度分別為0.757、0.675。Forrest等[21]納入了來自兩個(gè)縱向隊(duì)列(BioMeBiobank與UKBiobank)的95935例參與者的電子健康記錄,研究使用隨機(jī)森林(randomforest,RF)算法,利用生命體征、用藥記錄、實(shí)驗(yàn)室指標(biāo)等283個(gè)特征生成預(yù)測(cè)CHD的評(píng)分(0~1),用于量化CHD風(fēng)險(xiǎn)、動(dòng)脈粥樣硬化負(fù)荷以及預(yù)后。該模型在內(nèi)部測(cè)試集與外部測(cè)試集中的表現(xiàn)均很優(yōu)秀,模型的性能見表2。
2AI在處理影像資料中的應(yīng)用
2.1在CCTA及其衍生指標(biāo)中的應(yīng)用
2.1.1在冠狀動(dòng)脈解剖結(jié)構(gòu)分析中的應(yīng)用
表1AI在CHD中的應(yīng)用
注:XGBoost,極限梯度提升;LightGBM,輕量級(jí)梯度提升機(jī)算法; MICE,鏈?zhǔn)椒匠潭嘀夭逖a(bǔ);GBM,梯度提升機(jī);RF,隨機(jī)森林。
表2模型對(duì)CHD的預(yù)測(cè)性能[21]
冠狀動(dòng)脈樹(冠脈樹)與斑塊的精準(zhǔn)提取和標(biāo)注是AI處理分析CCTA中冠狀動(dòng)脈粥樣硬化性改變的基礎(chǔ)。傳統(tǒng)人工分割與標(biāo)識(shí)操作繁瑣,存在觀測(cè)者間差異較大、復(fù)雜病變處理能力有限、非鈣化斑塊診斷能力不足等局限性,AI在分析CCTA時(shí)可針對(duì)性地解決這些問題。如Cao等22提出在提取初始冠脈樹后使用決策樹模型控制冠脈樹改進(jìn)流程,確保從主支到側(cè)支的順序?qū)诿}樹逐層優(yōu)化。有研究23在將冠狀動(dòng)脈分割為小體積塊,提取幾何與形態(tài)特征后,使用支持向量機(jī)(supportvectormachine,SVM)算法根據(jù)每個(gè)體積塊的特征將其分為正常與病變兩類。文獻(xiàn)[22-45]報(bào)道了近年來AI在冠狀動(dòng)脈解剖結(jié)構(gòu)分析中的應(yīng)用,相關(guān)案例涉及的模型算法及其主要性能見表3和表4[39]
表3AI模型在CT中的應(yīng)用
續(xù)表3
注:CACS,冠狀動(dòng)脈鈣化積分;CNN,卷積神經(jīng)網(wǎng)絡(luò); KNN,k 近鄰算法。
表4冠狀動(dòng)脈分支鈣化模型性能[39]
雖然傳統(tǒng)ML算法可改善影像分析過程,但在處理影像時(shí)仍存在依賴人工設(shè)計(jì)特征、三維空間信息利用欠充分、泛化能力不足等局限性,而深度學(xué)習(xí)(deeplearning,DL)則通過端到端的特征學(xué)習(xí)和復(fù)雜的模型架構(gòu)改善了上述問題,顯著提升了圖像分割的精度和效率。DL模型的訓(xùn)練過程遵循一套共性框架,核心思路可概括為多個(gè)層級(jí)協(xié)同優(yōu)化的范式,即通過卷積神經(jīng)網(wǎng)絡(luò)(convolutionalneuralnetwork,CNN)等架構(gòu)自動(dòng)提取多尺度層級(jí)特征,采用自適應(yīng)特征金字塔與注意力機(jī)制實(shí)現(xiàn)病灶敏感區(qū)域聚焦;運(yùn)用幾何變換、彈性形變等數(shù)據(jù)增廣技術(shù)擴(kuò)充有限樣本,結(jié)合多種自主學(xué)習(xí)算法構(gòu)建視覺表征,通過元學(xué)習(xí)框架實(shí)現(xiàn)快速適應(yīng)新病灶類別的能力[24-39]。如Li等[24]提出的冠狀動(dòng)脈自動(dòng)分割與診斷狹窄算法綜合了兩種DL模型,先使用U-Net模型對(duì)CCTA圖像通過卷積和下采樣處理提取特征,而后通過上采樣和跳躍連接恢復(fù)空間分辨率并生成分割掩膜,再對(duì)分割結(jié)果進(jìn)行連續(xù)幀處理后生成三維冠脈樹,將冠脈樹圖像和臨床特征參數(shù)輸入3DNet模型后輸出冠狀動(dòng)脈病變?cè)\斷結(jié)果,顯著提升了分割冠脈樹及診斷冠狀動(dòng)脈狹窄病變的效率。Han等[25]使用CNN訓(xùn)練的CCTA冠狀動(dòng)脈狹窄病變檢測(cè)算法,基于二維CCTA圖像序列生成自動(dòng)重建的三維CCTA圖像,在冠狀動(dòng)脈狹窄診斷方面顯示出較好的效能。一項(xiàng)國(guó)際多中心研究[2使用卷積長(zhǎng)短期記憶網(wǎng)絡(luò)(long short-term memory network,LSTM)建立了CCTA圖像的斑塊體積測(cè)量模型,其測(cè)量結(jié)果與專家閱片結(jié)果和血管內(nèi)超聲(intravascularultrasound,IVUS)驗(yàn)證結(jié)果高度一致,大幅減少了斑塊平均分析時(shí)間,基于該模型測(cè)量的總斑塊體積與心肌梗死風(fēng)險(xiǎn)升高顯著獨(dú)立相關(guān)。
2.1.2在冠狀動(dòng)脈功能分析中的應(yīng)用
基于壓力導(dǎo)絲的血流儲(chǔ)備分?jǐn)?shù)(fractionalflowreserve,F(xiàn)FR)是評(píng)價(jià)冠狀動(dòng)脈狹窄功能學(xué)意義的金標(biāo)準(zhǔn),但其屬于有創(chuàng)操作,成本相對(duì)較高。CT衍生的FFR(computed tomography derived FFR, FFRCT )則是一種FFR的無創(chuàng)替代指標(biāo),與有創(chuàng)FFR的結(jié)果具有良好的一致性[40]。傳統(tǒng)的 FFRCT 計(jì)算依賴于計(jì)算流體力學(xué),計(jì)算過程繁瑣,耗時(shí)較長(zhǎng),難以滿足臨床需求。因此使用AI計(jì)算或輔助計(jì)算 FFRcr 及其相關(guān)指標(biāo)逐漸受到臨床重視。
Kumamaru等[41]建立了一個(gè)基于CCTA影像預(yù)測(cè)FFRcr 的三維DL模型,該模型使用條件生成對(duì)抗網(wǎng)絡(luò)提取血管結(jié)構(gòu)特征,以三維卷積階梯網(wǎng)絡(luò)篩選空間特征,以分類和回歸節(jié)點(diǎn)預(yù)測(cè) FFRcr 。該模型無需人工分割冠脈樹,首次實(shí)現(xiàn)了完全自動(dòng)化預(yù)測(cè) FFRCT ,單例分析速度達(dá)到秒級(jí),可快速篩選需行侵人性檢查的患者,優(yōu)化了CHD的臨床診療策略。另一項(xiàng)研究[42]使用反向傳播神經(jīng)網(wǎng)絡(luò)建立了冠狀動(dòng)脈狹窄阻力(計(jì)算FFRCT 的關(guān)鍵參數(shù))測(cè)量模型,模型輸入冠狀動(dòng)脈解剖及血流相關(guān)參數(shù)后可預(yù)測(cè)冠狀動(dòng)脈狹窄阻力,與傳統(tǒng)流體力學(xué)計(jì)算結(jié)果高度一致,單例計(jì)算耗時(shí)約為計(jì)算流體力學(xué)的 1/3000 。以AI技術(shù)計(jì)算 FFRCT 在提高診斷效率[41-42]冠狀動(dòng)脈疾病病因分析[43]、改善醫(yī)療經(jīng)濟(jì)[44]等方面具有重要價(jià)值。
2.1.3 在冠狀動(dòng)脈周圍脂肪組織分析中的應(yīng)用
冠狀動(dòng)脈周圍脂肪組織(pericoronaryadiposetissue,PCAT)的炎癥可促進(jìn)冠狀動(dòng)脈粥樣硬化進(jìn)程,血管周圍脂肪衰減指數(shù)(fatattenuationindex,F(xiàn)AI)與PCAT體積常作為衡量指標(biāo)用于分析PCAT與冠狀動(dòng)脈粥樣硬化的相關(guān)性。傳統(tǒng)人工分析PCAT存在主觀差異較大、效率低下、難以量化復(fù)雜特征、受設(shè)備參數(shù)影響顯著、評(píng)價(jià)指標(biāo)單一等諸多困難,AI技術(shù)則可針對(duì)性地解決上述問題。Pan 等[45]、West 等[46]均使用AI技術(shù)提取基于CCTA的PCAT脂肪影像組學(xué)特征譜(fatradiomicprofile,F(xiàn)RP),發(fā)現(xiàn)基于AI技術(shù)計(jì)算得到的FAI、PCAT體積對(duì)冠狀動(dòng)脈斑塊進(jìn)展、主要不良心血管事件等有良好的預(yù)測(cè)價(jià)值。Oikonomou等[47]開發(fā)的基于CCTA中PCAT的FRP的主要不良心血管事件預(yù)測(cè)模型則首次將PCAT基因表達(dá)、PCAT的FRP、臨床預(yù)后等多模態(tài)信息同時(shí)整合,突破了既往僅使用FAI、PCAT體積對(duì)PCAT評(píng)價(jià)的限制。研究結(jié)果顯示基于AI技術(shù)提取的FRP可反映PCAT的纖維化與血管化改變,性能顯著優(yōu)于FAI,F(xiàn)RP是主要不良心血管事件的獨(dú)立危險(xiǎn)因素,高FRP評(píng)分( FRP?0.63 )人群發(fā)生主要不良心血管事件的風(fēng)險(xiǎn)約是低FRP評(píng)分人群的10倍。
2.2在CAG影像及其衍生參數(shù)中的應(yīng)用
傳統(tǒng)人工方式對(duì)CAG圖像進(jìn)行準(zhǔn)確定量分析需閱片人深刻理解冠脈樹結(jié)構(gòu)且能準(zhǔn)確識(shí)別目標(biāo)血管,這一過程需要大量培訓(xùn),且操作過程耗時(shí)較長(zhǎng)。盡管使用計(jì)算機(jī)輔助工具(如邊緣檢測(cè)方法)可提升效率,但仍需頻繁進(jìn)行人工校正以實(shí)現(xiàn)血管的精確分割,而AI技術(shù)的引入或可改變現(xiàn)狀。
Yang等[48]提出了基于改進(jìn)U-Net架構(gòu)的方法用于CAG圖像中主要冠狀動(dòng)脈分支的自動(dòng)化分割。模型在3302例內(nèi)部數(shù)據(jù)集和181例外部驗(yàn)證集中表現(xiàn)出高精度和實(shí)時(shí)性(單幀圖像0.04s),實(shí)現(xiàn)了定量冠狀動(dòng)脈造影結(jié)果分析的自動(dòng)化。Ling等[49]提出了一種基于DL的端到端CAG診斷系統(tǒng)(DLCAG),整合ResNet、RetinaNet與MaskR-CNN模型,實(shí)現(xiàn)了冠狀動(dòng)脈狹窄的自動(dòng)化分類、檢測(cè)與實(shí)例分割。該系統(tǒng)在949例患者的2980例影像中驗(yàn)證,分類準(zhǔn)確率為88.6% ,檢測(cè)與分割的平均精度均值分別為 86.3% 和86.0% ,顯著優(yōu)于傳統(tǒng)方法。這些研究顯示出AI在提高基于CAG圖像對(duì)CHD的診斷能力、定量分析及診斷效率等方面的巨大潛力。上述模型性能列于表5。
表5AI在CAG中的應(yīng)用
2.3在IVUS相關(guān)影像及其衍生指標(biāo)中的應(yīng)用
IVUS作為重要的腔內(nèi)影像工具,廣泛應(yīng)用于動(dòng)脈粥樣硬化檢測(cè)、支架植入優(yōu)化、藥物療效評(píng)估及斑塊演變研究。其通過組織特征分析為臨床決策提供關(guān)鍵信息,但現(xiàn)有技術(shù)受限于軸向和側(cè)向分辨率不足,影響對(duì)細(xì)微結(jié)構(gòu)(如薄纖維帽斑塊、支架小梁)的精準(zhǔn)識(shí)別,制約了對(duì)復(fù)雜病變的精確診斷和治療指導(dǎo)能力。AI技術(shù)可在圖像分割、斑塊分析和介入治療指導(dǎo)等方面對(duì)IVUS進(jìn)行改進(jìn)[50]。文獻(xiàn)[3.51-58]相關(guān)模型的算法及性能總結(jié)見表6。
表6AI模型在IVUS中的應(yīng)用
續(xù)表6
注:KNN,k近鄰算法。
LoVercio等[51]使用SVM自動(dòng)檢測(cè)冠狀動(dòng)脈管腔、中膜、外膜及周圍組織,以RF算法檢測(cè)不同形態(tài)結(jié)構(gòu)輔助分割I(lǐng)VUS影像的冠狀動(dòng)脈,優(yōu)于既往的自動(dòng)分割方法。Yang等[52]使用雙路徑U-Net自動(dòng)分割I(lǐng)VUS圖像中的冠狀動(dòng)脈管腔和中外膜,顯著提高了分割質(zhì)量。Galo等[53]的研究表明基于IVUS圖像的AI自動(dòng)病變?cè)u(píng)價(jià)軟件在選擇復(fù)雜病變支架尺寸上與獨(dú)立核心實(shí)驗(yàn)室和介入心臟病學(xué)專家具有良好的一致性。
冠狀動(dòng)脈影像研究中,核心實(shí)驗(yàn)室人工分析IVUS是評(píng)估抗動(dòng)脈粥樣硬化療效的“金標(biāo)準(zhǔn)”。Bass等[54]對(duì)比了核心實(shí)驗(yàn)室人工測(cè)量與ML算法對(duì)基線及他汀類藥物治療13個(gè)月后的管腔面積、血管面積及斑塊體積百分比的變化量,發(fā)現(xiàn)ML算法與核心實(shí)驗(yàn)室的測(cè)算結(jié)果在管腔面積、血管面積及斑塊體積百分比測(cè)量中呈現(xiàn)高度一致性。ML算法可精準(zhǔn)復(fù)現(xiàn)核心實(shí)驗(yàn)室人工測(cè)算的斑塊體積百分比變化趨勢(shì),且敏感性更優(yōu)。該技術(shù)為未來臨床試驗(yàn)提供了標(biāo)準(zhǔn)化、高效化的斑塊定量分析工具,有望替代傳統(tǒng)人工分析流程。Matsumura等[55]使用U-Net對(duì)高清IVUS圖像進(jìn)行血管和管腔的自動(dòng)分割,其測(cè)量結(jié)果與專家分析高度一致,可輔助臨床精準(zhǔn)選擇球囊尺寸。Bajaj等[56]提出了一種IVUS圖像實(shí)時(shí)自動(dòng)分割的DL模型,該模型由ResNet與Pix2pix條件生成對(duì)抗網(wǎng)絡(luò)組成,其在血管邊界(外彈性膜、管腔)及斑塊面積測(cè)量方面與專家標(biāo)注高度一致,且在鈣化病變等復(fù)雜場(chǎng)景下表現(xiàn)穩(wěn)定。ML在IVUS的斑塊識(shí)別及分析中也表現(xiàn)出應(yīng)用潛力。
Jun等[57]的研究提出了一種基于DL的IVUS圖像自動(dòng)分析模型,該模型通過CNN將IVUS與光學(xué)相干斷層成像(optical coherence tomography,OCT)數(shù)據(jù)匹配,提取像素分布特征并篩選關(guān)鍵影像標(biāo)志(如近管腔壞死核心),實(shí)現(xiàn)薄纖維帽粥樣斑塊的高效檢測(cè)。針對(duì)IVUS衍生的形態(tài)學(xué)標(biāo)準(zhǔn)對(duì)冠狀動(dòng)脈中度狹窄功能的預(yù)測(cè)能力較差這一問題,Lee等[58]開發(fā)了一種結(jié)合IVUS影像特征與臨床變量的多模型ML框架,該框架使用了RF與自適應(yīng)增強(qiáng)算法,用于預(yù)測(cè)中等冠狀動(dòng)脈病變的功能性缺血,診斷準(zhǔn)確率為83% ,在排除臨界FFR病例后準(zhǔn)確率進(jìn)一步提升至87% 。該研究為無創(chuàng)評(píng)估冠狀動(dòng)脈缺血提供了新思路,有望優(yōu)化臨床決策并減少侵入性檢查。此外,超聲血流比作為一項(xiàng)較新的無創(chuàng)預(yù)測(cè)FFR的技術(shù),也應(yīng)用了RefineNet模型完成分割血管輪廓的工作,以此為基礎(chǔ)結(jié)合流體力學(xué)模型計(jì)算的結(jié)果與使用壓力導(dǎo)絲測(cè)量的FFR 高度一致[3],且分析時(shí)間短,可重復(fù)性好,為CHD介人治療中形態(tài)與功能的整合評(píng)估提供了高效的解決方案。
2.4在OCT影像中的應(yīng)用
與其他成像技術(shù)相比,OCT是一種高對(duì)比度的三維顯微成像技術(shù)。然而,雖然OCT在指導(dǎo)經(jīng)皮冠狀動(dòng)脈介入治療、評(píng)估治療效果及斑塊成分分析方面具有顯著優(yōu)勢(shì),但也存在成像時(shí)易受血液干擾、穿透深度不足等局限性。AI在OCT相關(guān)研究中的重點(diǎn)集中于評(píng)價(jià)斑塊以及指導(dǎo)介人治療。AI在OCT圖像處理中的應(yīng)用及其結(jié)果見表 7[59-65]
表7AI在腔內(nèi)OCT中的應(yīng)用
Kolluru 等[59]、Lee等[60]、 Xu 等[61]、Shalev 等[62]及 Zhou等[63]通過不同AI算法對(duì)OCT圖像中的斑塊進(jìn)行特征提取、分類從而實(shí)現(xiàn)斑塊分割功能,對(duì)于不同性質(zhì)的斑塊有著較好的診斷準(zhǔn)確性,且速度較人工分隔提升明顯。Gharaibeh等[64開發(fā)了一種基于ML的自動(dòng)化方法,利用術(shù)前OCT圖像預(yù)測(cè)鈣化病變的支架擴(kuò)張不足風(fēng)險(xiǎn)。通過分割冠狀動(dòng)脈管腔與鈣化斑塊,結(jié)合高斯回歸和節(jié)段分析策略,模型可有效識(shí)別有擴(kuò)張不足風(fēng)險(xiǎn)的斑塊,性能顯著優(yōu)于傳統(tǒng)Fujino鈣化評(píng)分法。該方法可實(shí)時(shí)指導(dǎo)術(shù)者選擇斑塊修飾策略,為優(yōu)化CHD介入治療提供了重要的AI驅(qū)動(dòng)決策支持。Lee等[65]開發(fā)的OCT圖像斑塊與支架分析軟件(OCTOPUS)則整合了SegNet、3D CNN、SVM、Bagged決策樹等多種ML或DL算法,實(shí)現(xiàn)了高效的OCT圖像自動(dòng)化斑塊分割、支架分析功能。軟件可準(zhǔn)確識(shí)別鈣化病變,還可根據(jù)術(shù)前影像進(jìn)行評(píng)分,預(yù)測(cè)支架擴(kuò)張不足風(fēng)險(xiǎn),預(yù)測(cè)結(jié)果與Fujino鈣化評(píng)分法高度一致,支持術(shù)前斑塊修飾策略。軟件還可對(duì)同一患者不同時(shí)期的OCT圖像進(jìn)行配準(zhǔn)后,分析冠狀動(dòng)脈粥樣硬化進(jìn)展(如管腔負(fù)性重構(gòu)、新發(fā)斑塊)。
2.5在心臟磁共振中的應(yīng)用
除前述影像學(xué)技術(shù)外,AI技術(shù)還可輔助處理或分析心臟磁共振(cardiacmagneticresonance,CMR)圖像以提升對(duì)CHD的診斷價(jià)值。Baessler等66采用Boruta算法和遞歸特征消除算法對(duì)人工提取的CMR特征進(jìn)行篩選,選擇可用于診斷亞急性或慢性心肌梗死的特征。Lorch 等[67]、Kustner等[68] Wu 等[69]分別使用RF、超分辨率生成對(duì)抗網(wǎng)絡(luò)、壓縮感知框架等算法模型改良了CMR的臨床應(yīng)用(如縮短掃描時(shí)間、提高成像分辨率、自動(dòng)檢測(cè)偽影)。其中文獻(xiàn)[66-68]相應(yīng)模型的算法及性能總結(jié)于表8中,文獻(xiàn)[模型的算法及性能見表9。
表8AI在CMR中的應(yīng)用
表9基于CSAI的非對(duì)比增強(qiáng)冠狀動(dòng)脈磁共振血管成像在CHD疑診患者中的診斷性能[69]
注:CSAI,壓縮感知人工智能。
2.6在其他檢測(cè)方法中的應(yīng)用
ECG作為診斷CHD的常用工具,可捕捉心臟異常電活動(dòng),但其診斷敏感性不足。原因之一是ECG信號(hào)幅值極低,肉眼判讀困難,臨床醫(yī)生對(duì)異常ECG形態(tài)的識(shí)別易出現(xiàn)誤差。Choi等[70]探索并建立了一個(gè)以ResNet框架為基礎(chǔ)的ECG診斷模型,其對(duì)阻塞性冠狀動(dòng)脈疾病的診斷能力適中( AUC=0.693 ),對(duì)急性心肌梗死的診斷能力明顯高于前者( AUC=0.923 )。Tan等結(jié)合CNN與LSTM,實(shí)現(xiàn)了ECG信號(hào)對(duì)CHD的精準(zhǔn)自動(dòng)診斷,速度快且準(zhǔn)確率高。該原型模型已具備臨床測(cè)試條件,在大規(guī)模數(shù)據(jù)庫中驗(yàn)證后可投入實(shí)際應(yīng)用。Upton等[72]基于英國(guó)一項(xiàng)大型前瞻性、多中心、多設(shè)備研究收集的負(fù)荷超聲心動(dòng)圖數(shù)據(jù),開發(fā)了一種自動(dòng)化圖像處理流程,從中提取31個(gè)獨(dú)特幾何與運(yùn)動(dòng)學(xué)特征,利用這些特征訓(xùn)練集成ML分類器,用于識(shí)別CAG確診的嚴(yán)重CHD患者,且在獨(dú)立驗(yàn)證集中保持準(zhǔn)確性。臨床醫(yī)師使用ML分類工具后,閱片者間一致性( κ 值提升0.15)及診斷信心(提升23% )顯著提高。Yuan 等[73]開發(fā)了一個(gè)基于超聲心動(dòng)圖視頻對(duì)冠狀動(dòng)脈鈣化(coronaryartery calcification,CAC)程度進(jìn)行預(yù)測(cè)的模型,該模型運(yùn)用到了帶有殘差連接和跨幀時(shí)空卷積的CNN,可在獲取到患者的標(biāo)準(zhǔn)胸骨旁長(zhǎng)軸視圖對(duì)應(yīng)的超聲視頻后對(duì)CAC積分進(jìn)行計(jì)算。Rim等[74]基于三大國(guó)際隊(duì)列5個(gè)數(shù)據(jù)集(總計(jì)超過26萬張圖像),開發(fā)并驗(yàn)證了一種基于視網(wǎng)膜照片預(yù)測(cè)CAC評(píng)分的新型心血管危險(xiǎn)分層系統(tǒng)RetiCAC。該系統(tǒng)首次通過視網(wǎng)膜照片實(shí)現(xiàn)CAC無創(chuàng)預(yù)測(cè),AUC為0.742,與CT-CAC預(yù)后性能相當(dāng),顯著提升了中危與臨界人群的危險(xiǎn)分層(凈重新分類指數(shù)為0.261)。文獻(xiàn)[70-74]涉及的模型的算法及性能匯于表10。
表10AI在其他檢測(cè)方法中的應(yīng)用
3總結(jié)及展望
綜上所述,AI在心血管疾病領(lǐng)域中的應(yīng)用已較為廣泛,且涉及到了疾病的篩查、診斷、協(xié)助制訂管理方案、評(píng)估預(yù)后等各個(gè)階段。未來,AI技術(shù)的發(fā)展方向應(yīng)仍以建立以大數(shù)據(jù)訓(xùn)練建立的篩查模型與替代相應(yīng)有創(chuàng)檢查的無創(chuàng)檢查為主,從而在宏觀層面上大幅降低醫(yī)療成本、減少有創(chuàng)操作、緩解醫(yī)療資源緊張的現(xiàn)狀,在個(gè)體層面上使患者獲得更加客觀、準(zhǔn)確的醫(yī)療數(shù)據(jù),使醫(yī)務(wù)工作者獲得更多有價(jià)值的診斷與治療依據(jù)。
參考文獻(xiàn)
[1] RothGA,Mensah GA,Johnson CO,etal.Global Burden ofCardiovascular DiseasesandRisk Factors,199O-2019:UpdateFromtheGBD2O19Study[J]. JAmColl Cardiol,2020,76(25):2982-3021.
[2] AlrasheedAA,AlabdullatifNI,AlOmairAW,etal.Prevalence ofsome cardiovascularrisk factors:obesity,hypertension,and smoking among medical students[J].CritPathwCardiol,2025Jan16.DOI:10.1097/ HPC.0000000000000380.
[3] YuW,Tanigaki T,DingD,et al.Accuracy of intravascularultrasound-based fractional flow reserve in identifyinghemodynamic significance of coronary stenosis[J].Circ Cardiovasc Interv,2021,14(2):e009840.
[4]de Hond AAH,Vosslamber S,Lange S,et al. When,where,who,what,and why? Th fiveWsoforfaalysisforiplementigadisispl theintensivecare[J].HumanFactors in Healthcare,2O25,7:100095.
[5] UnluO,F(xiàn)ahedAC.Machinelearningininvasiveandnoninvasivecoronary angiography[J].Curr Atheroscler Rep,2023,25(12):1025-1033.
[6] Antonopoulos AS,AngelopoulosA,TsioufisK,etal.Cardiovascularrisk stratificationbycoronary computedtomographyangiographyimaging:current state-of-the-art[J].EurJPrevCardiol,2022,29(4):608-624.
[7] Rangraz JeddiF,Rajabi MoghaddamH,Sharif R,etal.Machinelearning approaches for detectingcoronaryartery diseaseusing angiography imaging: a scoping review[J].Stud Health Technol Inform,2023,305:244-248.
[8] Lee H,Martin S,BurtJR,et al. Machine learning and coronary arterycalcium scoring[J].Curr Cardiol Rep,2020,22(9):90.
[9] LuH,YaoY,WangL,etal.Research progressofmachine learningand deep learning in intelligent diagnosisof thecoronaryatheroseleroticheart disease[J]. Comput Math Methods Med,2022,2022:016532.
[10]JohriAM,Singh KV,MantellaLE,etal.Deep learning artificial inteligence framework for multiclass coronary artery diseaseprediction using combination of conventionalrisk factors,carotidultrasound,andintraplaqueneovascularization [J].Comput Biol Med,2022,150:106018.
[11]Ren W,Zhang Z,Wang Y,etal. Coronary health index based on immunoglobulin lightchainstoasesscoronaryheartdiseaseriskwithmachinelaing: a diagnostic trial[J]. J Transl Med,2025,23(1):22 :
[12]Omotehinwa TO,Oyewola DO,Moung EG.Optimizingthe light gradient-boosting machine algorithm foran effcient early detection of coronary heart disease[J]. Inform and Health,2024,1(2) :70-81.
[13]Valle A, Cinaud A ,BlachierV,etal. Coronary heart disease diagnosisby artificialneural networksincludingaorticpulsewavevelocityindexandclinical parameters[J].JHypertens,2019,37(8):1682-1688.
[14]Miao KH,Miao JH,Miao GJ. Diagnosing coronary heart disease using ensemble machine learning[J].IntJAdv Comput Sci,2016,7(10):30-39.
[15]Joloudari JH,JoloudariEH,SadatfarH,etal.Coronaryarterydisease diagnosis;ranking the significant features using a random trees model[J]. IntJ Environ ResPublic Health,2020,17(3):731.
[16]Beunza JJ,Puertas E,Garcia-Ovejero E,etal. Comparisonof machine learning algorithms for clinical event prediction(risk of coronary heart disease)[J]. JBiomed Inform,2019,97:103257.
[17]Duan M ,Zhang Y,Liu Υ ,et al.Machinelearning aidednon-invasive diagnosis of coronary heart disease based on tongue features fusion[J].Technol Health Care,2024,32(1) :441-457.
[18]Xu H,Cao WZ,Bai YY,et al.Establishmentof a diagnostic model of coronary heart disease inelderlypatients with diabetes melltus based on machine learning algorithms[J].JGeriatrCardiol,2022,19(6):45-455.
[19]LiY,Guan L,Ning C,et al.Machine learning-based models to predict one-year mortality among Chinese older patients with coronaryartery disease combined with impairedglucose toleranceordiabetesmelitus[J].CardiovascDiabetol, 2023,22(1) :139.
[20]LeeH,KangBG,JoJ,etal.Deep learning-basedprediction forsignificant coronaryartery stenosison coronary computedtomographyangiography in asymptomaticpopulations[J].Front Cardiovasc Med,2O23,10;167468.
[21]Forrest IS,Petrazzini BO,Duffy AA,et al.Machinelearning-based marker for coronaryartery disease:derivationandvalidation intwo longitudinal cohorts[J]. Lancet,2023,401(10372):215-225.
[22]Cao Q,Broersen A,Kitslaar PH,etal.A model-guidedmethodfor improving coronary artery treeextractionsfrom CCTA images[J].Int JComput Assist Radiol Surg,2019,14(2):373-383.
[23]KangD,DeyD,SlomkaPJ,etal.Structured learningalgorithm for detectionof mugrapuy angiography[J].JMed Imaging(Bellngham),2015,2(1):014003.
[24]LiY,WuY,HeJ,etal.Automaticcoronary arterysegmentationand diagnosisof stenosis by deep learning based oncomputed tomographic coronaryangiography [J].Eur Radiol,2022,32(9):6037-6045.
[25]Han D,Liu J,Sun Z,et al.Deep learning analysis in coronary computed tomographicangiography imaging for theassessment of patientswith coronary artery stenosis[J].ComputMethodsProgramsBiomed,2020,196:105651.
[26]LinA,Manral N,McElhinneyP,etal.Deeplearning-enabledcoronary CT angiography for plaque and stenosisquantification and cardiacrisk prediction: aninternational multicentrestudy[J].LancetDigitHealth,2022,4(4): e256-e265.
[27]Lin A,van Diemen PA,Motwani M ,etal.Machine learning from quantitative coronary computed tomographyangiography predictsfractional flow reservedefined ischemiaandimpaired myocardial blood flow[J].Circ Cardiovasc Imaging,2022,15(10):e014369.
[28]Park S,YukiH,Niida T,etal.Anovel deep learning model foracomputed tomography diagnosis of coronaryplaque erosion[J].SciRep,2023,3 (1) :22992.
[29]JawaidMM,RiazA,RajaniR,etal.Framework fordetectionand localizationof coronary non-calcified plaques in cardiac CTA using mean radial profiles[J]. Comput Biol Med,2017,89:84-95.
[30] Zreik M ,vanHamersveltRW,Wolterink JM,etal.Arecurrent CNNfor automatic detection and classfication of coronary artery plaque and stenosis in coronary CT angiography[J].IEEE TransMed Imaging,2019,38(7): 1588-1598.
[31]NarulaJ,Stuckey TD,NakazawaG,etal.Prospective deep learning-based quantitative assessment of coronary plaque by computed tomography angiography compared with intravascular ultrasound: the REVEALPLAQUE study[J].Eur Heart J Cardiovasc Imaging,2024,25(9):1287-1295.
[32]Demircioglu A,Bos D,Demircio glu E,et al. Deep learning-based scan range optimization can reduce radiation exposure in coronary CT angiography[J].Eur Radiol,2024,34(1):411-421.
[33]Follmer B,BiavatiF,WaldC,etal. Active multitask learning with uncertaintyweighted loss for coronary calcium scoring[J].MedPhys,2022,49(11): 7262-7277.
[34]Pieszko K,Shanbhag A, Kilekar A,et al.Deep learning of coronary calcium scores from PET/CT attenuation maps accurately predicts adverse cardiovascular events[J].JACCCardiovasc Imaging,2023,16(5):675-687.
[35]Jian W,Dong Z,Shen X,et al.Machine learning-based coronary artery calcium score predictedfromclinicalvariablesasaprognosticindicatorinpatients referred forinvasive coronaryangiography[J].Eur Radiol,2O24,34(9): 5633-5643.
[36]Zhang Y,LiuP,Tang LJ,etal.Basing on the machine learning model to analyse the coronary calcification scoreand the coronary flow reserve score to evaluate the degreof coronaryartery stenosis[J].ComputBiol Med,2023,163:107130.
[37]Laidi A,Ammar M,Daho MEH,etal.Deep learning modelsforcoronary atherosclerosis detection in coronary CT angiography[J]. Curr Med Imaging, 2024,20:1-9.
[38]Inoue K,Seeman TE,Horwich T,etal.Heterogeneity inthe associationbetween the presence of coronary artery calcium and cardiovascular events:a machinelearning approach inthe MESA study[J]. Circulation,2023,147(2):132-141.
[39]Winkel DJ,Suryanarayana VR,Ali AM,etal.Deep learning for vessel-specific coronary arterycalcium scoring:validation ona multi-centre dataset[J].Eur Heart JCardiovasc Imaging,2022,23(6):846-854.
[40]van Noort D,GuoL,Leng S,etal.Evaluating machine learning accuracy in detecting significant coronarystenosisusing CCTA-derived fractional flow reserve:meta-analysisandsystematic review[J].Int JCardiol Heart Vasc,
[41]Kumamaru KK,F(xiàn)ujimoto S,Otsuka Y,et al. Diagnostic accuracy of 3D deeplearning-based fullyautomated estimationofpatient-level minimum fractional flowreservefrom coronarycomputed tomographyangiography[J].Eur HeartJ Cardiovasc Imaging,2020,21(4) :437-445.
[42]Sun H,Liu J,F(xiàn)eng Y,etal.Deep learning-based predictionofcoronaryartery stenosis resistance[J].AmJPhysiol Heart Circ Physiol,2022,323(6):H1194- H1205.
[43]Zhou F,TangCX,Schoepf UJ,et al.Machine learning using CT-FFR predicts proximal atheroscleroticplaqueformationassciatedwithLADmyocardial bridging[J].JACC Cardiovasc Imaging,2019,12(8Pt1):1591-1593.
[44]Yang J,Shan D,Wang X,etal.On-sitecomputed tomograph-derivedfractional flow reserve to guide management of patients with stable coronary artery disease: the TARGET randomized trial[J].Circulation,2023,147(18):1369-1381.
[45]PanJ,Huang Q,Zhu J,etal.Predictionof plaqueprogresson using diferent machine learning models of pericoronary adipose tisueradiomics based on coronary computed tomographyangiography[J].EurJRadiol Open,2025, 14:100638.
[46]WestHW,SiddiqueM,Wiliams MC,etal.Deep-learning for epicardial adipose tissue assessment with computed tomography :implications for cardiovascular risk prediction[J].JACC Cardiovasc Imaging,2023,16(6):800-816.
[47]Oikonomou EK,Williams MC,Kotanidis CP,et al.A novel machine learningderived radiotranscriptomic signature of perivascular fat improves cardiac risk predictionusing coronaryCTangiography[J].Eur HeartJ,2019,4O(43):3529- 3543.
[48]Yang S,KweonJ,RohJH,et al.Dep learning segmentationof majorveels in X-ray coronary angiography[J].SciRep,2019,9(1):16897.
[49]Ling H,Chen B,Guan R,et al. Deep learning model for coronary angiography [J].JCardiovasc Transl Res,2023,16(4):896-904.
[50]FedewaR,PuriR,F(xiàn)leischmanE,etal.Artificial intelligenceinintracoronary imaging[J]. Curr Cardiol Rep,2020,22(7):46.
[51]Lo Vercio L,Del Fresno M ,LarrabideI.Lumen-intimaandmedia-adventitia segmentation in IVUS images using supervised classifications of arterial layers and morphological structures[J].ComputMethodsPrograms Biomed,2019, 177:113-121.
[52]Yang J,F(xiàn)araji M,Basu A.Robust segmentation of arterial wallsinintravascular ultrasound images using Dual Path U-Net[J].Ultrasonics,2019,96:24-33.
[53]Galo J,Chaturvedi A,Al-Qaraghuli A,etal.Machine learning in intravascular ultrasound:validating automated lesion assessment for complex coronary interventions[J].CatheterCardiovascInterv,2025,105(6):1320-1328.
[54]BassRD,Garca-GarcaHM,UekiY,etal.Efctofhigh-intensitysatinapy onatherosclerosis (IBIS-4):manual versus automated methods of IVUS analysis [J].Cardiovasc Revasc Med,2023,54:33-38.
[55]Matsumura M,Mintz GS,Dohi T,etal.Accuracy of IVUS-based machine learning segmentation assessment of coronary artery dimensions and balloon sizing[J].JACC Adv,2023,2(7):100564.
[56]Bajaj R,Huang X,KilicY,etal.Advanceddeep learning methodologyfor accurate,real-timesegmentation ofhigh-resolution intravascular ultrasound images[J].IntJCardiol,2021,339:185-191.
[57]JunTJ,Kang SJ,Lee JG,etal.Automateddetection of vulnerableplaque in intravascular ultrasound images[J].Med Biol Eng Comput,2019,57(4): 863-876.
[58]Lee JG,Ko J,Hae H,et al.Intravascular ultrasound-based machine learning for predicting fractional flow reserveinintermediate coronary artery lesions[J]. Atherosclerosis,2020,292:171-177.
[59]Kolluru C,Prabhu D,Gharaibeh Y,etal.Voxel-based plaque clasification in coronary intravascular optical coherence tomographyimagesusingdecision trees [J].Proc SPIE Int Soc Opt Eng,2018,10575:105752Y.
[60]Lee J,Prabhu D,Kollru C,et al.Automated plaquecharacterizationusing deep learning on coronary intravascularoptical coherence tomographic images[J]. Biomed Opt Express,2019,10(12):6497-6515.
[61]Xu M,ChengJ,LiA,etal.Fibroatheroma identificationin IntravascularOptical Coherence Tomography images using deep features[J].Annu Int Conf IEEE Eng Med Biol Soc,2017,2017:1501-1504.
[62]ShalevR,Bezerra HG,RayS,etal.Classificationofcalciuminintravascular OCT images for the purpose of intervention planning[J].Proc SPIE Int Soc Opt Eng,2016,9786:978605.
[63]ZhouP,Zhu T,He C,et al.Automatic clasification of atherosclerotic tissue in intravascular optical coherence tomography images[J].JOpt SocAm A Opt Image Sci Vis,2017,34(7):1152-1159.
[64]Gharaibeh Y,Lee J,ZiminVN,etal.Predictionof stentunder-expanionin calcified coronary arteries using machine learning on intravascular optical coherence tomography images[J].SciRep,2023,13(1):18110.
[65]Lee J,Kim JN,Gharaibeh Y,et al.OCTOPUS—Optical coherence tomography plaque and stent analysis software[J]. Heliyon,2O23,9(2):e13396.
[66]BaesslerB,MannilM,OebelS,etal.Subacuteandchronic leftventricular myocardial scar:accuracy of texture analysis on nonenhanced cineMR images [J].Radiology,2018,286(1):103-112.
[67]Lorch B,Vaillnt G,Baumgartner C,et al.Automated detectionof motion artefacts in MR imaging using decision forests[J].J Med Eng,2017, 2017:4501647.
[68]Kistner T,Munoz C,Psenicny A,etal.Deep-learning based super-resolution for 3D isotropic coronaryMR angiography in less than a minute[J]. Magn Reson Med,2021,86(5) :2837-2852.
[69]Wu X,Deng L,Li W,et al. Deep learning-based acceleration of compressed sensing for noncontrast-enhanced coronary magnetic resonance angiography in patients withsuspected coronaryartery disease[J].JMagnReson Imaging, 2023,58(5):1521-1530.
[70]Choi SH,Lee HG,Park SD,etal.Electrocardiogram-based deeplearning algorithm for the screening of obstructive coronary artery disease[J].BMC Cardiovasc Disord,2023,23(1) :287.
[71]TanJH,Hagiwara Y,PangW,etal.Applicationof stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals [J].Comput Biol Med,2018,94:19-26.
[72]Upton R,Mumith A,Beqiri A,et al.Automated echocardiographic detection of severe coronary artery disease using artificial intelligence[J]. JACC Cardiovasc Imaging,2022,15(5):715-727.
[73]YuanN,KwanAC,Duffy G,etal.Predictionofcoronaryarterycalcium using deep learning of echocardiograms[J].JAm Soc Echocardiogr,2O23,36(5): 474-481. e3.
[74]Rim TH,Lee CJ,Tham YC,et al. Deep-learning-based cardiovascular risk stratificationusing coronary artery calcium scorespredicted fromretinal photographs[J].Lancet Digit Health,2021,3(5):e306-e316.