【DOI]10.16806/j. cnki.issn.1004-3934.2025.07.009
Autonomic Nerve Intervention in Atrial Fibrillation
CHEN Yanzi 1 ,SUN Lei 2 ,GU Xiang2 (1.Medical Collegeof Yangzhou University,Yangzhou 225O09,Jiangsu,China;2.DepartmentofCardiology,Northern Jiangsu People's Hospital Affliated to Yangzhou University,Yangzhou 225Oo1,Jiangsu,China)
【Abstract】Atrialfibrilltion(AF)isoneofthemostcommonarhyhmiasintheelderlypopulation,whichincreases theiskof embolism,heartfailureandothercardiovascularevents.Inrecentyears,moreandmorestudieshaveshowntattheonsetofAFislosely relatedtothealctiooftooicesspeialltbaceofpthticdaraspattcsreforlaig theautonomicnervoussystemasbcomeaimportantstrategyforthereatmentofAF.Tisartcleeviewsteprogressofutooicerve interventioninthe treatmentofAF,discusses it’stherapeutic methods,andevaluates their clinicalapplicationprospects.
【Keywords】 Atrial fibrillation;Autonomic nerve;Intervention
心臟的自主神經(jīng)系統(tǒng)(autonomicnervous system,ANS)主要由交感神經(jīng)和副交感神經(jīng)組成。研究表明,交感神經(jīng)活動增強(qiáng)導(dǎo)致心房肌細(xì)胞早期后除極和延遲后除極,這些異常電活動是異位起搏源的基礎(chǔ),將引發(fā)心房內(nèi)的折返活動并維持心房顫動(atrialfibrillation,AF)發(fā)生。與此相對,副交感神經(jīng)釋放乙酰膽堿抑制心房的電活動,縮短其有效不應(yīng)期(effectiverefractoryperiod,ERP)促進(jìn)心房折返機(jī)制,從而為AF的維持提供有利條件[1]。在 AF患者中,交感神經(jīng)與副交感神經(jīng)的異常活動共同促進(jìn)了AF的發(fā)生及維持,尤其是當(dāng)這種神經(jīng)活動在肺靜脈周圍或心房其他區(qū)域的神經(jīng)節(jié)叢(ganglion plexus,GP)聚集時,可能加重AF患者的病情。
1心臟自主神經(jīng)解剖結(jié)構(gòu)
ANS主要分為外源性和內(nèi)源性,外源性心臟神經(jīng)系統(tǒng)由腦干中的核、脊髓頸段和胸段的神經(jīng)節(jié)以及匯聚到心臟的軸突組成,其包括起源于頸脊髓的交感神經(jīng)成分和來自迷走神經(jīng)背側(cè)和疑核的副交感神經(jīng)成分[2](見圖1)。而內(nèi)源性心臟神經(jīng)系統(tǒng)是一種由心外膜GP、傳入和傳出神經(jīng)軸突以及相互連接的神經(jīng)元組成的心外膜神經(jīng)網(wǎng)絡(luò)[2]。內(nèi)源性心臟神經(jīng)系統(tǒng)的另一個組成部分是Marshall韌帶(ligamentofMarshall,LOM),它是胚胎靜脈竇和左主靜脈的殘留物,由脂肪、纖維組織、血管、肌束、神經(jīng)纖維和GP組成[3]
2AF的自主神經(jīng)調(diào)節(jié)
研究發(fā)現(xiàn)AF形成及維持的機(jī)制包括電觸發(fā)和易感基質(zhì)之間的相互作用,從而促進(jìn)折返機(jī)制,導(dǎo)致AF發(fā)作[4]。ANS導(dǎo)致AF發(fā)生的機(jī)制如圖1所示。既往研究證明在AF發(fā)作前ANS張力發(fā)生變化,當(dāng)副交感神經(jīng)和交感神經(jīng)末梢被局部刺激或同時給予乙酰膽堿和去甲腎上腺素(或異丙腎上腺素)時,早期后除極的誘導(dǎo)導(dǎo)致肺靜脈的自發(fā)放電[5]
圖1心臟自主神經(jīng)的解剖及作用機(jī)制
注:RAAS,腎素-血管緊張素-醛固酮系統(tǒng)。
交感神經(jīng)接受適當(dāng)刺激后,節(jié)后神經(jīng)纖維釋放去甲腎上腺素,從而引發(fā) β -腎上腺素能反應(yīng),促使 Ca2+ 內(nèi)流導(dǎo)致心房肌細(xì)胞早期后除極和延遲后除極。此外,交感神經(jīng)促進(jìn)腎素-血管緊張素-醛固酮系統(tǒng)激活促纖維化通路,從而導(dǎo)致心房結(jié)構(gòu)變化[6。副交感神經(jīng)系統(tǒng)的激活將導(dǎo)致乙酰膽堿從神經(jīng)末梢釋放,從而抑制腺苷酸環(huán)化酶系統(tǒng),激活乙酰膽堿門控鉀電流,使得復(fù)極化時 K+ 外流增加,縮短ERP,從而促進(jìn)異位放電,促進(jìn)折返[7]。此外,迷走神經(jīng)釋放的非膽堿能分子如血管活性腸肽進(jìn)一步縮短心房動作電位時程[8]
雖然交感神經(jīng)和副交感神經(jīng)刺激具有不同的電生理效應(yīng),但它們誘發(fā)AF的能力是協(xié)同的。研究證明當(dāng)交感、副交感神經(jīng)共同作用時發(fā)生AF的概率顯著升高,可能由于激活副交感神經(jīng)縮短了ERP和動作電位持續(xù)時間,同時交感神經(jīng)激活引起 Ca2+ 內(nèi)流增加,從而產(chǎn)生早期后除極和心房觸發(fā)活動,最終誘發(fā)AF[10] 。根據(jù)該作用機(jī)制可通過干預(yù)自主神經(jīng)來治療AF,其干預(yù)手段如圖2所示。
圖2AF的自主神經(jīng)干預(yù)手段
3自主神經(jīng)的干預(yù)手段
3.1Marshall靜脈無水酒精消融
Corradi等[發(fā)現(xiàn)LOM是非肺靜脈來源AF的觸發(fā)因素之一。在部分患者中,LOM作為左心房與肺靜脈交界處的電活性旁路,參與了左心房的大折返回路,特別是二尖瓣峽部區(qū)域的折返[3]。此外,LOM遠(yuǎn)端和近端分別受到交感和副交感神經(jīng)的支配[12]Marshall靜脈,作為左心房后壁和后外側(cè)壁引流至冠狀靜脈竇的殘留結(jié)構(gòu),為消除AF觸發(fā)因素提供了血管內(nèi)治療途徑[13]
Marshall靜脈無水酒精消融可實現(xiàn)二尖瓣峽部的雙向阻滯,是導(dǎo)管消融術(shù)的重要輔助方法。在快速心房起搏模型的動物實驗中,消融LOM后,可延長ERP,抑制AF發(fā)作,并降低交感神經(jīng)活動和血清去甲腎上腺素水平,從而改善AF及術(shù)后房性心動過速的發(fā)作[14]。一項前瞻性研究[15]發(fā)現(xiàn),Marshall靜脈無水酒精消融作為射頻導(dǎo)管消融術(shù)的引導(dǎo)步驟,可顯著減少二尖瓣峽部阻滯所需的射頻次數(shù)。Huang等[進(jìn)一步指出,射瀕導(dǎo)管消融術(shù)前行Marshall靜脈無水酒精消融顯著提高了左肺靜脈的隔離率,降低了左肺靜脈急性再連接率。
3.2 經(jīng)皮去腎神經(jīng)術(shù)
經(jīng)皮去腎神經(jīng)術(shù)(renaldenervation,RDN)使腎臟傳出和傳入交感神經(jīng)失神經(jīng)支配,其將影響全身交感神經(jīng)系統(tǒng)?;贏NS在AF中的作用,RDN通過調(diào)節(jié)ANS,進(jìn)而影響心房電生理和結(jié)構(gòu)重構(gòu),展現(xiàn)出抗心律失常作用。ERADICATE-AF試驗[比較了高血壓合并AF患者分別接受肺靜脈隔離術(shù)與肺靜脈隔離術(shù) + RDN的治療,12個月隨訪顯示聯(lián)合組AF復(fù)發(fā)率顯著下降( 27.9% VS 43.5% )。解剖學(xué)顯示腎神經(jīng)與腎動脈相鄰,射頻導(dǎo)管消融術(shù)被引入作為中斷腎神經(jīng)的潛在方法,但其難以實現(xiàn)不可逆的神經(jīng)損傷。因此,第二代基于導(dǎo)管的RDN方法,如超聲波、冷凍、化學(xué)消融等被探索[18-20]。以上消融方法常用于治療頑固性高血壓,而在AF治療中的研究相對較少。
超聲導(dǎo)管消融利用高頻聲波產(chǎn)生的熱能,對腎動脈周圍的神經(jīng)進(jìn)行去神經(jīng)支配,同時不損傷腎動脈壁[21]。RADIANCE-HTNSOLO 研究[22]顯示該種方法在術(shù)后2個月能有效降低血壓,其降壓效果與射頻導(dǎo)管消融術(shù)效果相似,但其安全性更高?;瘜W(xué)消融通過導(dǎo)管向腎動脈周圍間隙注射酒精,松解神經(jīng),減少對動脈內(nèi)膜、中膜的損害,并提升手術(shù)安全性[23]。多項研究[24-25]使用Peregrine導(dǎo)管對高血壓患者進(jìn)行酒精消融,結(jié)果均顯示該方法安全有效。在豬模型中,射頻消融組、酒精消融組( 0.3mL,0.6mL )的腎組織去甲腎上腺素濃度分別降低了 66% 78% 和 83% ,且酒精消融組的消融面積顯著大于射頻消融組[23]
冷凍消融技術(shù)目前在心律失常治療中已被廣泛應(yīng)用。最近,Ji等[26]在豬模型中通過液氮冷凍消融腎動脈,成功損傷交感神經(jīng),并顯著降低去甲腎上腺素濃度。同時,該研究進(jìn)行了首次人體試驗,結(jié)果顯示所有患者成功完成雙側(cè)RDN冷凍消融,術(shù)后 24h 血壓顯著下降,且未發(fā)現(xiàn)血管損傷或血栓形成。
3.3低水平迷走神經(jīng)刺激
迷走神經(jīng)刺激(vagusnerve stimulation,VNS)通過縮短ERP促進(jìn)折返活動,進(jìn)而引發(fā) AF 。而低于心動過緩閥值的低水平VNS(lowlevelsofVNS,LLVNS)則被認(rèn)為具有潛在的抗心律失常作用[27]。LLVNS能顯著抑制AF的誘發(fā)并縮短其持續(xù)時間。
迷走神經(jīng)的耳分支與耳屏皮膚相連。與頸部VNS相比,耳屏刺激避免了交感神經(jīng)的刺激,從而避免了頸部VNS可能引起的副作用,如咳嗽、惡心、發(fā)音困難和耳鳴[28]。 Yu 等[29]在快速心房起搏誘導(dǎo)的 AF犬模型中,發(fā)現(xiàn)耳屏刺激顯著減弱了快速心房起搏導(dǎo)致的ERP縮短,降低了AF的誘發(fā)率,并抑制了右前心房GP的神經(jīng)活動。Stavrakis等[30]也證實,經(jīng)過6個月的LLVNS治療,實驗組AF負(fù)荷比對照組降低85% ,顯示LLVNS在AF長期治療中的積極效果。
為提高LLVNS的便捷性,Sun等31在鼠模型中開發(fā)了一種基于混合納米發(fā)電機(jī)的閉環(huán)自供電LLVNS系統(tǒng)。該系統(tǒng)通過傳感器從皮膚提取脈搏波并分析波形,實時監(jiān)測AF的發(fā)生。一旦檢測到AF,系統(tǒng)通過抑制迷走神經(jīng)活動來預(yù)防AF的誘發(fā)。實驗結(jié)果表明,混合納米發(fā)電機(jī)系統(tǒng)顯著縮短了AF持續(xù)時間,并緩解了其癥狀。
此外,研究還發(fā)現(xiàn)LLVNS具有抗炎作用,經(jīng)皮VNS后炎性細(xì)胞因子顯著減少[32],并且與假手術(shù)組相比,LLVNS顯著降低了腫瘤壞死因子血清水平[33]。未來的研究應(yīng)聚焦于優(yōu)化刺激參數(shù)(如頻率和強(qiáng)度),以及最大化耳屏刺激的效果,并確定哪些患者更可能從自主神經(jīng)調(diào)節(jié)治療中獲益[34]
3.4心臟交感神經(jīng)去神經(jīng)術(shù)
交感神經(jīng)節(jié)后纖維起源于星狀神經(jīng)節(jié)(stellateganglion,SG)。SG在心房交感神經(jīng)重塑中發(fā)揮關(guān)鍵作用,并與AF的發(fā)生和維持密切相關(guān)。SG是唯一完全由交感神經(jīng)組成的GP,因此對于交感神經(jīng)主導(dǎo)的心律失常,其消融效果較為顯著。在動物模型中,左側(cè)SG外源性心臟神經(jīng)活動的增加通常先于陣發(fā)性房性心動過速或AF的發(fā)生[35]。單側(cè)電刺激SG可加重心房電重構(gòu),促進(jìn)AF的誘導(dǎo),而單側(cè)GP切除術(shù)則可減弱這一作用[36]。在一項安慰劑對照研究[37]中,36例AF患者接受了單側(cè)臨時SG阻滯或安慰劑治療,最終發(fā)現(xiàn)在SG阻滯后,AF持續(xù)時間明顯縮短。
胸段皮下神經(jīng)主要起源于SG,刺激該區(qū)域的交感神經(jīng)成分可能對AF治療產(chǎn)生潛在效應(yīng)[38]。研究[39]表明,低強(qiáng)度( 0. 25mA )的皮下神經(jīng)刺激(subcutaneousnervestimulation,ScNS)通過增加心臟交感神經(jīng)出芽、血漿去甲腎上腺素濃度和房性心動過速持續(xù)時間,從而引發(fā)心律失常,而高強(qiáng)度( 2.5mA 和3.5mA )刺激則有相反效果。一項動物研究[40]顯示,在犬模型中對心俞穴和左側(cè)胸部神經(jīng)進(jìn)行為期2周的ScNS后,犬體內(nèi)出現(xiàn)了明顯的SG重構(gòu),同時AF得到了抑制。在另一項犬持續(xù)性AF模型中,ScNS顯著降低了犬的平均SG活動及心室率,而對照組則表現(xiàn)為SG活動增加,射血分?jǐn)?shù)下降。這表明,胸部ScNS不僅能重塑SG,還能有效減慢心室率,保護(hù)左心室收縮功能[41]。此外,研究[42]還發(fā)現(xiàn),在犬持續(xù)性AF模型中,盲目插入電極進(jìn)行ScNS同樣能改善心室率并減少心房纖維化。
3.5心外膜注射肉毒桿菌毒素
肉毒桿菌毒素(botulinum toxin,BTX)是一種神經(jīng)毒素,能直接作用于ANS并減輕炎癥反應(yīng)來抑制AF[43] 。BTX 通過抑制神經(jīng)遞質(zhì)在突觸間隙的釋放,從而干擾心臟副交感神經(jīng)節(jié)的神經(jīng)肌肉傳遞[45]。 。在動物模型中,研究表明BTX可抑制迷走神經(jīng)引起的ERP縮短,并有效防止ANS重構(gòu)[46]。由于BTX作用時間較短,向心外膜注射BTX能暫時阻斷AF的發(fā)作,而不會引起心臟沖動傳播或細(xì)胞損傷的進(jìn)一步異常[33]
多項研究[47-48]發(fā)現(xiàn),接受冠狀動脈旁路移植術(shù)的患者在術(shù)中注射BTX后,術(shù)后AF發(fā)生率顯著降低。然而,一項前瞻性臨床研究[4納入了130例接受心臟手術(shù)(包括冠狀動脈旁路移植術(shù)和瓣膜手術(shù))的患者,將其隨機(jī)分為接受250UBTX注射的干預(yù)組和接受等體積生理鹽水的對照組,研究結(jié)果顯示,BTX注射對預(yù)防術(shù)后AF發(fā)作并未產(chǎn)生顯著效果。目前,關(guān)于BTX在預(yù)防術(shù)后AF中的有效性仍存在爭議,這可能與術(shù)后AF發(fā)作的復(fù)雜機(jī)制有關(guān)。
3.6 GP消融
早有研究[50]表明,某些AF的觸發(fā)源于肺靜脈相關(guān)的GP,而非肺靜脈本身。GP包含交感神經(jīng)和副交感神經(jīng)成分,并含有多種神經(jīng)肽和神經(jīng)調(diào)質(zhì)[51]。GP不僅調(diào)節(jié)外源性心臟神經(jīng)系統(tǒng)與內(nèi)源性心臟神經(jīng)系統(tǒng)之間的相互作用,還通過局部信號轉(zhuǎn)導(dǎo)調(diào)節(jié)心臟的電和機(jī)械功能[52]。當(dāng)GP受到一定刺激后,將導(dǎo)致ANS亢進(jìn),釋放神經(jīng)遞質(zhì),縮短肺靜脈肌袖細(xì)胞的動作電位持續(xù)時間[53],縮短顫動周期,從而促進(jìn)肺靜脈放電,為AF的啟動和維持創(chuàng)造條件。
通過高頻刺激誘發(fā)迷走神經(jīng)反應(yīng)來確認(rèn)陽性GP位點(diǎn),出現(xiàn)短暫心室停搏、房室傳導(dǎo)阻滯或平均RR間期延長 ?50% ,定義為GP反應(yīng)陽性[54]。GP反應(yīng)陽性與AF的發(fā)生顯著相關(guān)。研究[54]發(fā)現(xiàn),在AF消融患者中,GP反應(yīng)陽性者的房性快速性心律失常復(fù)發(fā)率顯著高于無GP反應(yīng)者,且GP反應(yīng)陽性是肺靜脈隔離術(shù)后AF復(fù)發(fā)的獨(dú)立危險因素。研究[55]表明,增加GP消融與AF患者維持竇性心律有關(guān)。另一項薈萃分析[6發(fā)現(xiàn),與單純的肺靜脈隔離術(shù)相比,聯(lián)合GP消融能顯著降低AF復(fù)發(fā)率。
然而,在實際操作中存在一定挑戰(zhàn)性。通過解剖結(jié)構(gòu)或使用高頻刺激來定位GP有一定難度,且GP消融術(shù)的療效可能僅能維持較短時間。此外,若GP未被完全消融,其可能再生,并在其附近形成新的折返通路,從而導(dǎo)致AF復(fù)發(fā),影響消融效果。同時部分GP 消融后可能存在相關(guān)并發(fā)癥[57]。AFACT試驗[58]研究了GP消融對晚期AF的作用,其將AF患者隨機(jī)分為有GP消融組和無GP消融組。該研究顯示,兩年后AF復(fù)發(fā)不僅未減少,還出現(xiàn)了大量出血、竇房結(jié)功能障礙和需植人起搏器等重大不良事件。今后還需進(jìn)行更多的研究進(jìn)行GP精準(zhǔn)定位以及解決如何減少相關(guān)并發(fā)癥。
4總結(jié)
綜上所述,AF的發(fā)生與維持和ANS密切相關(guān)。目前,多種自主神經(jīng)干預(yù)手段展現(xiàn)了治療潛力,但最佳治療方式及長期療效仍需進(jìn)一步驗證。未來研究應(yīng)結(jié)合精準(zhǔn)神經(jīng)標(biāo)測和個體化策略,以優(yōu)化這些方法在AF治療中的應(yīng)用價值。
參考文獻(xiàn)
[1] QinM,Zeng C,Liu X.The cardiac autonomic nervous system:a target for modulationofatrial fibrillation[J].ClinCardiol,2019,42(6):644-652.
[2] DelMonteA,PannoneL,BisignaniA,etal.Cryoballoon ablation foratrial fibrillation:effects on neuromodulation[J].Front Cardiovasc Med,2022, 9:958316.
[3] HeB,WangX,ZhaoF,etal.TheligamentofMarshall andarrhythmias:areview [J].PacingClinElectrophysiol,2021,44(5):792-799.
[4] RebecchiM,F(xiàn)anisio F,RizziF,etal.The autonomic coumel triangle:anew way todefinethefascinatingrelationshipbetweenatrial fibrillationandtheautonomic nervoussystem[J].Life(Basel),2023,13(5):1139.
[5] LupercioF,LinAY,AldaasOM,etal.Roleofadjunctiveposteriorwallisolation inpatientsundergoingatrial fibrillation ablation:a systematicreview and metaanalysis[J].JIntervCardElectrophysiol,202O,58(1):77-86.
[6] SchottenU,Verheule S,KirchhofP,etal.Pathophysiological mechanismsof atrial fibrillation:atranslational appraisal[J].Physiol Rev,2O11,91(1): 265-325.
[7] Linz D,EllottAD,Hohl M,etal.Role of autonomic nervoussysteminatrial fibrillation[J].IntJCardiol,2019,287:181-188.
[8] BurashnikovA,Antzelevitch C.Reinductionofatrial fibrilltionimmediately aftertermination ofthearrhythmia ismediatedbylatephase3early afterdepolarization-induced triggeredactivity[J].Ciculation,2o03,107(18): 2355-2360.
[9] Tan AY,Zhou S,Ogawa M ,et al.Neural mechanisms of paroxysmal atrial fibrillationandparoxysmal atrial tachycardiainambulatorycanines[J]. Circulation,2008,118(9):916-925.
[10]AmarD,ZhangH,Miodownik S,etal.Competingautonomic mechanisms precede the onset of postoperativeatrial fibrilltion[J].JAm Coll Cardiol, 2003,42(7):1262-1268.
[11]Corradi D,Callegari S,Gelsomino S,et al.Morphology and pathophysiology of targetanatomical sites forablatio procedures inpatients withatrialfibrillatin: part II:pulmonaryveins,caval veins,ganglionatedplexi,and ligamentof Marshall[J].IntJCardiol,2013,168(3):1769-1778.
[12]Rodriguez-Manero M,Schurmann P,Valderrábano M. Ligament and vein of Marshall;atherapeuticopportunityinatrial fibrillation[J].HeartRhythm, 2016,13(2) :593-601.
[13]Valderábano M,PetersonLE,SwarupV,etal.Efect of catheter ablation with veinof Marshallethanol infusionvscatheterablationalone onpersistent atrial fibrilltion:theVENUSrandomizedclinical trial[J].JAMA,202O,324(16): 1620-1628.
[14]YuX,HeW,QinZ,etal.Selective ablationof the ligamentof Marshallattenuates atrial electrical remodeling ina short-termrapid atrial pacing canine model[J]. J Cardiovasc Electrophysiol,2018,29(9):1299-137.
[15]Gilis K,O'NeillL, Wielandts JY,etal. Veinof Marshall ethanol infusionas first step for mitral isthmus linearablation[J].JACCClinElectrophysiol,02, 8(3) :367-376.
[16]HuangL,Gao M ,LaiY,etal.Theadjunctiveeffectforleftpulmonaryvein isolationofveinofMarshall ethanol infusioninpersistentatrialfibrillation[J]. Europace,2023,25(2) :441-449.
[17]Steinberg JS,ShabanovV,PonomarevD,etal.Efctofrenal denervationand catheterablaealau patients withparoxysmal atrial fibrilltionandhypertension:the ERADICATEAFrandomized clinical trial[J].JAMA,2020,323(3):248-255.
[18]Kario K,YokoiY,Okamura K,etal.Catheter-based ultrasoundrenal denervation in patients with resistant hypertension:the randomized,controlled REQUIRE trial [J].Hypertens Res,2022,45(2):221-231.
[19]Anwaruddin S,Bhatt DL.Fireorice:cryoablationasa viable alternative to radiofrequencyablationforrenal arterydenervation?[J].JACC Basic Transl Sci, 2022,7(2):113-115.
[20]MahfoudF,Weber M,Schmieder RE,etal. Catheter-based alcohol-mediated renaldenervationforthe treatment of uncontrolledhypertension:designof two sham-controled,randomized,blinded trials intheabsence(TARGETBPOFFMED)and presence (TARGET BP I)of antihypertensive medications[J].Am Heart J,2021,239:99.
[21]Rao A,Krishnan N. Update onrenal sympathetic denervation for the treatment of hypertension[J]. Curr Cardiol Rep,2022,24(10):1261-1271.
[22]Azizi M ,SchmiederRE,MahfoudF,etal.Endovascularultrasound renal denervation to treat hypertension(RADIANCE-HTNSOLO):a multicentre, international,ingle-blind,adomised,sm-controlledtrialJ].t, 391(10137) :2335-2345.
[23]BertogS,F(xiàn)ischel TA,VegaF,etal.Randomised,blindedandcontrolled comparative studyof chemical and radiofrequency-basedrenal denervation ina porcine model[J].EuroIntervention,2017,12(15):e1898-e1906.
[24]MahfoudF,RenkinJ,SievertH,etal.Alcohol-mediatedrenaldenervationsing thePeregrineSystem infusioncatheter for treatment of hypertension[J].JACC Cardiovasc Interv,2020,13(4):471-484.
[25]Janas A,Kr6l M ,Hochut M ,etal.Evaluationoftranscatheteralcohol-mediated perivascular renal denervationtotreat resistant hypertension[J].JClin Med, ZUZU,y(O) : 1001.
[26]JiM,Chen H,ShenL,etal.Validationof anovel renal denervationsystem with cryoablation:a preclinical study and case series[J]. JACC Basic Transl Sci, 2022,7(2):101-112.
[27]Stavrakis S,KulkarniK,Singh JP,etal.Autonomic modulationofcardiac arrhythmias:methodstoassess treatment andoutcomes[J].JACC Clin Electrophysiol,2020,6(5) :467-43.
[28]VerlindenTJ,RijkersK,HooglandG,etal.Morphologyof thehuman cervical vagus nerve;implications for vagus nerve stimulation treatment[J].Acta Neurol Scand,2016,133(3):173-182.
[29]YuL,Scherlag BJ,Li S,etal.Low-level transcutaneous electrical stimulationof the auricularbranch of the vagusnerve:a noninvasive approach to treat the initial phaseof atrial fibrilltion[J].HeartRhythm,2013,10(3):428-435.
[30]Stavrakis S,StonerJA,HumphreyMB,etal.TREATAF(Transcutaneous Electrical Vagus Nerve Stimulation to SuppressAtrial Fibrillation):arandomized clinical trial[J].JACC Clin Electrophysiol,2020,6(3):282-291.
[31]SunY,ChaoS,OuyangH,etal.Hybridnanogeneratorbasedcloselselfpowered low-level vagus nerve stimulationsystem foratrial fibrilation treatment [J].Sci Bull (Beijing),2022,67(12):1284-1294.
[32]Thoren E,Wernroth ML,Christerssn C,et al.Compared with matched controls, patientswithostoperativeatrialfibrilltion(POAF)haveincreasedlng-tem AFafterCABG,and POAFis furtherassociated withincreased ischemic stroke, heart failure and mortality evenafter adjustment for AF[J].Clin ResCardiol, 2020,109(10):1232-1242.
[33]Elamin ABA,F(xiàn)orsat K,Senok SS,etal.Vagus nerve stimulation and its cardioprotective abilities:a systematicreview[J].JClin Med,2023,12 (5) :1717.
[34]Sohinki D,Stavrakis S.New approaches for treating atrial fibrillation:focus on autonomicmodulation[J].Trends Cardiovasc Med,2020,30(7):433-439.
[35]Choi EK,ShenMJ,HanS,etal.Intrinsiccardiac nerveactivityand paroxysmal atrial tachyarhythmiainambulatorydogs[J].Circulation,201o,121(24): 2615-2623.
[36]ZhouQ,HuJ,GuoY,etal.Effectof the stellategangliononatrial fibrillation andatrialelectrophysiological propertiesanditsleft-rightasymmetryinacanine model[J].Exp Clin Cardiol,2013,18(1):38-42.
[37]LeftheriotisD,F(xiàn)levariP,KossyvakisC,etal.Acuteeffectsofunilateral temporary stellate ganglion block onhumanatrial electrophysiological properties andatrial fibrillationinducibility[J].HeartRhythm,2016,13(11):2111-2117.
[38]Tsai WC,Hung TC,Kusayama T,etal.Autonomic modulationof atrial fibrillation[J].JACC Basic Transl Sci,2023,8(1O):1398-1410.
[39]Wan J,Chen M,Yuan Y,et al.Antiarrhythmic and proarrhythmiceffectsof subcutaneous nerve stimulation inambulatory dogs[J].Heart Rhythm,2019,16 (8):1251-1260.
[40]Yuan Υ ,JiangZ,Zhao Y,etal.Long-termintermitenthigh-amplitude subcutaneous nerve stimulation reduces sympathetictone inambulatorydogs [J].HeartRhythm,2018,15(3):451-459.
[41]Yuan Y,Liu X,Wan J,et al.Subcutaneous nerve stimulation for ratecontrol in ambulatory dogswithpersistentatrialfibrilltion[J].HeartRhythm,2019,16 (9) :1383-1391.
[42]Kusayama T,WanJ,YuanY,et al.Effects of subcutaneous nerve stimulation with blindly inserted electrodeson ventricularratecontrol ina canine modelof persistentatria fibrillation[J].HeartRhyhm,2021,18(2):261-270.
[43]No authors listed.Correction to:Late-Breaking Science Abstracts and Featured Science Abstracts From the American Heart Association’s Scientific Sessions 2022and Late-Breaking Abstracts in Resuscitation Science From the Resuscitation Science Symposium2022[J].Circulation,2023,147(9):e649.
[44]Nizamieva A,F(xiàn)rolova S,Slotvitsky M,et al. Cellular electrophysiological effects of botulinum toxin Aonneonatal rat cardiomyocytesand oncardiomyocytes derived from human-induced pluripotent stem cells[J].Naunyn Schmiedebergs Arch Pharmacol,2023,396(3):513-524.
[45]SaljicA,Hansen MEH,DobrevD.Botulinumtoxinforprevention ofpostoperativeatrial fibrillation[J].Naunyn Schmiedebergs Arch Pharmacol,2023, 396(3) :385-388.
[46]NazeriA,Ganapathy AV,Massumi A,et al.Effect of botulinum toxinon inducibilityand maintenanceofatrial fibrillationinovinemyocardial tissue[J]. Pacing Clin Electrophysiol,2017,40(6):693-702.
[47]Romanov A,PokushalovE,PonomarevD,et al.Long-term suppression of atrial fibrillationbybotulinumtoxininjectionintoepicardial fatpadsinpatients undergoingcardiac surgery:three-yearfollow-up ofa randomizedstudy[J]. HeartRhythm,2019,16(2):172-177.
[48]Piccini JP,Ahlsson A,Dorian P,etal.Effcacyand safetyof botulinum toxin typeAfortheprevention ofpostoperative atrial fibrillation[J].JACC Clin Electrophysiol,2024,10(5):930-940.
[49]Waldron NH,Cooter M ,Haney JC,etal.Temporary autonomic modulation with botulinumtoxintypeAtoreduceatrial fibrillationaftercardiac surgery[J]. HeartRhythm,2019,16(2):178-184.
[50]StavrakisS,NakagawaH,Po SS,etal.Therole of the autonomic gangliainatrial fibrillation[J].JACCClinElectrophysiol,2015,1(1-2):1-13.
[51]HooverDB,IsaacsER,JacquesF,etal.Localizationofmultiple neurotransmittersinsurgicallyderived specimensof humanatrial ganglia[J]. Neuroscience,2009,164(3):1170-1179.
[52]Beaumont E,SalavatianS,SoutherlandEM,etal.Network interactionswithin the canineintrinsiccardiacnervoussystem:implicationsforreflexcontrol ofregional cardiacfunction[J].JPhysiol,2013,591(18):4515-4533.
[53]PattersonE,PoSS,ScherlagBJ,etal.Triggered firinginpulmonaryveins initiatedbyinvitroautonomicnervestimulation[J].HeartRhythm,2005,2 (6):624-631.
[54]KurotobiT,ShimadaY,KinoN,etal.Features of intrinsic ganglionatedplexi in bothatriaafterextensivepulmonaryisolationand theirclinical significanceafter catheterablationinpatientswithatrialfibrillation[J].HeartRhythm,2015,12 (3):470-476.
[55]KampaktsisPN,Oikonomou EK,Y Choi D,et al.Efficacy of ganglionated plexi ablationinaddition topulmonaryveinisolation forparoxysmal versuspersistent atrialfibrillation:ameta-analysisofrandomizedcontrolledclinical trials[J]. JIntervCardElectrophysiol,2017,50(3):253-260.
[56]RackleyJ,Nudy M ,Gonzalez MD,etal.Pulmonaryveinisolationwithadjunctive left atrial ganglionicplexusablation for treatment of atrial fibrillation:ametaanalysisofrandomizedcontrolledtrials[J].JIntervCardElectrophysiol,2023, 66(2) :333-342.
[57]Sandler B,Kim MY,Sikkel MB,et al.Targetingthe ectopy-triggering ganglionated plexuseswithout pulmonaryveinisolationpreventsatrial fibrillation [J].JCardiovasc Electrophysiol,2021,32(2):235-244.
[58]BergerWR,NeefsJ,vandenBergNWE,etal.Additional ganglionplexus ablationduring thoracoscopic surgical ablation ofadvancedatrial fibrillation: intermediatefollow-upoftheAFACTstudy[J].JACCClin Electrophysiol, 2019,5(3):343-353.
收稿日期:2024-10-09