文章編號(hào):2096-2983(2025)03-0001-10
關(guān)鍵詞:氫能;增材制造;奧氏體不銹鋼;氫脆中圖分類號(hào):TG166.2 文獻(xiàn)標(biāo)志碼:A
Abstract: Hydrogen energy, as a new energy source, is receiving widespread attention from the international community. However, austenitic stainless steels used for hydrogen energy production, transportation, and storage inevitably suffer from hydrogen embrittlement. Hydrogen embrittlement is hardly avoided in the austenitic stainless steels prepared by traditional manufacturing processes, while additive manufacturing technology demonstrates significant advantages in manufacturing austenitic stainless steel anti-hydrogen embrittlement structural components, providing new ideas for solving the problem of austenitic stainless steel hydrogen embritlement. The research progress on the anti-hydrogen embrittlement mechanism of additively-manufactured austenitic stainless steels was overviewed, and discussions were carried out according to the following aspects: Hydrogen atom capture and hydrogen embritlement mechanisms of traditional austenitic stainless steel; Microstructure characteristics of austenitic stainless steel produced by additive manufacturing and their influence on hydrogen atom capture; The hydrogen embritlement resistance and mechanism of additive manufacturing austenitic stainless steel. This paper summarized the applications and prospects of austenitic stainless steels manufactured by additive manufacturing in hydrogen environments.
Keywords: hydrogen energy: additive manufacturing; authenticate stainless steel; hydrogen embrittlement
隨著氫能在交通、儲(chǔ)能等領(lǐng)域的廣泛應(yīng)用,氫能為全球能源轉(zhuǎn)型及環(huán)境保護(hù)帶來了巨大機(jī)遇,而且還有助于減少對(duì)傳統(tǒng)化石能源的依賴,降低碳排放,這對(duì)于實(shí)現(xiàn)碳中和目標(biāo)具有至關(guān)重要的意義。然而,在氫能大規(guī)模生產(chǎn)、運(yùn)輸及儲(chǔ)存過程中,傳統(tǒng)金屬材料會(huì)不可避免地出現(xiàn)氫脆問題。氫是元素周期表中原子半徑最小的元素,極易吸附在合金表面,并由表面擴(kuò)散至合金內(nèi)部,從而使合金的強(qiáng)度、延展性和斷裂韌性顯著降低[1-2],甚至引發(fā)突發(fā)性氫脆[-4]。氫脆自 1875 年被首次報(bào)道以來,已被系統(tǒng)地研究逾150年,但仍是材料領(lǐng)域尚未完全攻克的核心挑戰(zhàn)[5-6]
增材制造工藝是一種以逐層堆積材料的方式制備構(gòu)件的先進(jìn)技術(shù),該技術(shù)正在向醫(yī)療保健、航空航天等領(lǐng)域迅速拓展[7-12]。不同于傳統(tǒng)合金的氫脆行為,增材制造金屬材料展現(xiàn)出獨(dú)特的抗氫脆特性,但目前缺乏系統(tǒng)性綜述[3-19]。本工作以 304/316L等典型牌號(hào)的奧氏體不銹鋼為例,對(duì)比傳統(tǒng)工藝(如鑄造)制備的奧氏體不銹鋼(如商用奧氏體不銹鋼)與增材制造工藝(如選擇性激光熔化、直接能量沉積、激光粉末床熔合)制備的奧氏體不銹鋼的微觀組織結(jié)構(gòu)和氫脆性能差異,從微觀組織結(jié)構(gòu)演變、氫原子擴(kuò)散路徑等角度詳細(xì)分析奧氏體不銹鋼抗氫脆機(jī)制,并指出高強(qiáng)度、高抗氫脆奧氏體不銹鋼的發(fā)展方向。本文的分析結(jié)果不僅可為增材制造工藝在抗氫脆結(jié)構(gòu)材料領(lǐng)域的應(yīng)用拓展提供參考,更能為奧氏體不銹鋼氫脆行為的深入研究提供理論指導(dǎo)。
1 奧氏體不銹鋼微觀組織結(jié)構(gòu)對(duì)氫原子捕獲及氫脆機(jī)制的影響
1.1傳統(tǒng)奧氏體不銹鋼氫原子捕獲及其氫脆機(jī)制氫原子在奧氏體不銹鋼中的捕獲與擴(kuò)散機(jī)制是一個(gè)復(fù)雜過程。在奧氏體不銹鋼的微觀組織中,空位、位錯(cuò)、晶界和析出相等都可以作為氫原子的吸附位點(diǎn)。表1為奧氏體不銹鋼中常見的氫原子吸附位點(diǎn)及其結(jié)合能[20-25]。結(jié)合能差異導(dǎo)致這些吸附位點(diǎn)對(duì)氫原子的捕獲能力與擴(kuò)散行為產(chǎn)生不同程度的影響??瘴蛔鳛槌R姷木w陷阱,空位氫原子吸附位點(diǎn)結(jié)合能為 30~60kJ/mol, ,為氫原子提供了易于吸附的位點(diǎn),使氫原子容易被捕獲并在空位周圍擴(kuò)散,對(duì)應(yīng)的氫脆機(jī)制為吸附誘導(dǎo)位錯(cuò)發(fā)射(adsorption induced dislocation emission,AIDE);析出相氫原子吸附位點(diǎn)結(jié)合能為 30~50kJ/mol, 不同的析出相具有不同的化學(xué)組成和晶體結(jié)構(gòu),會(huì)影響氫原子的捕獲與擴(kuò)散,對(duì)應(yīng)的氫脆機(jī)制為氫原子增強(qiáng)脫附(hydrogen enhanced desorption,HEDE);晶界是氫原子吸附的主要位點(diǎn)和擴(kuò)散的主要路徑,晶界處存在較高的氫原子吸附質(zhì)量濃度和應(yīng)力集中區(qū)域,對(duì)應(yīng)的氫脆機(jī)制為氫原子增強(qiáng)局部塑性(hydrogenenhancedlocalplasticity,HELP)和HEDE;位錯(cuò)作為氫原子吸附位點(diǎn),能夠捕獲氫原子并沿著位錯(cuò)線進(jìn)行擴(kuò)散,對(duì)應(yīng)的氫脆機(jī)制為氫原子增強(qiáng)應(yīng)變誘導(dǎo)空位(hydrogen enhanced strain inducedvacancy,HESIV)。傳統(tǒng)奧氏體不銹鋼中析出相、位錯(cuò)捕獲氫原子數(shù)量較少,通常被忽略不計(jì)。
表1奧氏體不銹鋼中常見的氫原子吸附位點(diǎn)及其結(jié)合能[20-25]
氫原子在奧氏體不銹鋼中的擴(kuò)散主要是通過晶格間隙進(jìn)行的。然而,晶格中的各種缺陷、雜質(zhì)以及合金元素都會(huì)對(duì)氫原子的擴(kuò)散產(chǎn)生影響。氫原子的引人導(dǎo)致堆垛層錯(cuò)能(stackingfaultenergy,SFE)降低,而 SFE小于 16mJ/m2 時(shí),容易誘發(fā)馬氏體相變,導(dǎo)致氫原子在奧氏體不銹鋼內(nèi)部的擴(kuò)散加劇,進(jìn)而產(chǎn)生應(yīng)力集中,產(chǎn)生微裂紋。當(dāng)氫原子累積到一定質(zhì)量濃度時(shí),微裂紋擴(kuò)展,導(dǎo)致奧氏體不銹鋼發(fā)生氫脆斷裂。圖1為氫原子與微觀結(jié)構(gòu)缺陷相互作用以及常見的氫脆模型示意圖。氫脆斷裂主要表現(xiàn)出如圖1中的幾種機(jī)制:HELP、HEDE、AIDE、HESIV,這4種機(jī)制通過協(xié)同作用來控制奧氏體不銹鋼的氫脆行為。HELP機(jī)制指出,氫原子累積在裂紋尖端,降低了對(duì)位錯(cuò)運(yùn)動(dòng)的阻力,促進(jìn)了位錯(cuò)的增殖,并導(dǎo)致局部位錯(cuò)堆積和塑性變形。這種局部塑性變形滿足了斷裂的前提條件,使斷裂能夠在較低的宏觀塑性變形時(shí)發(fā)生。HEDE機(jī)制指出,氫原子的存在會(huì)減弱原子間的鍵合。當(dāng)氫原子在晶界、裂紋尖端等高應(yīng)力區(qū)域累積時(shí),會(huì)降低原子鍵的內(nèi)聚強(qiáng)度,引發(fā)沿晶或穿晶斷裂。AIDE機(jī)制指出,氫原子吸附降低奧氏體不銹鋼內(nèi)聚強(qiáng)度并促進(jìn)裂紋尖端位錯(cuò)運(yùn)動(dòng),最終通過位錯(cuò)滑移和微空隙形成,導(dǎo)致裂紋擴(kuò)展。氫原子促進(jìn)了應(yīng)變誘導(dǎo)空位的形成,形成穩(wěn)定的空位,加速了斷裂過程,導(dǎo)致奧氏體不銹鋼過早失效
1.2 增材制造奧氏體不銹鋼微觀組織結(jié)構(gòu)特征及其對(duì)氫原子捕獲的影響
圖2為激光粉末床熔合316L奧氏體不銹鋼不同尺度的微觀組織,呈現(xiàn)多尺度性、多級(jí)性及化學(xué)不均勻性特征。按尺寸劃分,微觀組織中存在微米級(jí)熔池邊界、晶界(見圖 2a~2c ,以及納米級(jí)胞狀組織、位錯(cuò)胞壁和析出相偏析(見圖2d)。除晶界外,其他組織均為快速加熱/凝固過程中引入的非平衡組織。其對(duì)氫原子吸附的影響如下:
圖1氫原子與微觀結(jié)構(gòu)缺陷相互作用以及常見的氫脆模型示意圖
Fig.1Schematic diagram of the interaction between hydrogen atoms and microstructural defects and common hydroger embritlement models [11]
圖2激光粉末床熔合 316L奧氏體不銹鋼不同尺度的微觀組織[11-12]
Fig.2Microstructues of36austeniticstalessteeatdfferentsalesbylaserpowderbedusi
增材制造奧氏體不銹鋼的熔池處存在微米級(jí)至亞微米級(jí)復(fù)雜的微觀組織結(jié)構(gòu)。通過激光或電子束等熱源快速加熱及冷卻,在熔池邊界形成獨(dú)特的熱影響區(qū)。急劇的溫度變化會(huì)強(qiáng)烈擾動(dòng)晶體生長和凝固過程,形成復(fù)雜晶體結(jié)構(gòu)。An等2研究發(fā)現(xiàn),熔池邊界凝固胞/枝晶沿 lt;100gt; 晶向方向外延生長。熔池邊界為氫原子提供更多吸附位點(diǎn),使氫原子更易在此處被捕獲。由于熔池內(nèi)溫度梯度場更為復(fù)雜,位錯(cuò)胞從無序結(jié)構(gòu)演變?yōu)橛行蚪Y(jié)構(gòu),吸附氫原子后將其固定于晶格畸變區(qū)、晶界與亞晶界等特定位點(diǎn),從而降低奧氏體不銹鋼的氫脆風(fēng)險(xiǎn)。
增材制造奧氏體不銹鋼中胞狀組織為主導(dǎo)微觀組織。胞狀組織能極大地提高奧氏體不銹鋼的力學(xué)性能,包括屈服強(qiáng)度、抗拉強(qiáng)度及異質(zhì)變形應(yīng)力。胞狀組織主要由增材制造過程中較高的冷卻速率所致,可視為無二次枝晶臂的枝晶,其三維形態(tài)呈圓柱狀[27]。胞狀組織的生長方向由最快生長晶體學(xué)取向和局部溫度梯度場共同決定。對(duì)于面心立方或體心立方結(jié)構(gòu),其最快的生長方向?yàn)樽罱咏鼫囟忍荻葓龅?lt;100gt; 晶向方向[27]。胞狀組織常出現(xiàn)化學(xué)不均勻性,導(dǎo)致胞壁處出現(xiàn)元素偏聚,偏聚元素會(huì)與擴(kuò)散氫原子結(jié)合生成氫化物,從而提高胞狀組織的氫原子捕獲能力。在增材制造奧氏體不銹鋼過程中,快速凝固會(huì)引發(fā)顯著的位錯(cuò)增殖,其位錯(cuò)密度可達(dá)傳統(tǒng)奧氏體不銹鋼的 10~100 倍。位錯(cuò)周圍的晶格畸變和應(yīng)力集中為氫原子的吸附和擴(kuò)散提供了有利條件。氫原子易被位錯(cuò)等晶體缺陷捕獲并形成氫化物,氫化物與位錯(cuò)的交互作用會(huì)改變位錯(cuò)運(yùn)動(dòng)的阻力,進(jìn)而影響位錯(cuò)的運(yùn)動(dòng)行為及增殖過程。結(jié)合已有研究[27-30],目前認(rèn)可度較高的解釋是:這種胞狀組織由逐層熔融凝固過程中產(chǎn)生的較高熱應(yīng)力所致。高溫下,當(dāng)熱應(yīng)力超過奧氏體不銹鋼屈服強(qiáng)度時(shí),會(huì)誘發(fā)塑性變形并導(dǎo)致位錯(cuò)增殖。位錯(cuò)運(yùn)動(dòng)過程中,偏聚元素對(duì)位錯(cuò)的釘扎作用使位錯(cuò)在胞壁處富集,從而提供了大量的氫原子吸附位點(diǎn),進(jìn)而提高了奧氏體不銹鋼的抗氫脆性能[31-36]。
析出相通常具有特定的晶體結(jié)構(gòu)和化學(xué)組成,可以作為氫原子的吸附位點(diǎn)或擴(kuò)散障礙。增材制造奧氏體不銹鋼中的析出相主要包括碳化物和氮化物,其中晶界處偏聚的碳化物以 M23C6為主[37-42]。M23C6 碳化物穩(wěn)定性高,能有效阻礙氫原子擴(kuò)散,對(duì)捕獲氫原子和降低氫脆風(fēng)險(xiǎn)較為有利。析出相的分布和形態(tài)也會(huì)影響氫原子在奧氏體不銹鋼中的分布和聚集,進(jìn)而影響氫脆斷裂過程。
上述微觀組織結(jié)構(gòu)的差異導(dǎo)致氫原子擴(kuò)散路徑和擴(kuò)散速率存在差異。氫原子擴(kuò)散系數(shù)的計(jì)算公式通常基于阿倫尼烏斯方程,其形式如下[43]:
式中: D 為氫原子擴(kuò)散系數(shù); D0 為前置因子; Q 為擴(kuò)散活化能; R 為氣體常數(shù); T 為熱力學(xué)溫度。
相比商用奧氏體不銹鋼,選擇性激光熔化奧氏體不銹鋼具有較小的擴(kuò)散速率,同時(shí)具有較高的氫原子質(zhì)量濃度。表2為氫原子在不同工藝制備的奧氏體不銹鋼中的擴(kuò)散速率和質(zhì)量濃度。氫原子在選擇性激光熔化304L和316L奧氏體不銹鋼中的擴(kuò)散速率分別為 4.2×10-16,4.0×10-16m2/s, 氫原子的擴(kuò)散率明顯低于傳統(tǒng)304L和316L奧氏體不銹鋼的。選擇性激光熔化奧氏體不銹鋼中氫原子沿 lt;100gt; 晶向擴(kuò)散相對(duì)困難,從晶體學(xué)角度分析主要原因?yàn)椋?lt;100gt; 晶向原子呈緊密堆積排列,其晶格結(jié)構(gòu)產(chǎn)生的本征點(diǎn)陣阻力顯著高于其他晶向的[448]。氫原子沿 lt;100gt; 晶向擴(kuò)散時(shí),遇到的晶格阻礙相對(duì)較多,導(dǎo)致氫原子擴(kuò)散受阻,從而提高了奧氏體不銹鋼的抗氫脆性能[49-59]。但在傳統(tǒng)奧氏體不銹鋼中,氫原子的擴(kuò)散路徑以沿晶界擴(kuò)散及晶格間隙擴(kuò)散為主。由于氫原子在晶界和晶格間隙擴(kuò)散速率較大,易大量富集于奧氏體不銹鋼內(nèi)部缺陷處,進(jìn)而導(dǎo)致奧氏體不銹鋼發(fā)生氫脆斷裂
表2氫原子在奧氏體不銹鋼中的擴(kuò)散速率和質(zhì)量濃度[37-38]
2 奧氏體不銹鋼的抗氫脆性能及其機(jī)制
氫原子對(duì)奧氏體不銹鋼的影響主要表現(xiàn)在延展性損失上。因此,用伸長損失率來表征奧氏體不銹鋼的氫脆敏感性。表3為充氫后增材制造和傳統(tǒng)奧氏體不銹鋼的力學(xué)性能。增材制造奧氏體不銹鋼氫脆敏感性明顯低于傳統(tǒng)奧氏體不銹鋼的,這一顯著差異主要源于增材制造獨(dú)特的工藝過程。增材制造奧氏體不銹鋼通過逐層堆積的方式成型,使內(nèi)部微觀組織結(jié)構(gòu)呈現(xiàn)出與傳統(tǒng)奧氏體不銹鋼截然不同的特征。傳統(tǒng)奧氏體不銹鋼經(jīng)歷的加工過程較為復(fù)雜,會(huì)引入更多的晶格缺陷、殘余應(yīng)力等,這些均會(huì)成為氫原子聚集和引發(fā)氫脆的潛在位點(diǎn)。在增材制造過程中,快速凝固和逐層堆積工藝有助于形成更均勻、致密的微觀組織。由于晶格缺陷較少,氫原子在奧氏體不銹鋼中的擴(kuò)散和聚集路徑受到阻礙,從而降低了氫脆發(fā)生的幾率,進(jìn)一步降低了氫脆敏感性。
表3增材制造和傳統(tǒng)奧氏體不銹鋼的力學(xué)性能
Tab.3Mechanical properties of additive manufacturing and traditional austenitic stainlessteels
圖3為增材制造和傳統(tǒng)奧氏體不銹鋼氫脆機(jī)制示意圖。從微觀組織角度來看,增材制造奧氏體不銹鋼中氫原子在奧氏體不銹鋼中的擴(kuò)散路徑和分布情況與傳統(tǒng)奧氏體不銹鋼中的不同[60-69]。逐層堆積制造方式導(dǎo)致奧氏體不銹鋼內(nèi)部存在明顯的胞狀組織、熔池邊界、析出相、位錯(cuò)。在捕獲氫原子方面,這些缺陷成為氫原子的吸附位點(diǎn),防止氫原子擴(kuò)散和聚集,降低氫原子向奧氏體不銹鋼中心的擴(kuò)散速率,使氫原子的質(zhì)量濃度平均化,從而降低奧氏體不銹鋼氫脆的發(fā)生幾率[47]。充氫后,均勻分布的氫原子會(huì)降低局域應(yīng)力集中,抑制馬氏體相變,從而提高了奧氏體不銹鋼的塑性。充氫后,會(huì)降低奧氏體不銹鋼的層錯(cuò)能,激發(fā)納米孿晶的形成,這也有助于提高奧氏體不銹鋼的塑性[62.64]。外應(yīng)力的大小、方向和加載速率等因素都會(huì)對(duì)增材制造奧氏體不銹鋼的氫脆行為產(chǎn)生影響,較大的外應(yīng)力可能會(huì)導(dǎo)致更多的位錯(cuò)運(yùn)動(dòng)和晶界滑移,從而增加氫原子與位錯(cuò)和晶界的相互作用,降低氫脆發(fā)生的幾率[63,6]。傳統(tǒng)奧氏體不銹鋼中析出相及位錯(cuò)數(shù)量極少,與晶界、相界等主要?dú)湓游轿稽c(diǎn)相比,析出相和位錯(cuò)的氫原子吸附量可忽略不計(jì)。由于擴(kuò)散速率和溶解度的差異,氫原子主要富集于晶界、相界處,當(dāng)富集的氫原子超過氫原子在特定界面處的濃度臨界值時(shí),會(huì)誘發(fā)氫致馬氏體相變,進(jìn)而觸發(fā)HEDE機(jī)制。誘導(dǎo)界面裂紋的萌生并沿相界或晶界擴(kuò)展,造成奧氏體不銹鋼過早斷裂[70-73]。此外,殘余奧氏體中氫原子增強(qiáng)的滑移局部化會(huì)沿 γ/α′ 界面形成微孔,進(jìn)一步加劇界面脫粘過程。同時(shí),過飽和氫原子也可能在 α′ 馬氏體的亞結(jié)構(gòu)(如板條/基體邊界)內(nèi)富集。同時(shí),過飽和氫原子可能在 a′ 馬氏體亞結(jié)構(gòu)(如板條/基體邊界)處富集,引發(fā)脫粘機(jī)制并誘導(dǎo)內(nèi)部產(chǎn)生裂紋[74-75]。因此,應(yīng)變誘導(dǎo) a′ 馬氏體相變產(chǎn)生的過飽和氫原子在傳統(tǒng)奧氏體不銹鋼氫脆失效機(jī)制中起關(guān)鍵作用。由此可見,氫原子對(duì)裂紋擴(kuò)展的加速作用取決于其向裂紋尖端臨界區(qū)域的供給速率及局部質(zhì)量濃度。增材制造奧氏體不銹鋼中胞狀組織的氫原子捕獲以及變形協(xié)調(diào)能力都顯著強(qiáng)于傳統(tǒng)奧氏體不銹鋼的。
增材制造奧氏體不銹鋼的抗氫脆機(jī)制如下:(1)氫原子在奧氏體不銹鋼中的擴(kuò)散受阻,避免了因氫原子在局部區(qū)域聚集導(dǎo)致的脆化;(2)氫原子與奧氏體不銹鋼中的析出相或缺陷相互作用,形成穩(wěn)定的氫化物,改變了奧氏體不銹鋼的晶體結(jié)構(gòu),從而降低氫脆敏感性;(3)奧氏體不銹鋼因具有微觀組織結(jié)構(gòu)的獨(dú)特優(yōu)勢,可有效抑制氫原子的擴(kuò)散與富集,進(jìn)而提升其抗氫脆性能[41-42]
增材制造奧氏體不銹鋼強(qiáng)度提高主要原因是:(1)增材制造細(xì)化了奧氏體不銹鋼晶粒,有效阻礙了位錯(cuò)運(yùn)動(dòng);(2)胞狀組織也對(duì)奧氏體不銹鋼的強(qiáng)度有貢獻(xiàn),其特殊的晶體結(jié)構(gòu)可能增強(qiáng)了奧氏體不銹鋼的晶格穩(wěn)定性;(3)析出相的存在提高了奧氏體不銹鋼的強(qiáng)度[43-4]。充氫后,氫原子與奧氏體不銹鋼中的位錯(cuò)等缺陷相互作用,使位錯(cuò)運(yùn)動(dòng)受阻,進(jìn)一步提高奧氏體不銹鋼的強(qiáng)度。隨著氫原子擴(kuò)散質(zhì)量濃度的增加,奧氏體不銹鋼中平衡空位體積濃度隨之增加,致使奧氏體不銹鋼面心立方結(jié)構(gòu)的晶格穩(wěn)定性下降,層錯(cuò)能降低,進(jìn)而誘發(fā)馬氏體相變[7]
Fig.3Schematic diagram of hydrogen embritlement mechanisms of additive manufacturing and traditional austenitic Stainless steels[ 60-69]
3結(jié)論
與傳統(tǒng)奧氏體不銹鋼相比,增材制造奧氏體不銹鋼表現(xiàn)出優(yōu)異的抗氫脆性能。本文對(duì)增材制造奧氏體不銹鋼的抗氫脆機(jī)制進(jìn)行了全面綜述。對(duì)于傳統(tǒng)奧氏體不銹鋼,氫原子沿晶界、相界、裂紋尖端向基體內(nèi)部擴(kuò)散,進(jìn)而增加了奧氏體不銹鋼的氫脆風(fēng)險(xiǎn)。其中氫原子主要富集在晶界強(qiáng)吸附位點(diǎn)附近,產(chǎn)生局域應(yīng)力集中,表現(xiàn)為應(yīng)力誘導(dǎo)馬氏體相變或促使裂紋萌生,這是引發(fā)氫脆的主要原因[75-80]
增材制造奧氏體不銹鋼呈現(xiàn)出特殊的多尺度、高密度位錯(cuò)胞組織。晶界、胞狀組織、析出相等微觀組織特征,在氫原子捕獲過程中發(fā)揮關(guān)鍵作用,同時(shí)也顯著影響氫原子在奧氏體不銹鋼中的擴(kuò)散行為。其復(fù)雜的微觀組織結(jié)構(gòu),導(dǎo)致氫原子在不同區(qū)域的捕獲與擴(kuò)散特性存在差異,進(jìn)而改善了奧氏體不銹鋼的抗氫脆性能。本文剖析了微觀組織結(jié)構(gòu)與氫原子吸附機(jī)制的關(guān)系,對(duì)優(yōu)化增材制造工藝、提升奧氏體不銹鋼抗氫脆能力及推動(dòng)氫能實(shí)際應(yīng)用具有重要意義。
4展望
隨著氫能的廣泛應(yīng)用,對(duì)儲(chǔ)氫用奧氏體不銹鋼的抗氫脆性能提出了更高要求。采用增材制造工藝制備奧氏體不銹鋼的過程中,凝固初期存在熱量傳遞不均勻的情況??拷鄢剡吔鐓^(qū)域的冷卻速率較大,而中心區(qū)域的冷卻速率相對(duì)較小。這種冷卻速率的差異致使不同位置的原子擴(kuò)散速率不同。具體而言,較大冷卻速率區(qū)域的原子來不及充分?jǐn)U散就開始凝固,而較小冷卻速率區(qū)域的原子則有更多時(shí)間進(jìn)行重排,原子擴(kuò)散速率的差異導(dǎo)致了成分的不均勻分布。在一些區(qū)域,溶質(zhì)原子富集,而在另一些區(qū)域這些溶質(zhì)原子則相對(duì)貧化。這種成分的不均勻性進(jìn)一步對(duì)晶體的生長造成影響。晶體在生長過程中,會(huì)優(yōu)先沿著特定方向生長,形成柱狀晶。不同柱狀晶之間相互競爭和相互作用,當(dāng)相鄰柱狀晶的生長方向相互制約時(shí),就會(huì)在界面處形成胞狀組織。值得注意的是,增材制造奧氏體不銹鋼中捕獲氫原子最為有效的組織是胞狀組織。因此,如何優(yōu)化增材制造工藝以獲得位錯(cuò)密度更高、尺寸更小的胞狀組織,成為未來工藝優(yōu)化的重點(diǎn)。
(1)可以通過適當(dāng)提高激光功率,使熔池溫度升高,促進(jìn)原子的擴(kuò)散和遷移,這有利于形成尺寸更小的胞狀組織。同時(shí),降低掃描速率能夠延長熔池的凝固時(shí)間,讓晶體有更充足的時(shí)間生長,從而有可能細(xì)化胞狀組織。另外,合理減小掃描間距能夠增大熔池之間的相互作用和改變熱場分布,從而有助于位錯(cuò)的形成和增殖,進(jìn)而提高位錯(cuò)密度。
(2)對(duì)奧氏體不銹鋼的成分進(jìn)行微調(diào),增加原位析出相數(shù)量、種類,也能起到優(yōu)化作用??梢酝ㄟ^時(shí)效處理調(diào)控析出相的種類、數(shù)量和分布,來影響胞狀組織的演變。細(xì)小彌散的析出相能夠釘扎位錯(cuò)、捕獲高質(zhì)量濃度氫原子、阻礙位錯(cuò)運(yùn)動(dòng),從而提高位錯(cuò)密度。而且,析出相的存在還可能對(duì)胞狀組織的邊界產(chǎn)生影響,使胞狀組織的尺寸進(jìn)一步減小。在基礎(chǔ)合金成分中添加適量的微量元素,如稀土等。這些微量元素可以作為形核核心,增加形核率,使胞狀組織的尺寸更加細(xì)小。而且,微量元素還能與基體中的原子發(fā)生相互作用,影響位錯(cuò)的運(yùn)動(dòng)和增殖,進(jìn)一步提高位錯(cuò)密度。
(3)孿晶對(duì)氫原子捕獲、氫原子擴(kuò)散的影響存在特殊作用。通過在增材制造奧氏體不銹鋼中引入孿晶,可顯著提升其氫原子捕獲能力和抗氫脆性能,為改善材料抗氫脆性能提供新思路。增材制造奧氏體不銹鋼可通過合理的后處理工藝誘導(dǎo)生成或促進(jìn)孿晶增殖。熱處理是一種常用的后處理方法,通過調(diào)控?zé)崽幚淼臏囟?、時(shí)間和冷卻速率,可以改變奧氏體不銹鋼的微觀組織結(jié)構(gòu),促進(jìn)攣晶的形成。塑性變形處理,如軋制、鍛造等,也可以在奧氏體不銹鋼中引入孿晶。拉伸更容易發(fā)生孿晶誘導(dǎo)塑性變形,在塑性變形過程中,位錯(cuò)運(yùn)動(dòng)和位錯(cuò)相互作用會(huì)導(dǎo)致孿晶的形成,通過控制變形量和變形速率,可以調(diào)節(jié)孿晶的密度和尺寸。
參考文獻(xiàn):
[ 1]YU H Y, DfAZ A, LU X, et al. Hydrogen embrittlement as a conspicuous material challenge-comprehensive review and future directions[J]. Chemical Reviews, 2024, 124(10): 6271-6392.
[2]LI SH, LEE D H, ZHAO Y K, et al. Hydrogen-induced softening and embrittlement in 316L stainlesssteel fabricated using laser-powderbed fusion[J].Acta Materialia, 2024,274: 119959.
[3]CHANDRA S, WANG C C, TOR S B, et al. Powder-size driven facile microstructure control in powder-fusion metaladditivemanufacturing processes[J]. Nature Communications, 2024,15(1): 3094.
[4]LIU M Y, JIANG L, DEMKOWICZ M J. Role of slip in hydrogen-assisted crack initiation in Ni-based alloy 725[J]. Science Advances, 2024, 10(29): eado2118.
[5]GU D D, SHI X Y,POPRAWE R, et al. Materialstructure-performance integrated laser-metal additive manufacturing[J]. Science, 2021, 372(6545): eabg1487.
[6]BAROUTAJI A, ARJUNAN A, ROBINSON J, et al. Additive manufacturing for proton exchange membrane (PEM) hydrogen technologies: merits,challenges,and prospects[J]. International Journal of Hydrogen Energy, 2024,52:561-584.
[7]OGAWA Y, HOSOI H, TSUZAKI K, et al. Hydrogen, as an alloying element,enables a greater strengthductility balance in an Fe-Cr-Ni-based, stable austenitic stainless steel[J]. Acta Materialia, 2020,199: 181-192.
[8]HEMMASIAN ETTEFAGH A, GUO S M, RAUSH J. Corrosion performance of additivelymanufactured stainlesssteel parts:areview[J].Additive Manufacturing,2021, 37: 101689.
[9]CRUZ V, CHAO Q,BIRBILIS N, et al. Electrochemical studies on the effect of residual stress on the corrosion of 316Lmanufactured by selective laser melting[J]. Corrosion Science, 2020, 164: 108314.
[10]ZHOU Z R, ZHANG K Y,HONG Y J, et al. The dependence of hydrogen embrittlement on hydrogen transport in selective laser melted 3O4L stainless steel[J].
International Journal of Hydrogen Energy, 2021, 46(29): 16153-16163.
[11] SUN B H, ZHAO H, DONG X Z, et al. Current challenges in the utilization of hydrogen energy-a focused review on the issue of hydrogen-induced damage and embritlement[J]. Advances in Applied Energy, 2024,14: 100168.
[12]薛云飛.304不銹鋼晶界特征分布調(diào)控及其對(duì)抗氫脆 性能的影響[D].南京:南京理工大學(xué),2019.
[13]LI X F, ZHANG J, CUI Y,et al. Review of the hydrogen embrittlement and interactions between hydrogen and microstructural interfaces in metallc alloys:grain boundary, twin boundary, and nano-precipitate[J]. International Journal of Hydrogen Energy, 2024,72: 74-109.
[14]LUO H, LU W J, FANG X F, et al. Beating hydrogen with its own weapon: nano-twin gradients enhance embrittlement resistance of a high-entropy alloy[J]. Materials Today,2018,21(10): 1003-1009.
[15]孔德成.胞狀位錯(cuò)結(jié)構(gòu)對(duì)激光選區(qū)熔化316L不銹鋼 強(qiáng)韌性的影響與耐蝕機(jī)理研究[D].北京:北京科技大 學(xué),2022.
[16]XU Y T, TODA H, SHIMIZU K,et al. Suppressed hydrogen embrittlement of high-strength Al alloys by Mn-rich intermetallic compound particles[J].Acta Materialia,2022,236: 118110.
[17] KONG D C,DONG C F,NI X Q, et al. Heterodeformation-induced stress in additively manufactured 316L stainless steel[J].Materials Research Letters, 2020, 8(10): 390-397.
[18]FAN Y H, CUI F, LUL, et al. A nanotwinned austenite stainlesssteelwithhigh hydrogen embrittlement resistance[J]. Journal of Alloys and Compounds,2019, 788: 1066-1075.
[19] BARRERA O,BOMBAC D, CHEN Y,etal. Understanding and mitigating hydrogen embritlement of steels: a review of experimental, modelling and design progress from atomistic to continuum[J]. Journal of Materials Science,2018, 53(9): 6251-6290.
[20]劉清華,唐慧文,斯庭智.氫陷阱對(duì)鋼氫脆敏感性的影 響[J].材料保護(hù),2018,51(11): 127-132.
[21]NAGUMO M. Hydrogen related failure of steels-a new aspect[J]. Materials Science and Technology,2004, 20(8): 940-950.
[22]馬源.空位與氫陷阱交互作用的第一性原理研究[D] 北京:北京科技大學(xué),2021.
[23] LAI Z H, SUN Y H, LIN Y T, et al. Mechanism of twinning induced plasticity in austenitic lightweight steel driven by compositional complexity[J]. Acta Materialia, improved hydrogen embrittlement tolerance of twin boundaries in face-centered cubic complex concentrated alloys[J]. Journal of the Mechanics and Physics of Solids,2024,188: 105657.
[25]萬亮,蔣燁倩,婁東閣,等.過時(shí)效溫度對(duì)1500 雙相鋼 氫脆敏感性的影響[J].有色金屬材料與工程,2025, 46(1): 98-105.
[26]AN D Y, XIAO Y,LIU X X, et al. Formation of two distinct cellular structuresin 316L stainlesssteel fabricated by micro-laser beam powder-bed-fusion[J] Materials Research Letters,2024, 12(1): 42-49.
[27]KONG D C,DONG C F,WEI S L,et al. About metastable cellular structure in additively manufactured austenitic stainless steels[J]. Additive Manufacturing, 2021,38: 101804.
[28]陶澤菊,許平達(dá),李偉,等.Qamp;P1180高強(qiáng)鋼激光焊接 頭的抗氫脆性能研究[J].有色金屬材料與工程,2023, 44(3): 36-44.
[29] ZHAO Q C, LUO H, PAN Z M, et al. Comparative study onhydrogenembrittlementresistancein additive manufactured and forged austenitic stainless steel[J]. Additive Manufacturing, 2024, 88: 104262.
[30]DONG F T, VENEZUELA J, LI H X,et al. Enhancement of hydrogen embrittlement resistance in a Fe-18Mn-0.6C twinning induced plasticity steel by copper alloying[J]. Acta Materialia, 2023,254: 118888.
[31]CHENG H X, LUO H, PAN Z M, et al. Effects of laser powder bed fusion process parameters on microstructure and hydrogen embrittlement of high-entropy alloy[J]. Journal of Materials Science amp; Technology,2023,155: 211-226.
[32] HONG Y J, ZHOU C S, WAGNER S, et al. Straininduced twins and martensite: effects on hydrogen embrittlement of selective laser melted (SLM) 316L stainless steel[J]. Corrosion Science,2022, 208: 110669.
[33]LAI Z H, LIN Y T, SUN Y H, et al. Hydrogen-induced ductilization in a novel austenitic lightweight TWIP steel[J]. Scripta Materialia, 2022,213:114629.
[34]NEERAJ T, SRINIVASAN R, LI J. Hydrogen embrittlementofferriticsteels:observationson deformation microstructure, nanoscale dimplesand failureby nanovoiding[J]. ActaMaterialia,2012, 60(13/14): 5160-5171.
[35] WANG S, MARTIN M L, SOFRONIS P, et al. Hydrogen-induced intergranular failure of iron[J]. Acta Materialia, 2014, 69: 275-282.
[36]孫慧麗.高強(qiáng)馬氏體不銹鋼的析出強(qiáng)化機(jī)制和氫脆敏
感性研究[D].北京:北京科技大學(xué),2024.
[37]DJUKICMB,BAKICGM,ZERAVCICV S, et al. The synergisticactionandinterplayofhydrogen embrittlement mechanisms in steels and iron: localized plasticity and decohesion[J]. Engineering Fracture Mechanics,2019,216: 106528.
[38]張慧云,鄭留偉,孟憲明,等.電化學(xué)充氫對(duì)Cr15 鐵素 體不銹鋼和 304 奧氏體不銹鋼氫脆敏感性的影響[J]. 中國腐蝕與防護(hù)學(xué)報(bào),2021,41(2):202-208.
[39]YAO J, TAN Q Y,VENEZUELA J,et al.Recent research progressin hydrogenembrittlementof additively manufactured metals-a review[J]. Current Opinion in Solid State and Materials Science,2023, 27(5): 101106.
[40]李重陽,張柯,馬鳳倉,等.一種含N低Ni經(jīng)濟(jì)型雙相 不銹鋼的抗氫脆性能的研究[J].有色金屬材料與工程, 2021, 42(5): 30-36.
[41] MAO L Y, LUO Z A, HUANG C, et al. Hydrogen embrittlement behavior in interstitial Mn-N austenitic stainless steel[J]. International Journal of Hydrogen Energy,2022, 47(86): 36716-36732.
[42]MINE Y,HORITA N,HORITA Z,et al. Effect of ultrafine grain refinement on hydrogen embrittlement of metastable austenitic stainlesssteel[J]. International JournalofHydrogenEnergy, 2017, 42(22): 15415-15425.
[43]ELIAZ N,F(xiàn)UKS D, ELIEZER D. Non-Arrhenius behavior of the diffusion coefficient of hydrogen in amorphousmetals[J]. Materials Letters,1999,39(5): 255-259.
[44]ZHU Z G, LI W L, NGUYEN Q B, et al. Enhanced strength-ductility synergy and transformation-induced plasticity of the selective laser melting fabricated 304L stainless steel[J]. Additive Manufacturing,2020,35: 101300.
[45]LIU J, YANG H J, MENG L X, et al. Significance of melt pool structure on the hydrogen embrittlement behavior of a selective laser-melted 316L austenitic stainless steel[J]. Materials, 2023,16(4): 1741.
[46]SING S L, TEY C F, TAN JHK, et al. 2-3D printing of metals in rapid prototyping of biomaterials: techniques in additive manufacturing[M]//NARAYANR. Rapid Prototyping of Biomaterials. 2nd ed. Amsterdam: Elsevier,2020: 17-40.
[47] MAEDA M Y, KOYAMA M, NISHIMURA H, et al. Pre-straining alters hydrogen-assisted cracking site and local hydrogen diffusivity in a nitrogen-doped duplex steel[J]. Scripta Materialia, 2022, 207: 114272.
[48]BEHVAR A, HAGHSHENAS M, DJUKIC M B.
Hydrogenembrittlement and hydrogen-induced crackinitiation in additively manufactured metals:a critical review on mechanical and cyclic loading[J]. International Journal of Hydrogen Energy, 2024,58: 1214-1239.
[49]程玉峰,孫穎昊,張引弟.氫氣管道發(fā)展與管線鋼氫脆 挑戰(zhàn)[J].長江大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,19(1): 54-69.
[50]BAEK S W, SONG E J, KIM J H, et al. Hydrogen susceptibility of nano-sized oxide dispersed austenitic steel forfusion reactor[J]. Fusion Engineering and Design,2017,121: 105-110.
[51] ROTTGER A,GEENEN K, WINDMANN M, et al. Comparison of microstructure and mechanical properties of 316L austenitic steel processed by selective laser melting with hot-isostatic pressed and cast material[J]. Materials Science and Engineering: A, 2016,678: 365-376.
[52]SHI R J, WANG Y L, LU S P, et al. Enhancing the hydrogen embrittlement resistance with cementite/VC multiple precipitates in high-strength steel[J]. Materials Science and Engineering: A,2023, 874: 145084.
[53]JASKARI M, GHOSH S, MIETTUNEN I, et al. Tensile properties and deformation of AISI 316l additively manufactured with various energy densities[J]. Materials, 2021,14(19): 5809.
[54]GHAYOOR M, LEE K, HE Y J,et al. Selective laser melting of 304L stainless steel: role of volumetric energy density on the microstructure, texture and mechanical properties[J]. Additive Manufacturing, 2020, 32: 101011.
[55]WANG Z Q, PALMER T A, BEESE A M. Effect of processing parameterson microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing[J]. Acta Materialia,2016,110: 226-235.
[56]YU J, ROMBOUTS M, MAES G. Cracking behavior and mechanical properties of austenitic stainless steel parts produced by laser metal deposition[J]. Materials amp; Design, 2013, 45: 228-235.
[57]HUANG S,MA D H, SHENG J, et al.Effects of laser peeningontensilepropertiesandmartensitic transformation of AISI 316L stainlesssteel ina hydrogen-rich environment[J]. Materials Science and Engineering: A, 2020, 788: 139543.
[58]LEE D H, SUN B H,LEE S, et al. Comparative study of hydrogen embrittlement resistance between additively andconventionally manufactured 304L austenitic stainless steels[J]. Materials Science and Engineering: A, 2021, 803: 140499.
[59]YE F J, ZHU T, MORI K, et al. Effects of dislocations and hydrogen concentration on hydrogen embrittlement of austenitic 316 stainless steels[J]. Journal of Alloys and Compounds, 2021, 876: 160134.
[60] CHEN A Y, ZHU L L, SUN L G, et al. Scale law of complexdeformation transitionsof nanotwinsin stainless steel[J]. Nature Communications, 2019,10(1): 1403.
[61]CHEN A Y,LIU J B,WANG H T, et al. Gradient twinned 3O4 stainless steels for high strength and high ductility[J]. Materials Science and Engineering: A, 2016, 667: 179-188.
[62] ZHANG B L, ZHU Q S,XU C,et al. Atomic-scale insightson hydrogen trapping and exclusionat incoherent interfaces of nanoprecipitates in martensitic steels[J]. Nature Communications, 2022, 13(1): 3858.
[63] KOYAMA M, TAHERI-MOUSAVI S M, YAN H X, et al. Origin of micrometer-scale dislocation motion during hydrogen desorption[J]. Science Advances, 2020, 6(23): eaaz1187.
[64] WANG M Y, TIAN X D, LIU Y, et al. Unexpected pitting inhibition of additively-manufactured austenitic stainless steel by electrochemical hydrogen-charging[J]. Corrosion Science,2025,243: 112598.
[65]CHEN A Y, JIANG J G, LI X, et al. Formation and effect of hierarchical structures on corrosion performance of stainless steel bipolar plate fabricated by powder bed fusion[J]. Corrosion Science, 2023, 219: 111193.
[66]招晶鑫,淡振華,孫中剛,等.增材制造316L不銹鋼應(yīng) 力腐蝕研究進(jìn)展[J].材料工程,2023,51(5):1-13.
[67] SOUNDARARAJAN C K, MYHRE A, SENDROWICZ A,et al. Hydrogen-induced degradation behavior of nickel alloy studied using acoustic emission technique[J]. Materials Science and Engineering: A, 2023,865: 144635.
[68]MURAKAMI Y, KANEZAKI T, MINE Y. Hydrogen effect against hydrogen embrittlement[J]. Metallurgical and Materials Transactions A, 2010, 41(10): 2548-2562.
[69]ITAKURA M, KABURAKI H, YAMAGUCHI M, et al. The effect of hydrogen atoms on the screw dislocation mobility in bcc iron: a first-principles study[J]. Acta Materialia,2013, 61(18): 6857-6867.
[70]WANG Y, ZHOU W B. Non-equilibrium states and glass transitions in bakery products[M]//BHANDARI B ROOS Y H. Non-Equilibrium States and Glass Transitions in Foods. Amsterdam: Elsevier, 2017.
[71] DJUKIC M B, ZERAVCIC V S,BAKIC G, et al. Hydrogen embrittlement of low carbon structural steel[J]. Procedia Materials Science, 2014, 3: 1167-1172.
[72]LIU Q Y, MANZOOR S, YAN Y, et al. Influence of hydrogen uptake onadditivemanufacturing andconventional austenitic stainless steels316L[J]. Materials Science and Engineering:A, 2024,914: 147170.
[73]KWON H, SHIGA M, KIMIZUKA H, et al. Accurate description of hydrogen diffusivity in bcc metals using machine-learning moment tensor potentials and pathintegral methods[J]. Acta Materialia, 2023,247: 118739.
[74] JIA G W,LEI M Y,LI M Y,et al.Hydrogen embritlementinhydrogen-blendednaturalgas transportation systems: a review[J]. International Journal of Hydrogen Energy, 2023, 48(82): 32137-32157.
[75]JO J W, KIM J N, LEE C S. Increasing the resistance to hydrogen embrittlement in martensitic steel by partial phasetransformationandtempering[J]. Materials Science and Engineering: A, 2022, 856: 143960.
[76]ZHAO H, CHAKRABORTY P, PONGE D,et al. Hydrogen trapping and embrittlement in high-strength Al alloys[J]. Nature, 2022, 602(7897): 437-441.
[77] NAGAO A, DADFARNIA M, SOMERDAY B P, et al. Hydrogen-enhanced-plasticity mediated decohesion for hydrogen-induced intergranular and \"quasi-cleavage\" fracture of lath martensitic steels[J]. Journal of the Mechanics and Physics of Solids,2018,112: 403-430.
[78]ROZENAK P. Stress induce martensitic transformations inhydrogen embrittlement ofausteniticstainless steels[J]. Metallurgical and Materials Transactions A, 2014, 45(1): 162-178.
[79]ZHAI W G, ZHOU W, ZHU Z G, et al. Selective laser melting of 304L and 316L stainless steels: a comparative study of microstructures and mechanical properties[J]. Steel Research International, 2022, 93(7): 2100664.
[80] YOSHIOKA Y, YOKOYAMA K, SAKAI J. Role of dynamic interactions between hydrogen and straininducedmartensitetransformationinhydrogen embrittlement of type 304 stainless steel[J].ISIJ International, 2015, 55(8): 1772-1780.
(編輯:畢莉明)