中圖分類號(hào):S661.2 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2025)07-1479-13
Abstract: 【Objective】 The Modified Surge Root Irigation (MSRI), an advanced micro-irrigation system specifically designed for the cultivation of deep-rooted fruit trees,represents a groundbreaking innovation that ensures precise waterdelivery to the tree's dep root zones.This study investigated its efficacy in enhancing fruit quality, yield,and water use efficiency (WUE) of Pyrus sinkiangensis‘Kuerlexiangli pear’under arid conditions.【Methods】A two-factor (irrigation method × rehydration) completely randomized block design was implemented in Korla, Xinjiang (In 2022—2023). Three MSRI variants were tested: aiternate DHateral (A-MSKl), simuitaneous Dlateral (B-MSKl), and uniateral (UMSRI) irrigation, combined with rehydration (R1) or non-rehydration (R2) treatments.The surface irrigation served as control (CK). The seven treatments were evaluated: R1A, R1B,R1U,R2A,R2B,R2U, and CK.The fruit quality parameters (external: volume,shape index,weight; internal: soluble solids content [SSC],firmness,soluble sugars, vitamin C,titratable acids,soluble proteins,stone cells,moisture content) were measured at maturity. The yield and WUE were quantified using standard agronomic protocols.The data underwent three-way ANOVA, Pearson correlation analysis,and multivariate evaluation via principal component analysis (PCA) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). 【Results】 The improvement of gushing root irrigation increased the soluble solids content,soluble sugar content, yield and water use efficiency of Kuerlexiangli pear fruits,and at the same time effectively reduced the peeling hardness,titratable acid content and stone cell content of the fruits compared with the traditional diffuse irrigation method.Significant differences (plt;0.05 )were observed among the treatments in the fruit quality, yield and water use efciency from the point of view of irrigation method. The fruit quality,soluble solids content, soluble sugar content in the fruits under the B treatment were higher and titratable acid content and stone cell content were lower than those under the A and U treatments.The yield and water use efficiency,of B treatment was higher than those of A and U treatments. In addition, the presence or absence of rehydration equally significantly (plt;0.05 ) affected the fruit quality,yield and water use eficiency. The fruit quality,soluble solids content and soluble sugar content of the fruits under the non-rehydrated treatment were higher than those of the rehydrated treatment, while titratable acid content and stone cell content were lower than those of the rehydrated treatment. The yield and water use effciency of the non-rehydrated treatment was higher than those of the rehydrated treatment. Among allthe treatments,the fruit quality under the R2B treatment reached the highest in terms of soluble solids and soluble sugar content,which increased by 15.00% to 28.61% and 18.62% to 26.86% ,respectively, compared with those of the CK; meanwhile, titratable acid content and stone cell content were the lowest, which decreased by 4.91% to 39.50% and 85.84% to 86.26% ,respectively,compared with those of the CK,respectively.The yield and water use efficiency of the R2B treatments were the highest, increasing 64.29% to 90.73% and 230.61% to 271.96% ,respectively,compared with thoseofthe CK.The furtheranalyses showed thatthe yield showed highly significant and positive correlation ( (plt;0.01) ) with the water use efficiency, in addition,both the yield and water use efficiency showed highly significant and positive correlation (plt;0.01 ) with the fruit soluble solids content and soluble sugar content, while highly significant and negative correlation (plt;0.01 )with the titratable acid content and stone cellcontent.These results further confirmed the significant effect of the improved gushing root irrigation technique in enhancing the fruit quality and yield of balsam pear. The comprehensive evaluation of the different irrigation methods was carried out by principal component analysis and superiority solution distance method, which resulted in the comprehensive score ranking of each treatment.According to the results of the principal component analysis,the order of the integrated scores of the treatments was ] R2Bgt;R2Agt; R1B gt; R2U gt; R1A gt; R1U gt; CK,and the order of the integrated scores of the treatments by the superiority and inferiority solution distance method was R2B gt; R1B gt; R2A gt; R2U gt; R1A gt; CK gt; R1U.The two integrated evaluationmethods showed that the R2B treatment was the best, and the integrated scores of the CK treatment were the highest, and the CK treatment was the worst and the comprehensive score was the lowest.【Conclusion】The bilateral surge root irrigation without rehydration (R2B) seems to be the optimal irrigation method for Kuerlexiangli pear trees in arid areas.This study would provide a solid scientific basis for the application of MSRI technology on fruit trees in arid areas,and be valuable for optimising irigation management, improving fruit quality,yield and water use efficiency.
Key words: Kuerlexiangli pear; Modified surge root irrigation (MSRI); Fruit quality; Yield; Water use efficiency
隨著全球氣候變暖以及城市化和工業(yè)化的快速發(fā)展,淡水資源在農(nóng)業(yè)領(lǐng)域的應(yīng)用比例越來越少,嚴(yán)重制約了農(nóng)業(yè)的可持續(xù)發(fā)展[。尤其是在我國(guó)的西北干旱區(qū),水資源供需矛盾十分嚴(yán)峻3,地下水超采問題嚴(yán)重4,因此,發(fā)展節(jié)水灌溉是促進(jìn)農(nóng)業(yè)可持續(xù)發(fā)展的重要舉措之一[]。
庫(kù)爾勒香梨(PyrussinkiangensisYü)是新疆原產(chǎn)的優(yōu)質(zhì)特色水果,以庫(kù)爾勒市為主要產(chǎn)區(qū),栽種面積占新疆梨總面積的 40%[6] ,是當(dāng)?shù)剞r(nóng)業(yè)增效、農(nóng)民增收的重要途徑。當(dāng)前,庫(kù)爾勒香梨栽種的灌溉方式以漫灌為主,年灌水量為 14000~18000m3?hm-2?8-9] 。但對(duì)于水資源極度匱乏的內(nèi)陸干旱區(qū)而言,漫灌會(huì)對(duì)香梨產(chǎn)業(yè)發(fā)展造成顯著的不利影響[1]。因此,有必要探索新的果園灌溉技術(shù),提高水分利用效率,節(jié)約水資源,促進(jìn)庫(kù)爾勒香梨產(chǎn)業(yè)的健康可持續(xù)發(fā)展。
目前果樹上主要應(yīng)用地表滴灌[1]、噴灌[1]、根區(qū)滲灌[13]、地下滴灌[4]以及涌泉根灌(surge-root irriga-tion,SRI)[5]等節(jié)水灌溉技術(shù)。其中,SRI作為一種新型地下滴灌技術(shù),通過毛管直接將水和肥料輸送至果樹根部,可以減小蒸發(fā)損失,提高水分利用效率,特別適宜于西北干旱區(qū)果園[16-17]。目前,對(duì)SRI的研究主要集中在灌水器的入滲特性[18]、涌泉根灌流量[]、灌水器的深度[2等方面,而對(duì)灌水效果的研究較少。李中杰研究表明,與地下滴灌、地表滴灌相比,SRI提高了陜北山地蘋果的可溶性糖含量、維生素C含量以及產(chǎn)量。劉曉麗等2研究表明,與地表滴灌相比,SRI、根際環(huán)形多點(diǎn)源滴灌顯著提高了陜北沙地枸杞的產(chǎn)量以及水分利用效率。戚飛[23研究發(fā)現(xiàn),與滴灌相比,SRI及陶瓷滲灌提高了蘋果產(chǎn)量及水分利用效率。吳普特等24以陜北山地棗樹為研究對(duì)象,通過與管灌、滴灌的比較,發(fā)現(xiàn)SRI顯著提高了棗樹的果實(shí)品質(zhì)和產(chǎn)量。
在新疆果園中使用SRI技術(shù)時(shí),易發(fā)生根區(qū)導(dǎo)水毛細(xì)管末端堵塞現(xiàn)象。因此,筆者在SRI的基礎(chǔ)上,在出水器兩端連接2根 30cm 長(zhǎng)壁側(cè)切 Φ4mm 導(dǎo)水毛管,為區(qū)別于SRI,本文稱為改進(jìn)涌泉根灌(modified surgerootirrigation,MSRI),并通過設(shè)置3種MRSI方式(交替MSRI、雙側(cè)MSRI、單側(cè)MSRI)和2種復(fù)水模式(復(fù)水、不復(fù)水),以環(huán)境的凈蒸發(fā)量作為制定灌水量的依據(jù),探討不同MSRI方式對(duì)庫(kù)爾勒香梨果實(shí)品質(zhì)、產(chǎn)量和水分利用效率的影響,旨在為MSRI技術(shù)在西北旱區(qū)梨園的應(yīng)用提供理論依據(jù)。
1 材料和方法
1.1 試驗(yàn)區(qū)概況
試驗(yàn)于2022年3月至2023年10月在的香梨科研試驗(yàn)基地 (41°11′N 86°15′E ,海拔 901m) 進(jìn)行。試驗(yàn)地屬于暖溫帶大陸性干旱氣候,光熱資源豐富,年總?cè)照諘r(shí)數(shù)為3000h ,無霜期平均為210d,全年平均氣溫為 11°C 年平均降水量不足 60mm ,蒸發(fā)量大,主導(dǎo)風(fēng)向東北風(fēng)。土壤有機(jī)質(zhì)含量 Π(μ) ,后同)為 15.4g?kg-1 ,全氮含量為 0.8g?kg-1 ,堿解氮含量為 63.82mg?kg-1 ,有效磷含量為 24.2mg?kg-1 ,速效鉀含量為 189.9mg?kg-1 。
試驗(yàn)品種為庫(kù)爾勒香梨,樹齡為8a(年),砧木為杜梨,授粉樹為鴨梨,東西向栽植,行距 4m ,株距2m ,平均胸徑 7.89cm ,授粉方式為人工授粉,肥料的類型為有機(jī)肥,距離主干約 100cm 處開溝施肥,11月中旬施基肥1次,開溝寬、深均約為 20cm ,隔年施羊糞 100m3?hm-2 ,開溝寬、深均約 30cm 。園內(nèi)無任何間作物,樹形均為主干分層形。
1.2 試驗(yàn)設(shè)計(jì)
MSRI:灌水器進(jìn)水口與置埋于地下 30cm 的供水支管直接連接,兩端出水器連接2根 30cm 長(zhǎng)壁側(cè)切 Φ4mm 導(dǎo)水毛管,埋置時(shí),導(dǎo)水毛管以端口向下、弧形安裝于支管下方。田間安裝方法如圖1所示。供水支管平行于樹干行,距離樹干 50cm 。大田生產(chǎn)以支管為單位進(jìn)行輪灌。以樹干為中心,交替灌溉、單側(cè)灌溉供水方式下,每棵樹單側(cè)支管安裝有間距 30cm 灌水器8個(gè);雙側(cè)灌供水方式下,兩側(cè)供水支管按間距 60cm 安裝4個(gè)灌水器。灌水器流量為10L?h-1 。供試區(qū)每棵樹的供水支管可獨(dú)立供水,安裝標(biāo)定過的水表計(jì)量每次灌水量。
2022年與2023年采用完全隨機(jī)試驗(yàn)設(shè)計(jì),設(shè)置
A.雙側(cè)MRSI與交替MRSI;B.單側(cè)MRSI;1.支管;2.灌水器;3.長(zhǎng)壁側(cè)切導(dǎo)水毛管。A.BilateraltiUaah;alaatib灌溉方式與是否復(fù)水兩個(gè)試驗(yàn)因素,以大水漫灌作為對(duì)照(CK)。試驗(yàn)設(shè)有2個(gè)復(fù)水處理:R1(復(fù)水,在7月中旬果實(shí)膨大期增加1次漫灌,灌水量為300mm 、R2(不復(fù)水),以及3種MSRI方式:交替
MSRI(A)、雙側(cè)MSRI(B)、單側(cè)MSRI(U)。7個(gè)處理分別為:CK、R1A、R1B、R1U、R2A、R2B、R2U,每個(gè)處理3次重復(fù),共計(jì)21個(gè)小區(qū)(圖2)。
灌溉方案見表1?;ㄆ诮Y(jié)束后開始試驗(yàn),直至果實(shí)成熟。對(duì)照采用傳統(tǒng)修畦大埂漫灌技術(shù),每隔20d灌溉1次,每次灌溉 300mm 。MSRI試驗(yàn)組的灌溉量以 20cm 標(biāo)準(zhǔn)蒸發(fā)血的累計(jì)蒸發(fā)量(E20)為灌水依據(jù)。在灌水間隔內(nèi),蒸發(fā)血累積蒸發(fā)量與水面蒸發(fā)系數(shù) (Kp=0.75) [25]相乘,得到各處理的單次灌水量。灌水量通過灌水管末端的水表控制計(jì)量,每10d灌溉1次。
1.3 測(cè)定方法
果實(shí)成熟后,每個(gè)處理選取3棵長(zhǎng)勢(shì)相同的梨樹,從標(biāo)記樹冠的上、中、下部位的東、南、西、北方向共12個(gè)位置隨機(jī)采摘12個(gè)果實(shí),每處理共36個(gè)果實(shí),采后立即用保鮮盒帶回實(shí)驗(yàn)室,進(jìn)行相關(guān)品質(zhì)指標(biāo)的測(cè)定。使用游標(biāo)卡尺測(cè)量果實(shí)的橫徑和縱徑,并通過果實(shí)縱徑/橫徑之比計(jì)算果形指數(shù);利用百分之一天平測(cè)定單果質(zhì)量;采用排水法測(cè)定果實(shí)體積;從每個(gè)處理中隨機(jī)挑選9個(gè)果實(shí),去除果皮后,使用GY-3型水果硬度計(jì)(杭州托普儀器有限公司)測(cè)定果實(shí)硬度;從每個(gè)處理剩余的果實(shí)中隨機(jī)挑選9個(gè)果實(shí),采用烘干法測(cè)定果實(shí)含水量。
將每個(gè)處理剩余的果實(shí)平均分為3份,用于測(cè)定果實(shí)內(nèi)在品質(zhì)。其中,采用WYT-4型手持折光儀(上海精密儀器儀表有限公司)測(cè)定可溶性固形物含量;采用2.6-二氯酚靛酚鈉滴定法測(cè)定維生素C含量[2;采用蔥酮-比色法測(cè)定可溶性糖含量[27;采用
NaOH酸堿中和滴定法測(cè)定可滴定酸含量;采用考馬斯亮藍(lán)法測(cè)定可溶性蛋白含量;參照聶繼云等[28的方法測(cè)定石細(xì)胞含量。
準(zhǔn)確統(tǒng)計(jì)每棵樹的結(jié)果數(shù)量,其與平均單果質(zhì)量的積即為單株產(chǎn)量,再折算成每 hm2 的總產(chǎn)量。
水分利用效率/ 產(chǎn)量/累計(jì)灌水量[29]。
1.4數(shù)據(jù)分析
使用Excel2021整理和計(jì)算數(shù)據(jù),利用SPSS28.0軟件對(duì)數(shù)據(jù)進(jìn)行方差分析和差異顯著性分析,并用Origin軟件進(jìn)行作圖和相關(guān)性分析;從果實(shí)品質(zhì)、產(chǎn)量和水分利用效率等方面選取13個(gè)指標(biāo),采用主成分分析(principalcomponentanalysis,PCA)和優(yōu)劣解距離法(technique for order preference bysimilaritytoidealsolution,TOPSIS)2種綜合評(píng)價(jià)方法對(duì)不同灌溉方式進(jìn)行綜合評(píng)價(jià)。
2 結(jié)果與分析
2.1不同灌溉方式對(duì)庫(kù)爾勒香梨果實(shí)品質(zhì)的影響
2.1.1外觀品質(zhì)從表2可以看出,灌溉方式和是否復(fù)水對(duì)庫(kù)爾勒香梨果實(shí)的單果質(zhì)量、果實(shí)體積和果形指數(shù)均具有極顯著影響。值得注意的是,單果質(zhì)量與果形指數(shù)在不同年份之間呈現(xiàn)出極顯著的差異。進(jìn)一步分析發(fā)現(xiàn),灌溉方式與是否復(fù)水兩因素的交互作用,以及灌溉方式、是否復(fù)水和年份三因素之間的交互作用,對(duì)果實(shí)體積和單果質(zhì)量均有顯著或極顯著影響,而對(duì)果形指數(shù)無顯著影響。
與CK相比,采用MRSI處理的庫(kù)爾勒香梨在單果質(zhì)量、果實(shí)體積和果形指數(shù)等方面均顯示出更優(yōu)的表現(xiàn)(圖3)。R2B處理下的單果質(zhì)量最大,為145.67~153.71g ;CK最小,與其他處理間均呈顯著差異。與CK相比,R2B處理的單果質(zhì)量顯著提高
了 24.56%~27.13% 。2022年,R2B處理的果實(shí)體積最大,為 141.94mL ,CK最小,為 104.94mL;2023 年R1B處理的果實(shí)體積最大,為 147.40mL ,而R2U處理的果實(shí)體積最小,為 103.73mL 。在果形指數(shù)方面,R2B處理的果形指數(shù)最高,為 1.15~1.16 ,與R1U、R1A處理和CK呈顯著差異。
2.1.2內(nèi)在品質(zhì)由表3可知,是否復(fù)水對(duì)果實(shí)可溶性固形物含量、去皮硬度、維生素C含量、可滴定酸含量、可溶性蛋白含量和石細(xì)胞含量均具有極顯著影響。灌溉方式和年份對(duì)果實(shí)可溶性固形物含量、去皮硬度、可溶性糖含量、維生素C含量、可滴定酸含量、石細(xì)胞含量和果實(shí)含水量均具有顯著或極顯著影響。進(jìn)一步分析發(fā)現(xiàn),灌溉方式與是否復(fù)水兩因素的交互作用對(duì)果實(shí)維生素C含量、可滴定酸含量、果實(shí)含水量具有極顯著影響。此外,灌溉方式、是否復(fù)水與年份三因素的交互作用對(duì)果實(shí)可溶性固形物含量、維生素C含量和可滴定酸含量產(chǎn)生
了極顯著影響。
與CK相比,MSRI處理顯著提高了果實(shí)可溶性固形物和維生素C含量,降低了果實(shí)的去皮硬度,從而提高了香梨果實(shí)的內(nèi)在品質(zhì)(圖4)。在去皮硬度方面,R2B處理的果實(shí)硬度最低,比CK分別顯著降低了 2.58%~4.62% 。在R2B處理下,果實(shí)可溶性固形物和可溶性糖含量均達(dá)到最大值,與CK相比,分別顯著提高了 15.00%~28.61% 和 18.62%~26.86% 。關(guān)于可滴定酸含量,2022年,R1A處理的含量最高,而2023年,R1U處理的含量最高。在可溶性蛋白含量方面,2022年各處理間無顯著差異。此外,R2B處理的石細(xì)胞含量最低,與CK相比顯著降低了85.84%~86.26% 。在果實(shí)含水量方面,2022年R1B處理的果實(shí)最高,與CK、R2A、R2B、R2U處理無顯著差異;2023年CK最高,與R1A、R2A處理無顯著差異,但顯著高于其他處理。
2.2不同灌溉方式對(duì)庫(kù)爾勒香梨產(chǎn)量及水分利用效率的影響
從表4可以看出,灌溉方式、是否復(fù)水以及年份對(duì)庫(kù)爾勒香梨的產(chǎn)量和水分利用效率均具有極顯著影響。灌溉方式與是否復(fù)水、灌溉方式與年份及是否復(fù)水與年份兩因素的交互作用對(duì)庫(kù)爾勒香梨的產(chǎn)量和水分利用效率均具有極顯著影響,然而,灌溉方式、是否復(fù)水與年份三因素的交互作用對(duì)香梨的產(chǎn)量和水分利用效率無顯著影響。
從圖5可以看出,不同灌溉方式對(duì)庫(kù)爾勒香梨的產(chǎn)量和水分利用效率均有顯著影響。與CK相比,采用MRSI處理提高了庫(kù)爾勒香梨的產(chǎn)量,極顯著提高了水分利用效率。從灌溉方式看,B處理顯著提高了庫(kù)爾勒香梨的產(chǎn)量,極顯著提高了水分利用效率,從是否進(jìn)行復(fù)水來看,2023年,R2處理的庫(kù)爾勒香梨產(chǎn)量與水分利用效率與R1處理呈顯著差異。R2B處理的庫(kù)爾勒香梨產(chǎn)量最高,與CK相比顯著提高了 64.29%~90.73% 。同時(shí),水分利用效率也最高,與CK相比顯著提高了 230.61%~271.96%
2.3庫(kù)爾勒香梨果實(shí)品質(zhì)、產(chǎn)量和水分利用效率的相關(guān)性分析
圖6展示了果實(shí)品質(zhì)、產(chǎn)量和水分利用效率之間的相關(guān)性。其中,產(chǎn)量與可溶性固形物含量、可溶性糖含量、維生素C含量、單果質(zhì)量、可溶性蛋白含量以及水分利用效率呈極顯著正相關(guān),與去皮硬度、可滴定酸含量呈極顯著負(fù)相關(guān),與石細(xì)胞含量呈顯著負(fù)相關(guān)。水分利用效率同樣與可溶性固形物含量、可溶性糖含量、維生素C含量、單果質(zhì)量、可溶性蛋白含量呈極顯著正相關(guān),而與去皮硬度、可滴定酸含量、石細(xì)胞含量呈極顯著負(fù)相關(guān)。
2.4 綜合評(píng)價(jià)
筆者采用主成分分析法(PCA)和優(yōu)劣解距離法(TOPSIS)對(duì)庫(kù)爾勒香梨的果實(shí)品質(zhì)、產(chǎn)量及水分利用效率等13個(gè)指標(biāo)進(jìn)行綜合評(píng)價(jià),包括可溶性固形物含量、可溶性糖含量、維生素C含量、單果質(zhì)量、果實(shí)體積、果形指數(shù)、可溶性蛋白含量、果實(shí)含水量、單位面積產(chǎn)量、水分利用效率等10個(gè)正向指標(biāo),以及去皮硬度、可滴定酸含量、石細(xì)胞含量等3個(gè)負(fù)向指標(biāo)。對(duì)正向指標(biāo)與負(fù)向指標(biāo)分別進(jìn)行均一化處理,確保數(shù)據(jù)的可比性和分析的有效性。如表5所示,通過PCA得出各處理的綜合得分從高到低依次為R2B gt; R2A gt; R1B gt; R2U gt; R1A gt; R1U gt; CK,而通過TOPSIS分析得出各處理的綜合得分從高到低依次為R2B gt; R1B gt; R2A gt; R2U gt; R1A gt; CK gt; R1U。2種綜合評(píng)價(jià)方法均顯示R2B處理最優(yōu),表明R2B處理是最適宜庫(kù)爾勒香梨的灌溉方式。
其中X1為可溶性固形物含量, ??X2σ 為去皮硬度 ,X3 為可溶性糖含量,X4為維生素C含量,X5為可滴定酸含量 ,X6 為單果質(zhì)量,X7為果實(shí)體積,X8為果形指數(shù),X9為可溶性蛋白含量 X10 為石細(xì)胞含量,X11為果實(shí)含水量,X12為產(chǎn)量,X13為水分利用效率。*表示在0.05水平相關(guān)性顯著,**表示在0.01水平相關(guān)性極顯著。
3討論
果實(shí)品質(zhì)是影響消費(fèi)者選擇和喜好的關(guān)鍵因素之一,因此,在節(jié)水灌溉的同時(shí)如何保持甚至提升果實(shí)品質(zhì)成為研究的重點(diǎn)內(nèi)容。本試驗(yàn)中,與漫灌相比,改進(jìn)涌泉根灌(MRSI顯著提升了庫(kù)爾勒香梨果實(shí)的單果質(zhì)量、果形指數(shù)、維生素C含量、可溶性糖含量以及可溶性固形物含量,同時(shí)有效降低了果實(shí)的去皮硬度、石細(xì)胞含量以及可滴定酸含量。這與戚飛[23]的研究結(jié)果一致,其原因可能是涌泉根灌將水分、養(yǎng)分直接輸送到植物的根系,促進(jìn)了根系對(duì)水分和養(yǎng)分的吸收利用[30]。此外,本試驗(yàn)還發(fā)現(xiàn),在相同的灌水方式下,不復(fù)水處理的果實(shí)可溶性糖含量和可溶性固形物含量均高于復(fù)水處理,表明減少灌水量,一定的水分脅迫可以提高果實(shí)品質(zhì),這與Hao等的研究結(jié)果一致。進(jìn)一步分析表明,灌水量一定時(shí),雙側(cè)涌泉根灌處理的果實(shí)品質(zhì)最佳,優(yōu)于交替涌泉根灌和單側(cè)涌泉根灌。劉星等[32在地表滴灌的背景下,通過設(shè)置雙側(cè)灌溉、交替灌溉和單側(cè)灌溉3種灌溉方式,研究發(fā)現(xiàn)適度灌溉的分根交替滴灌處理能一定程度上提高蘋果的果實(shí)品質(zhì),這與本試驗(yàn)結(jié)果不相符,其原因可能是一方面本試驗(yàn)交替灌溉時(shí)間間隔長(zhǎng),香梨樹體受到持續(xù)的干旱脅迫,從而降低了果實(shí)品質(zhì);另一方面本試驗(yàn)采用的灌溉方式為涌泉根灌,灌水器的深度距地表 30cm ,而庫(kù)爾勒香梨的根系主要分布在 20~60cm 處,灌溉時(shí)水分可以直接輸送到根系,與地表滴灌水分變化對(duì)根系的影響相比,雙側(cè)灌溉可以使庫(kù)爾勒香梨根系處于適宜的水分環(huán)境下,從而促進(jìn)養(yǎng)分的吸收,提高果實(shí)品質(zhì)[33]。
在保持果實(shí)品質(zhì)的同時(shí),提高產(chǎn)量和水分利用效率同樣是節(jié)水灌溉的考慮因素。合理的灌溉方式能夠協(xié)調(diào)作物營(yíng)養(yǎng)物質(zhì)的分配,從而提高果實(shí)產(chǎn)量。李中杰2研究了不同灌溉方式和灌水量對(duì)山地蘋果產(chǎn)量和水分利用效率的影響,結(jié)果表明,相較于其他灌溉方式,涌泉根灌對(duì)產(chǎn)量和水分利用效率有著更顯著的提升作用。車銀偉等34的研究結(jié)果也證實(shí)了涌泉根灌可以顯著提高山地梨棗的產(chǎn)量與水分利用效率。本試驗(yàn)研究表明,與漫灌相比,MRSI顯著提高了庫(kù)爾勒香梨的產(chǎn)量和水分利用效率,與前人的研究結(jié)果一致[35]。其原因可能是:一方面漫灌對(duì)土壤表面的濕潤(rùn)面積大,使其蒸發(fā)量增大,入滲的水分明顯減少;而涌泉根灌直接將水分輸送到香梨的根部,減少了地面的無效蒸發(fā),可使所灌的水分發(fā)揮更有效的作用,相應(yīng)地提高了水分利用效率[36-37];另一方面涌泉根灌直接將水分輸送到果樹根系,根系活力增強(qiáng),進(jìn)而提高了產(chǎn)量3。在果實(shí)膨大期,不復(fù)水的處理方式在產(chǎn)量上并未顯著低于復(fù)水處理,表明該時(shí)期復(fù)水處理并未對(duì)庫(kù)爾勒香梨產(chǎn)量帶來明顯的積極影響,從而進(jìn)一步說明減少灌水量可以提高庫(kù)爾勒香梨的產(chǎn)量,這與汪精云等[29]、趙先飛等[39]的結(jié)果相似。
本研究結(jié)果表明,當(dāng)灌水量一定時(shí),雙側(cè)灌溉處理的庫(kù)爾勒香梨產(chǎn)量和水分利用效率最高,交替灌溉次之,單側(cè)灌溉最低。其原因可能是雙側(cè)灌溉處理可以將相同的灌水量均勻分配到果樹的根系,從而減少了水分深層滲漏量,提高了水分利用效率[22]。
4結(jié)論
筆者通過2年的田間試驗(yàn),相較于傳統(tǒng)的漫灌方式,雙側(cè)涌泉根灌不復(fù)水(R2B)處理的庫(kù)爾勒香梨果實(shí)可溶性固形物含量、可溶性糖含量、產(chǎn)量以及水分利用效率均為最高,可滴定酸含量和石細(xì)胞含量最低,綜合表現(xiàn)最好。此外,與CK相比,R2B處理節(jié)省了 48.68% 的灌水量。因此,R2B處理可以作為干旱區(qū)庫(kù)爾勒香梨適宜的灌溉方式。
參考文獻(xiàn)References:
[1]MBABAZID,MIGLIACCIO KW,CRANEJH,F(xiàn)RAISSEC, ZOTARELLIL,MORGANKT,KIGGUNDUN.Anirrigation schedule testing model for optimization of the Smartirrigation avocado app[J].Agricultural Water Management,2017,179: 390-400.
[2]HOLT N, SISHODIA R P,SHUKLA S, HANSEN K M. Improved water and economic sustainability with low-input compact bed plasticulture and precision irrigation[J].Journal of Irrigationand Drainage Engineering,2019,145(7):04019013.
[3] 曹雪,阿依吐爾遜·沙木西,金曉斌,周寅康.水資源約束下的 干旱區(qū)種植業(yè)結(jié)構(gòu)優(yōu)化分析:以新疆庫(kù)爾勒市為例[J].資源科 學(xué),2011,33(9):1714-1719. CAO Xue,Shamxi Ayitursun,JIN Xiaobin,ZHOU Yinkang. Planting structure optimization in the arid area with constrained waterresources:A case study of Korla,Xinjiang[J].Resources Science,2011,33(9):1714-1719.
[4]雷米,周金龍,曾妍妍,范薇,魏興,孫英.干旱區(qū)綠洲城市地 下水超采區(qū)綜合治理研究:以新疆庫(kù)爾勒市為例[J].南水北調(diào) 與水利科技,2019,17(2):67-74. LEI Mi,ZHOU Jinlong,ZENG Yanyan,F(xiàn)AN Wei,WEI Xing, SUN Ying. Comprehensive treatments of groundwater over-exploitation in arid oasis city:Acase of Korlacity in Xinjiang[J]. South-to-NorthWater Transfersand Water Scienceamp;Technology,2019,17(2):67-74.
[5]何振嘉,范王濤,杜宜春,潘岱立.涌泉根灌節(jié)水灌溉技術(shù)特 點(diǎn)、應(yīng)用及展望[J].農(nóng)業(yè)工程學(xué)報(bào),2020,36(8):287-298. HEZhenjia,F(xiàn)ANWangtao,DUYichun,PANDaili.Characteristics,application and prospects of bubbled-root irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(8):287-298.
[6]位杰,謝宏江,蔣媛.巴州地區(qū)庫(kù)爾勒香梨產(chǎn)業(yè)現(xiàn)狀、問題及 持續(xù)發(fā)展對(duì)策[J].果樹資源學(xué)報(bào),2024,5(5):108-112. WEI Jie,XIE Hongjiang,JIANG Yuan. Current situation,problemsand sustainable development countermeasuresofKorla fragrant pear industry in Bazhou area[J]. Journal ofFruit Resources,2024,5(5):108-112.
[7]張峰,蔣志琴,陳小光,李世強(qiáng),何天明.庫(kù)爾勒香梨產(chǎn)業(yè)發(fā)展 因素分析及對(duì)策建議[J].中國(guó)農(nóng)學(xué)通報(bào),2021,37(34):159- 164. ZHANG Feng,JIANG Zhiqin,CHEN Xiaoguang,LI Shiqiang, HETianming.The development factors of Pyrus sinkiangensis ‘KorlaXiangli’industry[J].Chinese Agricultural Science Bulletin,2021,37(34):159-164.
[8] 鄧永輝,兗攀,鄭強(qiáng)卿,陳奇凌,王振東,王文軍,王晶晶,張錦 強(qiáng).漫灌下幼樹期庫(kù)爾勒香梨根系分布特征研究[J].植物營(yíng) 養(yǎng)與肥料學(xué)報(bào),2023,29(8):1563-1572. DENG Yonghui, YAN Pan,ZHENG Qiangqing, CHEN Qiling, WANGZhendong,WANGWenjun,WANGJingjing,ZHANG Jinqiang. Distribution of young Korla fragrant pear tree roots under flooding irigation[J].Journal ofPlant NutritionandFertilizers,2023,29(8):1563-1572.
[9] 張景瑞,王春霞,馬建江,王佳鑫,王宏鑫,周方圓,李彥杰,王 遠(yuǎn).滴灌定額對(duì)香梨耗水特征的影響[J].灌溉排水學(xué)報(bào), 2024,43(7):29-38. ZHANG Jingrui,WANG Chunxia,MA Jianjiang,WANG Jiaxin, WANG Hongxin, ZHOU Fangyuan,LI Yanjie,WANG Yuan. The influence of drip irrigation amount on water consumption of fragrant pear[J]. Journal of IrrigationandDrainage,2O24,43(7): 29-38.
[10]王春峰,張峰,程嘉寶,關(guān)曉媛,秦飛.庫(kù)爾勒香梨產(chǎn)業(yè)發(fā)展現(xiàn) 狀、存在問題與對(duì)策建議[J].果樹資源學(xué)報(bào),2024,5(5):88- 91. WANG Chunfeng,ZHANG Feng,CHENG Jiabao,GUAN Xiaoyuan,QIN Fei. Current status,main problems and the suggestions on development of Korla fragrant pear[J].Journal of Fruit Resources,2024,5(5):88-91.
[11]劉洪波,張江輝,白云崗,張勝江,丁平.滴灌條件下庫(kù)爾勒香 梨耗水特征分析[J].新疆農(nóng)業(yè)科學(xué),2014,51(12):2206-2211. LIUHongbo,ZHANG Jianghui,BAI Yungang,ZHANG Shengjiang,DING Ping.Water consumption characteristics of Korla pear under drip irrigation[J].Xinjiang Agricultural Sciences,2014,51(12):2206-2211.
[12] 郭長(zhǎng)強(qiáng),崔遠(yuǎn)來,李新建,粟世華.廣西糖料甘蔗需水量和灌溉 定額空間變異[J].農(nóng)業(yè)工程學(xué)報(bào),2016,32(8):89-97. GUO Changqiang,CUI Yuanlai,LI Xinjian,SU Shihua.Spatial variation of sugarcane water requirement and irrigation quota in Guangxi[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(8):89-97.
[13]章垚.根區(qū)滲灌對(duì)庫(kù)爾勒香梨生長(zhǎng)影響研究[D].石河子:石河 子大學(xué),2023. ZHANG Yao.Effect of root zone infiltration irrigation on the growth of Korla fragrant pear[D]. Shihezi: Shihezi University, 2023.
[14]WANG LL,WU W Y,XIAO J,HUANG Q N,HU YQ. Effects of different drip irrigation modes on water use effciency of pear trees in Northern China[J].Agricultural Water Management, 2021,245:106660.
[15]鐘韻,費(fèi)良軍,曾健,傅渝亮,代智光.根域水分虧缺對(duì)涌泉灌 蘋果幼樹產(chǎn)量品質(zhì)和節(jié)水的影響[J].農(nóng)業(yè)工程學(xué)報(bào),2019,35 (21):78-87. ZHONGYun,F(xiàn)EILiangjun,ZENGJian,F(xiàn)U Yuliang,DAI Zhiguang.Efectsof root-zone water deficit on yield,quality and water use eficiency of young apple trees under surge-rot irigation[J].Transactions of the Chinese Society of Agricultural Engineering,2019,35(21):78-87.
[16]PENG Y L,F(xiàn)EI L J,HAO K,JIE F L,SHEN FY,LIU L H, FAN Q W. Effects of water and nitrogen coupling on apple yield,soil water and nitrogen distribution,and enzyme activity under surge-root irrigation in Loess Plateau,China[J]. Journal of Soil Science and Plant Nutrition,2023,23(4):5177-5195.
[17]DAI ZG,F(xiàn)EILJ,HUANGDL,ZENG J,CHENL,CAI Y H. Coupling effects of irrigationand nitrogen levelson yield,water andnitrogen use efficiency of surge-root irrigated jujube in a semiarid region[J]. Agricultural Water Management,2019,213: 146-154.
[18]張俊,緱麗娜,何振嘉,肖欣怡,梁飛,任虎興,傅渝亮.肥液濃 度對(duì)雙點(diǎn)源涌泉根灌土壤入滲特征及水分運(yùn)移的影響[J].節(jié) 水灌溉,2023(8):10-16. ZHANG Jun,GOU Lina,HE Zhenjia,XIAO Xinyi,LIANG Fei,REN Huxing,F(xiàn)U Yuliang. Effect of fertilizer concentration onsoil infiltration characteristicsand water transport under double point source in bubbled-root irigation[J]. Water Saving Irrigation,2023(8):10-16.
[19]趙新宇,胡羊羊,彭江涌,朱綠丹.灌水流量對(duì)涌泉灌及涌泉 根灌濕潤(rùn)體影響的研究[J].節(jié)水灌溉,2021(11):71-73. ZHAO Xinyu, HU Yangyang,PENG Jiangyong,ZHU Lidan. Effect of irrigation flow on the wetting body of bubbled irrigationand bubbled-root irrigation[J].Water Saving Irrigation,2021 (11):71-73.
[20]代智光,蔡耀輝.灌水器埋深對(duì)紅壤區(qū)涌泉根灌雙點(diǎn)源入滲 水氮運(yùn)移的影響[J].灌溉排水學(xué)報(bào),2021,40(7):9-15. DAI Zhiguang,CAI Yaohui. The effects of depth of subsurface dual emitters in surge-root irrigation on water and nitrogen movement in red soil[J].Journal of Irrigation and Drainage, 2021,40(7):9-15.
[21]李中杰.不同灌溉技術(shù)和灌水量的陜北山地蘋果節(jié)水增產(chǎn)提 質(zhì)效應(yīng)研究[D].西安:西安理工大學(xué),2021. LI Zhongjie. Effect of different irrigation techniques and irigationamounts on water saving,yield increaseand qualityimprovement of mountain apple in northern of Shaanxi[D]. Xi'an: Xi'an University ofTechnology,2021.
[22]劉曉麗,馬理輝,巖曉瑩,楊榮慧,訾浩.不同灌水方式對(duì)沙地 枸杞土壤水分及產(chǎn)量的影響[J].灌溉排水學(xué)報(bào),2020,39(2): 10-15. LIU Xiaoli,MA Lihui,YAN Xiaoying,YANG Ronghui,ZI Hao.Effect of different irrigation method on sandy soil moisture andyield of wolfberry[J]. Journal of Irrigation and Drainage, 2020,39(2):10-15.
[23]戚飛.三種灌溉方式對(duì)蘋果食用及營(yíng)養(yǎng)品質(zhì)的影響[D].楊凌: 西北農(nóng)林科技大學(xué),2018. QI Fei.Effect of three drip irrigationmethodson edible and nutritional qualityof apple[D].Yangling:NorthwestAamp;FUniversity,2018.
[24]吳普特,朱德蘭,汪有科.涌泉根灌技術(shù)研究與應(yīng)用[J].排灌 機(jī)械工程學(xué)報(bào),2010,28(4):354-357. WU Pute, ZHU Delan,WANG Youke. Research and application of bubbled-root irrigation[J]. Journal of Drainage and Irrigation Machinery Engineering,2010,28(4):354-357.
[25]蘇彥尹.基于實(shí)時(shí)氣象資料蘋果樹耗水量簡(jiǎn)便計(jì)算方法研 究[D].北京:中國(guó)科學(xué)院大學(xué)(中國(guó)科學(xué)院教育部水土保持與 生態(tài)環(huán)境研究中心),2020. SUYanyin.Study on simple calculation method of water consumption of orchard based on real-time meteorological data[D]. Beijing:UniversityofChineseAeademyofSeienees (Institute ofSoilandWaterConservation,CASamp;MWR),2020.
[26]SUNGZ,HUTT,LIUXG,PENGYL,LENG XX,LIYL, YANGQL.Optimizing irrigation and fertilization at various growth stages to improve mango yield,fruit quality and waterfertilizer use efficiency in xerothermic regions[J]. Agricultural Water Management,2022,260:107296.
[27]高俊鳳.植物生理學(xué)實(shí)驗(yàn)指導(dǎo)[M].北京:高等教育出版社, 2006. GAO Junfeng.Experimental guidance for plant physiology[M]. Beijing:Higher Education Press,2006.
[28]聶繼云,李靜,楊振鋒,張紅軍,李明強(qiáng).冷凍法測(cè)定梨的石細(xì) 胞含量[J].果樹學(xué)報(bào),2006,23(1):133-135. NIEJiyun,LI Jing,YANG Zhenfeng,ZHANGHongjun,LI Mingqiang.Study on the conditions for measuring stone cell content in pear flesh by freezing method[J].Journal of Fruit Science,2006,23(1):133-135.
[29]汪精云,費(fèi)良軍,李中杰,郝琨,劉騰.輕度調(diào)虧涌泉根灌提高 山地蘋果產(chǎn)量、品質(zhì)及水分利用效率[J].排灌機(jī)械工程學(xué)報(bào), 2024,42(8):835-842. WANGJingyun,F(xiàn)EI Liangjun,LI Zhongjie,HAO Kun,LIU Teng.Light regulated deficit surge-root irigation improvement of yield,quality and water use efficiency of mountain apple[J]. Journal of Drainage and Irrigation Machinery Engineering, 2024,42(8):835-842.
[30]LIU X,XU Y Y. Effect of integration of water and fertilizer on soilwater-nitrogen transportcharacteristicsin bubbled-rootirrigation[J]. Irrigation Science,2023,41(3):379-393.
[31]HAO K,F(xiàn)EI L J,LIU L H,JIEFL. Improving fruit yield and quality of mountain apple (Malus domestica Borkh.cv. Hanfu) by light deficit surge-root irigation in the Loess Plateau,China[J]. Journal of Soil Science and Plant Nutrition,2022,22(2): 1506- 1519.
[32]劉星,曹紅霞,廖陽(yáng),周宸光,李黃濤.滴灌模式對(duì)蘋果光合特 性、產(chǎn)量及灌溉水利用的影響[J].中國(guó)農(nóng)業(yè)科學(xué),2021,54 (15):3264-3278. LIU Xing, CAO Hongxia,LIAO Yang, ZHOU Chenguang,LI Huangtao. Effects of drip irrigation methods on photosynthetic characteristics,yield and irrigationwateruse of apple[J].ScientiaAgriculturaSinica,2021,54(15):3264-3278.
[33]代順冬.涌泉根灌條件下棗樹高效灌溉施肥模式研究[D].楊 凌:西北農(nóng)林科技大學(xué),2013. DAIShundong.Research on fertigation models of jujube under bubble-root irrigation[D].Yangling:NorthwestAamp; FUniversity,2013.
[34]車銀偉,林佳,胡田田,朱德蘭,黨思思.涌泉根灌對(duì)山地梨棗 產(chǎn)量形成及水分利用的影響[J].西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然 科學(xué)版),2012,40(1):177-182. CHEYinwei,LINJia,HUTiantian,ZHUDelan,DANGSisi. Effect of surge spring root irrigation on yield and water use of jujubeonmountainland[J]. JournalofNorthwestAamp;FUniversity(Natural Science Edition),2012,40(1):177-182.
[35]楊震,費(fèi)良軍,李哲,彭有亮,郝琨,劉騰.不同灌水技術(shù)下水 氮耦合對(duì)山地蘋果產(chǎn)量和品質(zhì)及水氮利用的影響[J].水土保 持學(xué)報(bào),2023,37(3):267-272. YANG Zhen,F(xiàn)EI Liangjun,LI Zhe,PENG Youliang,HAO Kun,LIUTeng.Effectsofwater-nitrogencouplingunderdifferent irrigation techniques onyieldand qualityof mountain apples andwaterandfertilizerutilization[J]. JournalofSoilandWater Conservation,2023,37(3):267-272.
[36]黎朋紅,汪有科,馬理輝,趙穎娜,段雪松.涌泉根灌濕潤(rùn)體特 征值變化規(guī)律研究[J].水土保持學(xué)報(bào),2009,23(6):190-194. LIPenghong,WANGYouke,MALihui,ZHAOYingna,DUAN Xuesong.Study on eigenvalues of wetted soil under surge root irrigation[J].Journal of Soil and Water Conservation,2009,23 (6):190-194.
[37]DAI ZG,F(xiàn)EI L J,LI P,CHENL,ZHONG Y. Suitable strategy ofwater-nitrogen management for surge-root irrigationof jujube in China[J].Agronomy Journal,2018,110(4):1390-1401.
[38]WANGHD,LIJ,CHENGMH,ZHANGFC,WANGXK, FANJL,WULF,F(xiàn)ANGDP,ZOUHY,XIANGYZ.Optimal dripfertigationmanagement improvesyield,quality,waterand nitrogenuse efficiency of greenhouse cucumber[J].Scientia Horticulturae,2019,243:357-366.
[39]趙先飛,張馨予,于國(guó)康,梁潔,趙紫嫣,劉宇,張林森.短枝富 士蘋果不同負(fù)載和灌水量對(duì)新梢生長(zhǎng)、產(chǎn)量和灌水利用效率 的影響[J].果樹學(xué)報(bào),2023,40(9):1860-1870. ZHAO Xianfei,ZHANG Xinyu,YU Guokang,LIANG Jie, ZHAO Ziyan,LIUYu,ZHANGLinsen.Effectofdifferent fruit loadsand irrigation amountson new shoot growth,yield and irrigation water use efficiency in spur-type Fuji apples[J]. Journal ofFruitScience,2023,40(9):1860-1870.