[摘要] 膽管癌是一種惡性程度高且治療方法較為有限的腫瘤。研究表明異檸檬酸脫氫酶1(isocitrate dehydrogenase 1,IDH1)是膽管癌的治療靶點之一,IDH1抑制劑在晚期膽管癌治療中潛力巨大。本文闡述IDH1抑制劑在膽管癌治療中的研究進展,分析其臨床應(yīng)用現(xiàn)狀,并探討其未來研究方向,旨在為膽管癌治療提供新的策略。
[關(guān)鍵詞] 膽管癌;異檸檬酸脫氫酶1;靶向治療;臨床試驗
[中圖分類號] R735.8" """"[文獻標識碼] A """""[DOI] 10.3969/j.issn.1673-9701.2025.20.023
膽管癌可分為肝內(nèi)、肝門區(qū)及遠端膽管癌。多數(shù)膽管癌患者確診時已處于晚期階段,治療方法的選擇較為有限。肝內(nèi)膽管癌在美國和歐洲的總發(fā)病率lt;1/100 000,但在全球范圍內(nèi)尤其是亞洲,肝內(nèi)膽管癌的發(fā)病率逐漸升高[1]。近年來,異檸檬酸脫氫酶(isocitrate dehydrogenase,IDH)作為肝內(nèi)膽管癌關(guān)鍵驅(qū)動因素的突變引發(fā)學(xué)者廣泛關(guān)注。IDH1是三羧酸循環(huán)的關(guān)鍵酶,其突變可導(dǎo)致2-羥基戊二酸(2-hydroxyglutarate,2-HG)異常累積,干擾DNA和組蛋白甲基化等表觀遺傳過程,促進腫瘤發(fā)生[2]。20%的膽管癌可檢測到IDH基因突變[3];13.1%的肝內(nèi)膽管癌患者攜帶IDH1突變,靶向IDH1的抑制劑可有效抑制2-HG生成并逆轉(zhuǎn)腫瘤效應(yīng)[4]。
1" IDH1在膽管癌發(fā)生中的作用機制
正常情況下,IDH1催化異檸檬酸轉(zhuǎn)化為α-酮戊二酸(α-ketoglutaric acid,α-KG),維持細胞代謝平衡。在膽管癌等多種類型腫瘤中,IDH1突變導(dǎo)致酶活性異常,累積生成2-HG。2-HG作為一種代謝產(chǎn)物可競爭性抑制α-KG依賴型酶,干擾DNA和組蛋白甲基化狀態(tài),導(dǎo)致基因表達紊亂,抑制細胞分化,促進腫瘤細胞增殖和存活,加速膽管癌進展。
研究顯示IDH1突變不僅影響腫瘤細胞代謝,還可改變腫瘤微環(huán)境。突變型IDH1可通過表觀遺傳調(diào)控外泌體釋放及代謝途徑對腫瘤代謝重編程[5-6]。IDH1突變與膽管癌進展顯著相關(guān),其特異性表觀遺傳效應(yīng)通過調(diào)控基因表達促進腫瘤惡化。IDH1突變還可通過干預(yù)免疫系統(tǒng)、促進血管新生推動腫瘤發(fā)展。2-HG的累積可抑制細胞毒性T淋巴細胞的活性,并使腫瘤抑制蛋白TET2 DNA去甲基化酶失活,導(dǎo)致腫瘤免疫逃逸[7]。2-HG通過Na+依賴型谷氨酸轉(zhuǎn)運蛋白SLC1A1進入血管內(nèi)皮細胞,驅(qū)動腫瘤血管新生,為腫瘤細胞的生長和轉(zhuǎn)移提供能量和氧氣[8]。
2" IDH1抑制劑在膽管癌治療中的應(yīng)用
2.1" 已批準上市的藥物
2.1.1" 艾伏尼布" 艾伏尼布是一種小分子口服藥物,選擇性抑制IDH1突變,是美國食品藥品監(jiān)督管理局(Food and Drug Administration,F(xiàn)DA)首個批準的可用于IDH1突變患者治療的藥物。艾伏尼布在多項臨床試驗中顯示出良好的安全性和療效,推薦劑量每天口服1次(500mg),直至疾病進展或出現(xiàn)不可接受的毒性。在Ⅰ期臨床試驗(NCT02073994)中,73例膽管癌患者接受500mg/d艾伏尼布治療。結(jié)果顯示患者對艾伏尼布的耐受性良好,未達到最大耐受劑量;患者的不良反應(yīng)主要為輕度至中度疲勞、惡心和腹瀉;常見的3級及以上不良事件包括腹水和貧血;患者的中位無進展生存期為3.8個月,中位總生存期為13.8個月[9]。與安慰劑相比,Ⅲ期ClarIDHy臨床試驗(NCT02989857)中艾伏尼布可顯著延長無進展生存期(progression free survival,PFS)[10]。艾伏尼布的常見不良事件為腹水和其他輕度癥狀,顯示其安全性總體可控[11]。2021年,艾伏尼布獲批用于局部晚期或轉(zhuǎn)移性IDH1突變型膽管癌患者的治療。
2.1.2" 恩西地平" 恩西地平是一種針對突變型異檸檬酸脫氫酶2(mutant isocitrate dehydrogenase 2,mIDH2)的口服選擇性抑制劑,其主要通過抑制mIDH2蛋白活性促進白血病細胞向正常細胞分化。目前恩西地平已獲得美國FDA批準,用于成人復(fù)發(fā)或難治性mIDH2急性髓系白血?。╝cute myeloid leukemia,AML)的治療。恩西地平的推薦劑量是口服1次/d(100mg),直至疾病進展或出現(xiàn)不可接受的毒性。盡管恩西地平在AML的治療中已證實有效,但其在膽管癌治療中的應(yīng)用尚處于初步探索階段。IDH1和IDH2突變在多種腫瘤的關(guān)鍵能量代謝途徑中扮演重要角色,且與腫瘤發(fā)展密切相關(guān)。理論上,針對mIDH2的恩西地平有望成為膽管癌治療的新選擇。
2.1.3" 奧魯替尼" 奧魯替尼是一種口服IDH1抑制劑,通過高通量篩選發(fā)現(xiàn)并優(yōu)化為喹啉酮類抑制劑,具有高度選擇性和高效能。奧魯替尼的成人推薦劑量為2次/d,150mg/d,隨餐服用可促進藥物吸收。奧魯替尼對IDH1中精氨酸殘基(R132)突變是有效的,而對野生型IDH1無活性[12-13]。奧魯替尼屬于變構(gòu)抑制劑,通過結(jié)合mIDH1疏水口袋穩(wěn)定其非活性構(gòu)象,阻斷2-HG的生成及腫瘤促進效應(yīng)[14]。奧魯替尼于2022年獲得美國FDA批準用于mIDH1復(fù)發(fā)或難治性AML的治療[15]。當前奧魯替尼相關(guān) Ⅰ/Ⅱ期臨床試驗(NCT03684811)正在進行以評估其對晚期實體瘤(包括肝內(nèi)膽管癌)的療效。此外歐盟也在進行相關(guān)研究,如歐盟藥品監(jiān)管機構(gòu)臨床試驗(European Union Drug Regulating Authorities Clinical Trials,EudraCT)數(shù)據(jù)庫登記的Ⅰb/2期和Ⅲ期研究(EudraCT編號:2015-005117-72),旨在為mIDH1晚期膽管癌患者提供新的治療選擇。
2.1.4" 達沙替尼" 達沙替尼是一種多靶點酪氨酸激酶抑制劑,適用于對伊馬替尼耐藥或不耐受的費城染色體陽性慢性髓細胞性白血病患者的治療,為慢性白血病患者的治療提供新選擇。達沙替尼對mIDH膽管癌患者高度敏感。在一項高通量藥物篩選研究中,mIDH肝內(nèi)膽管癌細胞對達沙替尼表現(xiàn)出高度敏感度[16]。研究報道m(xù)IDH肝內(nèi)膽管癌細胞依賴SRC激酶活性,這種依賴使得這些細胞對達沙替尼的抑制作用敏感[17]。該研究還揭示達沙替尼通過抑制SRC激酶活性,影響p70 S6激酶和核糖體蛋白S6的磷酸化,導(dǎo)致細胞顯著變小、蛋白合成減少[17]。
2.2" Ⅰ、Ⅱ期臨床試驗階段的藥物
2.2.1" IDH305" IDH305是一種針對mIDH1R132腫瘤(包括膽管癌)的口服IDH1抑制劑,臨床前研究顯示其具有抗腫瘤活性[18]。在Ⅰ期臨床試驗(NCT02381886)中,研究人員評估IDH305在mIDH1R132 AML、骨髓增生異常綜合征患者中的療效和安全性。在41例患者中,35例患者的2-HG水平下降,27%的AML患者及25%的骨髓增生異常綜合征患者分別實現(xiàn)完全緩解(complete remission,CR)或血細胞計數(shù)未完全恢復(fù)的CR;常見藥物相關(guān)不良事件包括惡心、血膽紅素水平升高及丙氨酸轉(zhuǎn)氨酶和天冬氨酸轉(zhuǎn)氨酶水平升高[19]。
2.2.2" BAY 1436032" BAY 1436032是拜耳公司研發(fā)的IDH1抑制劑。BAY 1436032對mIDH陽性腫瘤細胞顯示出顯著抑制作用,且藥代動力學(xué)特性良好[20]。在Ⅰ期臨床試驗(NCT02746081)中,研究人員評估BAY 1436032對晚期實體瘤患者的安全性和療效;研究顯示盡管BAY 1436032耐受性良好,但未觀察到CR或部分CR,病情進展率為58%,""" 3個月PFS僅為10%[21-22]。
2.2.3" HMPL-306" HMPL-306是和黃醫(yī)藥開發(fā)的mIDH1/2雙重抑制劑,適用于多種類型mIDH腫瘤患者,尤其是對傳統(tǒng)治療方法無效的患者。臨床前研究提示HMPL-306具有良好的抗腫瘤潛力。目前正在進行的Ⅰ期臨床試驗(NCT04762602)評估HMPL-306在膽管癌、軟骨肉瘤及膠質(zhì)瘤等腫瘤中的安全性和療效[23]。
2.2.4" 沃拉西德尼" 沃拉西德尼是一種口服可穿透血–腦脊液屏障的mIDH1/2雙重抑制劑。lt;100mg/d劑量的沃拉西德尼表現(xiàn)出良好的安全性,且在晚期復(fù)發(fā)性mIDH1/2低級別膠質(zhì)瘤患者中表現(xiàn)出初步臨床活性[24-25]。沃拉西德尼在膽管癌方面的研究數(shù)據(jù)也值得期待。
2.2.5" AB-218(曾用名DS-1001)" DS-1001是一種口服、腦滲透性強的mIDH1選擇性抑制劑。在Ⅰ期臨床試驗(NCT03030066)中,攜帶mIDH1R132的復(fù)發(fā)或進展性膠質(zhì)瘤患者對DS-1001展現(xiàn)出良好的耐受性及積極的治療反應(yīng)[26]。2023年啟動的Ⅰ期臨床試驗(NCT05814536)旨在評估DS-1001對mIDH1晚期膽管癌及其他實體瘤患者的安全性和療效,該研究設(shè)計包括劑量遞增和劑量擴展階段,計劃招募63例患者[27]。然而研究進展并不如預(yù)期,申辦方于2024年8月主動停止該臨床試驗研究并調(diào)整研究策略,這一決定可能與臨床試驗的早期結(jié)果不理想或招募患者較少有關(guān)。
2.2.6" LY3410738" LY3410738是一種新型、高效靶向mIDH1/2選擇性抑制劑,通過作用于變構(gòu)位點(cys269)快速失去酶功能,并特異性抑制2-HG的生成[28]。Ⅰ期臨床試驗(NCT04521686)正在探究LY3410738對晚期實體瘤(如膽管癌、軟骨肉瘤、膠質(zhì)瘤等)中的安全性和療效。另有針對惡性血液疾病的Ⅰ期臨床試驗(NCT04603001)也正在推進中[29]。
2.3" 臨床前階段的藥物
2.3.1" IDH1R132H抑制劑AGI-5198" AGI-5198是Agios公司研制的一種高效的mIDH1選擇性抑制劑。在膠質(zhì)瘤模型中,AGI-5198顯示出劑量依賴性的2-HG抑制效果,同時可顯著誘導(dǎo)組蛋白H3第9位賴氨酸三甲基化(H3K9me3)去甲基化,發(fā)揮腫瘤抑制作用[30-31]。AGI-5198的放射性標記類似物可用于腫瘤的影像學(xué)診斷,提高mIDH1腫瘤的早期檢測能力[32]。但AGI-5198在機體中的代謝穩(wěn)定性較差,可用性有限,這限制其在臨床中的應(yīng)用。
2.3.2" GSK-321" GSK-321是一種針對多種mIDH1(如R132H、R132C和R132G)的高效變構(gòu)抑制劑,其對R132H的半數(shù)最大抑制濃渡(half maximal inhibitory concentration,IC50)為4.6nM、對R132C和R132G的IC50均為2.9nM[33]。盡管展現(xiàn)出抗腫瘤潛力,但該藥尚處于臨床前階段。
2.3.3" KRC-09" KRC-09是通過高通量篩選發(fā)現(xiàn)的新型化合物,在2-HG抑制實驗中表現(xiàn)出比AGI-5198更強的活性[34]。結(jié)構(gòu)優(yōu)化后,KRC-09有望成為強效mIDH1抑制劑,但仍需進一步驗證。
2.3.4" BRD2879" BRD2879是一種具有八元環(huán)的磺酰胺類化合物,可在體內(nèi)有效抑制2-HG生成且毒性較低。然而BRD2879的低溶解度及藥代動力學(xué)特性限制其臨床應(yīng)用[35]。通過結(jié)構(gòu)修飾提升藥物性能,BRD2879有望成為下一代mIDH1抑制劑。
2.3.5" WM17" WM17是通過虛擬篩選和酶活性評估發(fā)現(xiàn)的創(chuàng)新型mIDH1抑制劑。WM17通過結(jié)合R132H的四螺旋結(jié)構(gòu)位點抑制2-HG的生成,逆轉(zhuǎn)組蛋白超甲基化狀態(tài),并有效阻止腫瘤細胞遷移[36]。
3" 耐藥機制與應(yīng)對策略
盡管IDH1抑制劑在膽管癌治療中展現(xiàn)出良好療效,但耐藥問題逐漸顯現(xiàn)。研究表明其耐藥機制可能包括次級突變、替代信號通路激活及腫瘤細胞代謝再編程。如某些mIDH1患者在接受抑制劑治療后,出現(xiàn)新的次級突變,這些次級突變可通過改變抑制劑的結(jié)合位點降低藥物的有效性;腫瘤細胞可通過激活其他致癌通路如磷脂酰肌醇3激酶/蛋白激酶B或絲裂原活化蛋白激酶途徑逃避IDH1抑制劑的抑制作用[37-38]。為應(yīng)對這些挑戰(zhàn),未來研究應(yīng)重點開發(fā)新一代IDH1抑制劑,克服次級突變的影響。同時,探索IDH1抑制劑與其他靶向藥物或免疫治療聯(lián)合應(yīng)用。如IDH1抑制劑聯(lián)合B細胞淋巴瘤2抑制劑的治療策略已在部分耐藥模型中展示出協(xié)同效果,值得進一步驗證[39]。
4" 小結(jié)
近年來,人們對IDH1在膽管癌發(fā)展中的作用研究取得顯著進展,特別是mIDH1已成為新型抗腫瘤治療策略的研究焦點之一。針對mIDH1的小分子抑制劑,如艾伏尼布及其他候選藥物對膽管癌具有潛在治療效果。這些研究成果不僅為膽管癌提供新的治療途徑,也為深入理解腫瘤代謝和腫瘤微環(huán)境調(diào)控開辟新的研究方向。盡管目前研究取得令人鼓舞的成績,但將IDH1抑制劑轉(zhuǎn)化為膽管癌治療的標準方案仍面臨一系列挑戰(zhàn),其長期療效和安全性仍需更廣泛、更深入的臨床試驗予以進一步驗證。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻]
[1]"" SHIAO M S, CHIABLAEM K, CHAROENSAWAN V, et al. Emergence of intrahepatic cholangiocarcinoma: How high-throughput technologies expedite the solutions for a rare cancer type[J]. Front Genet, 2018, 9: 309.
[2]"" WU M J, SHI L, MERRITT J, et al. Biology of IDH mutant cholangiocarcinoma[J]. Hepatology, 2022, 75(5): 1322–1337.
[3]"" PIROZZI C J, YAN H. The implications of IDH mutations for cancer development and therapy[J]. Nat Rev Clin Oncol, 2021, 18(10): 645–661.
[4]"" BOSCOE A N, ROLLAND C, KELLEY R K. Frequency and prognostic significance of isocitrate dehydrogenase 1 mutations in cholangiocarcinoma: A systematic literature review[J]. J Gastrointest Oncol, 2019, 10(4): 751–765.
[5]"" ZHANG X, MIAO R, LIU T, et al. IDH1 as a frequently mutated gene has potential effect on exosomes releasement by epigenetically regulating P2RX7 in intrahepatic cholangiocarcinoma[J]. Biomed Pharmacother, 2019, 113: 108774.
[6]"" NEPAL C, O'ROURKE C J, OLIVEIRA D V N P, et al. Genomic perturbations reveal distinct regulatory networks in intrahepatic cholangiocarcinoma[J]. Hepatology, 2018, 68(3): 949–963.
[7]"" WU M J, SHI L, DUBROT J, et al. Mutant IDH inhibits IFNγ-TET2 signaling to promote immunoevasion and tumor maintenance in cholangiocarcinoma[J]. Cancer Discov, 2022, 12(3): 812–835.
[8]"" WANG X, CHEN Z, XU J, et al. SLC1A1-mediated cellular and mitochondrial influx of R-2-hydroxyglutarate in vascular endothelial cells promotes tumor angiogenesis in IDH1-mutant solid tumors[J]. Cell Res, 2022, 32(7): 638–658.
[9]"" LOWERY M A, BURRIS HA 3 R D, JANKU F, et al. Safety and activity of ivosidenib in patients with IDH1-mutant advanced cholangiocarcinoma: A phase 1 study[J]. Lancet Gastroenterol Hepatol, 2019, 4(9): 711–720.
[10] ABOU-ALFA G K, MACARULLA T, JAVLE M M, et al. Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy): A multicentre, randomised, double-blind, placebo-controlled, phase 3 study[J]. Lancet Oncol, 2020, 21(6): 796–807.
[11] ZHU A X, MACARULLA T, JAVLE M M, et al. Final overall survival efficacy results of ivosidenib for patients with advanced cholangiocarcinoma with IDH1 mutation: The phase 3 randomized clinical ClarIDHy trial[J]. JAMA Oncol, 2021, 7(11): 1669–1677.
[12] LIN J, LU W, CARAVELLA J A, et al. Discovery and optimization of quinolinone derivatives as potent, selective, and orally bioavailable mutant isocitrate dehydrogenase 1 (mIDH1) inhibitors[J]. J Med Chem, 2019, 62(14): 6575–6596.
[13] CARAVELLA J A, LIN J, DIEBOLD R B, et al. Structure-based design and identification of FT-2102 (Olutasidenib), a potent mutant-selective IDH1 inhibitor[J]. J Med Chem, 2020, 63(4): 1612–1623.
[14] REINBOLD R, HVINDEN I C, RABE P, et al. Resistance to the isocitrate dehydrogenase 1 mutant inhibitor ivosidenib can be overcome by alternative dimer-interface binding inhibitors[J]. Nat Commun, 2022, 13(1): 4785.
[15] KANG C. Olutasidenib: First approval[J]. Drugs, 2023, 83(4): 341–346.
[16] SAHA S K, GORDAN J D, KLEINSTIVER B P, et al. Isocitrate dehydrogenase mutations confer dasatinib hypersensitivity and SRC dependence in intrahepatic cholangiocarcinoma[J]. Cancer Discov, 2016, 6(7): 727–739.
[17] LUK I S, BRIDGWATER C M, YU A, et al. SRC inhibition enables formation of a growth suppressive MAGI1-PP2A complex in isocitrate dehydrogenase-mutant cholangiocarcinoma[J]. Sci Transl Med, 2024, 16(747): eadj7685.
[18] CHO Y S, LEVELL J R, LIU G, et al. Discovery and evaluation of clinical candidate IDH305, a brain penetrant mutant IDH1 inhibitor[J]. ACS Med Chem Lett, 2017, 8(10): 1116–1121.
[19] DINARDO C D, HOCHHAUS A, FRATTINI M G," "et al. A phase 1 study of IDH305 in patients with IDH1R132-mutant acute myeloid leukemia or myelodysplastic syndrome[J]. J Cancer Res Clin Oncol, 2023, 149(3): 1145–1158.
[20] PUSCH S, KRAUSERT S, FISCHER V, et al. Pan-mutant IDH1 inhibitor BAY 1436032 for effective treatment of IDH1 mutant astrocytoma in vivo[J]. Acta Neuropathol, 2017, 133(4): 629–644.
[21] WENGER K J, RICHTER C, BURGER M C, et al. Non-invasive measurement of drug and 2-HG signals using 19F and 1H MR spectroscopy in brain tumors treated with the mutant IDH1 inhibitor BAY1436032[J]. Cancers (Basel), 2020, 12(11): 3175.
[22] WICK A, B?HR O, SCHULER M, et al. Phase Ⅰ assessment of safety and therapeutic activity of BAY1436032 in patients with IDH1-mutant solid tumors[J]. Clin Cancer Res, 2021, 27(10): 2723–2733.
[23] DORAISWAMY A, JAYAPRAKASH V, KANIA M, "et al. A phase 1, open-label, multicenter study of HMPL-306 in advanced hematological malignancies with isocitrate dehydrogenase (IDH) mutations[J]. Blood, 2021, 138(Suppl 1): 4438.
[24] KONTEATIS Z, ARTIN E, NICOLAY B, et al. Vorasidenib (AG-881): A first-in-class, brain-penetrant dual inhibitor of mutant IDH1 and 2 for treatment of glioma[J]. ACS Med Chem Lett, 2020, 11(2): 101–107.
[25] MELLINGHOFF I K, PENAS-PRADO M, PETERS K B, et al. Vorasidenib, a dual inhibitor of mutant IDH1/2, in recurrent or progressive glioma; Results of a first-in-human phase Ⅰ trial[J]. Clin Cancer Res, 2021, 27(16): 4491–4499.
[26] DINARDO C D, DE BOTTON S, POLLYEA D A, et al. Safety, efficacy, and PK/PD of vorasidenib in previously treated patients with mIDH1/2 hematologic malignancies: A phase 1 study[J]. Am J Hematol, 2023, 98(9): E233–E236.
[27] NATSUME A, ARAKAWA Y, NARITA Y, et al. The first-in-human phase Ⅰ study of a brain-penetrant mutant IDH1 inhibitor DS-1001 in patients with recurrent or progressive IDH1-mutant gliomas[J]. Neuro Oncol, 2023, 25(2): 326–336.
[28] ROHLE D, POPOVICI-MULLER J, PALASKAS N, "et al. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells[J]. Science, 2013, 340(6132): 626–630.
[29] SALAMA V, BROOKS N, SKWARSKA A, et al. Abstract 6417: LY3410738, a novel inhibitor of mutant IDH1 is more effective than ivosidenib and potentiates antileukemic activity of standard chemotherapy in preclinical models of acute myeloid leukemia (AML)[J]. Cancer Res, 2020, 80(16_Suppl): 6417.
[30] CLEARY J M, ROUAISNEL B, DAINA A, et al. Secondary IDH1 resistance mutations and oncogenic IDH2 mutations cause acquired resistance to ivosidenib in cholangiocarcinoma[J]. NPJ Precis Oncol, 2022, 6(1): 61.
[31] JOHANNESSEN T A, MUKHERJEE J, VISWANATH P, et al. Rapid conversion of mutant IDH1 from driver to passenger in a model of human gliomagenesis[J]. Mol Cancer Res, 2016, 14(10): 976–983.
[32] CHITNENI S K, REITMAN Z J, SPICEHANDLER R, et al. Synthesis and evaluation of radiolabeled AGI-5198 analogues as candidate radiotracers for imaging mutant IDH1 expression in tumors[J]. Bioorg Med Chem Lett, 2018, 28(4): 694–699.
[33] OKOYE-OKAFOR U C, BARTHOLDY B, CARTIER J, "et al. New IDH1 mutant inhibitors for treatment of acute myeloid leukemia[J]. Nat Chem Biol, 2015, 11(11): 878–886.
[34] LAW J M, STARK S C, LIU K, et al. Discovery of 8-membered ring sulfonamides as inhibitors of oncogenic mutant isocitrate dehydrogenase 1[J]. ACS Med Chem Lett, 2016, 7(10): 944–949.
[35] ZHANG N, ZHENG B, YAO X, et al. Identification and characterization of a novel mutant isocitrate dehydrogenase 1 inhibitor for glioma treatment[J]. Biochem Biophys Res Commun, 2021, 551: 38–45.
[36] LAVACCHI D, CALIMAN E, ROSSI G, et al. Ivosidenib in IDH1-mutated cholangiocarcinoma: Clinical evaluation and future directions[J]. Pharmacol Ther, 2022, 237: 108170.
[37] MIAO X, LIU C, JIANG Y, et al. BET protein inhibition evidently enhances sensitivity to PI3K/mTOR dual inhibition in intrahepatic cholangiocarcinoma[J]. Cell Death Dis, 2021, 12(11): 1020.
[38] LIANG S, GUO H, MA K, et al. A PLCB1-PI3K-Akt signaling axis activates EMT to promote cholangiocarcinoma progression[J]. Cancer Res, 2021, 81(23): 5889–5903.
[39] HOFFMEISTER-WITTMANN P, MOCK A, NICHETTI F, et al. Bcl-xL as prognostic marker and potential therapeutic target in cholangiocarcinoma[J]. Liver Int, 2022, 42(12): 2855–2870.
(收稿日期:2024–10–29)
(修回日期:2025–01–06)
通信作者:陳曦,電子信箱:fuzhoucxi@163.com