心房顫動(atrialfibrillation,AF)是臨床最常見的心律失常之一,患病率 1.5%~2%[1-2] 。目前,AF的全球發(fā)病率與死亡率逐年增加,在我國的發(fā)病率也隨著人口老齡化而急劇增加,給社會及醫(yī)療系統(tǒng)造成嚴重的負擔[3]。心外膜脂肪組織(epicardial adi-posetissue,EAT)是介于心肌和心包膜臟層之間的內(nèi)臟脂肪組織,主要分布在房室溝和室間溝,非均勻地包繞在心肌組織及大血管周圍,部分延伸進入心肌組織,與心肌共享微循環(huán),并由冠狀動脈(冠脈)分支供血。EAT已被證實具有代謝活動,其分泌的生物活性物質(zhì)可通過旁分泌和自分泌途徑作用于冠脈和心肌組織[4-5],EAT的異常沉積可促進心血管疾病的發(fā)生、發(fā)展。影像學檢查可評估EAT的厚度、脂肪衰減、體積及其炎癥活動的發(fā)生等,在AF消融術(shù)前評估及術(shù)后復發(fā)的預測中起到一定協(xié)助作用。
1 EAT在房顫發(fā)生中的作用
研究表明,EAT與AF密切關(guān)聯(lián),其可通過多種機制促發(fā)心律失常,目前已被證實的機制包括炎癥、脂肪浸潤、氧化應激、心房纖維化和自主神經(jīng)系統(tǒng)刺激,這些因素直接或間接造成心房重構(gòu),增加AF的嚴重程度和持續(xù)性[6。全身炎癥和免疫性疾病會增加AF的發(fā)生風險[7-9],炎癥在AF的發(fā)生、發(fā)展中起著核心作用[10]。有學者在多個AF患者的心房標本中發(fā)現(xiàn)鄰近心肌細胞的炎癥浸潤、纖維化和壞死[]。與竇性心律患者相比,AF患者的促炎標志物水平升高,其中C反應蛋白(C-reactiveprotein,CRP)和白細胞介素(interleukin,IL)-6已被證實與AF的發(fā)展及復發(fā)相關(guān)[12-13]。另外,腫瘤壞死因子(tumor necrosisfactor,TNF)- ∝ 、轉(zhuǎn)化生長因子(transforminggrowth factor,TGF)- β 和IL-6會促進心房纖維化和電重構(gòu)[14]。EAT可通過脂肪細胞直接浸潤心房的心肌細胞,脂肪異常沉積使得心肌細胞的同一性消失,導致電生理傳導異常,促發(fā) AF[15] 。有研究表明,與非皮下脂肪組織相比[16],內(nèi)臟脂肪的異常增多和沉積與AF相關(guān)性更大。EAT作為一種高代謝組織,在生理條件下可保護心臟及冠脈以減少機械變形,具有產(chǎn)熱功能,不僅提供心肌的主要能量來源一一游離脂肪酸,還可隔離循環(huán)游離脂肪酸,使其免受脂毒性[16-18]。此外,EAT釋放的脂肪細胞因子包括脂聯(lián)素、腎上腺髓質(zhì)素和網(wǎng)膜素,其通過抗氧化、抗炎和抗凋亡特性發(fā)揮作用19;與無AF患者相比,AF患者的EAT厚度、質(zhì)量和體積均有增加[20]。Wong等[21]的一項Meta分析表明,與腹部脂肪相比,EAT體積越大,與AF的相關(guān)性越高性,間接證明了EAT在AF中的潛在機制和臨床重要性。VanRosendael等22則提出了左心房(leftartial,LA)EAT的增加與持續(xù)性/永久性AF的高患病率相關(guān),持續(xù)性/永久性AF較竇率對照組的LAEAT更高。目前,EAT體積增加已被證明是AF后續(xù)發(fā)展的獨立預測指標[23]。Huber等[24]通過LA增強-EAT(LAe-EAT)對比增強CT掃描與非對比CT掃描的EAT體積的比值,評估AF患者LAe-EAT與AF消融術(shù)后復發(fā)的關(guān)系,證明LAe-EAT與AF消融術(shù)后復發(fā)獨立相關(guān),可作為EAT代謝活動的無創(chuàng)成像指標。
2EAT的影像學評估研究進展
2.1 超聲心動圖評估
EAT在超聲心動圖上表現(xiàn)為位于心室壁之間的高回聲區(qū)域,主要集中在右心室游離壁周圍和壁心包周圍[25]。EAT厚度的測量通常選擇胸骨旁長軸和短軸切面,這一位點的心外膜脂肪最高,能準確評估右心室游離壁的EAT厚度[26],其正常值約 5mm 。超聲心動圖除了評估EAT厚度,還可提供左室質(zhì)量、心臟收縮及舒張功能等心臟數(shù)據(jù)。且其對EAT厚度測量的可重復性較好[27],其中經(jīng)胸超聲心動圖(transthoracic echocardiographic,TTE)具有便捷、便宜及操作方便等優(yōu)點;而經(jīng)食管超聲心動圖是一種半侵入性方法,主要用來評估左心耳的結(jié)構(gòu)及功能,其準確性與操作者的技術(shù)水平有關(guān)。Gunturk等[28]研究表明,TTE測量的EAT厚度可預測術(shù)后新發(fā)AF,這也間接說明EAT厚度與AF發(fā)展的風險增加有關(guān)。Yamaguchi等29在通過TTE測量EAT厚度的同時,還檢測左心耳排空流速,首次證實了EAT厚度與左心耳排空流速呈顯著負相關(guān) (ρ=-0.56,Plt; 0.001),且血栓的發(fā)生均出現(xiàn)在厚EAT組,因此,采用EAT評估AF患者發(fā)生左心耳血栓的風險具有一定的潛在價值。超聲心動圖在EAT評估中具有一定局限性:僅能評估EAT厚度,無法評估體積;結(jié)果易受操作者影響、有一定偏差;當心房增大不對稱時,會影響厚度的測量。
2.2心臟CTA評估
心臟CTA空間分辨率高,可提供心臟、主動脈和外周血管的解剖信息,此外,在CT后處理工作站手動勾畫EAT范圍,可實現(xiàn)半自動測量,并根據(jù)勾畫范圍,對全心、LA及冠脈周圍EAT進行測量。脂肪組織衰減值較低,易分辨,CT值通常選取 -190~ -30HU[30] ,通過對脂肪組織閾值的選擇,可得到EAT的體積及衰減值。研究證實,EAT體積在AF的發(fā)生、發(fā)展及消融術(shù)后的復發(fā)中,均可作為獨立的預測因子[22-24]。EAT衰減值也可作為預測AF復發(fā)的影像學指標,但其可能因所用CT品牌、管電流、管電壓、對比劑、注射流率及閾值的不同而存在一定差異。Huber等[24]研究發(fā)現(xiàn),對比增強心臟CT掃描中較大的LAEAT離散度(反映EAT異質(zhì)性)與肺靜脈隔離術(shù)后AF復發(fā)獨立相關(guān)[31]。因此,將EAT指標估計值添加到CT診斷報告中可為心血管疾病提供額外的風險評估,且不會增加患者的輻射暴露及負擔[32]。目前,心臟CTA作為AF患者影像學評估的第二選擇,可更全面地評估超聲心動圖可能存在的LA血栓的漏診。對于植人左心耳封堵器或冠脈支架的患者,CT檢查時金屬偽影可能影響心臟評估的準確性,而能譜CT作為一種新技術(shù),可顯著減少人工瓣膜或電極金屬造成的偽影[33],大大改善圖像質(zhì)量。但目前尚無能譜CT與EAT的相關(guān)研究。
2.3 MRI評估
心血管磁共振(cardiacmagneticresonance,CMR)空間分辨率高,可識別心房組織結(jié)構(gòu)的變化,且無CT相關(guān)的電離輻射危害[34],是目前識別脂肪組織的金標準。CMR常用的掃描序列包括黑血快速自旋回波 T1, 穩(wěn)態(tài)自由進動(steadystate freeprecession,SSFP)序列、3DDixon技術(shù)。其中,黑血快速自旋回波 T1 較易獲得,但掃描時間長,對患者要求高,且圖像質(zhì)量易受心率及場強影響。SSFP序列可清晰顯示EAT情況,但在有大量心包積液時應用會受到一定限制,需與其他序列聯(lián)合以確定EAT邊界。3DDixon技術(shù)可在一次成像時間內(nèi)進行多種組織成分成像[35]。Nakamori等[36]研究發(fā)現(xiàn),在3D Dixon掃描模式下,AF患者的LAEAT顯著增加,可為檢測LA結(jié)構(gòu)重塑之外的AF患者提供更多的影像信息。Henningsson等[37]研究發(fā)現(xiàn),與標準單相Dixon相比,CineDixon可用于量化EAT,更好地克服心臟、呼吸的運動偽影,提供更佳的圖像質(zhì)量。Chahine等[34研究證實,在CMR定量下的EAT是AF患者消融術(shù)后復發(fā)獨立的預測指標。盡管CMR發(fā)展極快,有很高的軟組織分辨率,但其掃描時間較超聲和CT長,且是幽閉恐懼癥患者的絕對禁忌,臨床應用有一定限制。
2.4 PET-CT評估
氟-18-脫氧葡萄糖( 18F -flurodeoxyglucose, 18F? #FDG)PET-CT可檢測炎性病變的位置、活動度及嚴重程度,在心血管炎性病變的診斷及療效評估中具有重要作用[38]。炎癥早期表現(xiàn)為組織充血、血管通透性增加和炎癥因子的釋放,促進 18F -FDG輸送至病變部位;隨炎癥進展,炎癥細胞中葡萄糖代謝不斷增加,進而促使 18F -FDG攝取增強[39]。Mzaurek等[40]通過 18F -FDGPET-CT發(fā)現(xiàn)AF患者EAT最大標準攝取值(maximum standard uptake value, SUVmax )高于非AF對照組且差異有統(tǒng)計學意義,但該研究樣本量較?。?1例),且未調(diào)整BMI、左心房直徑等相關(guān)混雜因素。而王冰等[39]在校正高密度脂蛋白膽固醇、左室射血分數(shù)、左心房直徑、EAT體積后,證實LAEAT炎癥活性與AF仍獨立相關(guān)是AF的影響因素;此外,研究還發(fā)現(xiàn)EAT炎癥活性增高( 與AF呈正相關(guān),AF發(fā)生的危險程度隨EAT炎癥活性增高而升高,但此項研究缺乏病理金標準的對比。以上研究表明, 18F -FDGPET-CT可作為定量分析及動態(tài)監(jiān)測AF患者炎癥活性的無創(chuàng)影像學指標,在AF的防治及抗炎療效評估中具有潛在的臨床價值和應用前景。但目前因PET-CT費用較高等, 18F -FDGPET-CT在AF中的應用研究較少。
2.5 人工智能技術(shù)評估
隨著人工智能技術(shù)的快速發(fā)展,EAT的測量從半自動技術(shù)發(fā)展到全自動深度學習方法,除加快了分割時間,使EAT定量適合臨床實踐外,還提高了EAT體積測量的可重復性[32]。West等[41]基于心臟CTA提出了一種新的深度學習模型,證明EAT體積的評估可在不受其他危險因素的影響下改善心血管和非心血管結(jié)局的風險評估,預測全因死亡率、非心源性死亡率、心肌梗死和卒中;另外其也證實了EAT體積是心臟術(shù)后AF的獨立危險因子,但心臟術(shù)后的短期AF風險數(shù)據(jù)僅依賴于住院監(jiān)測,缺少出院后的監(jiān)測隨訪,后續(xù)需更大樣本量的研究證實。Qu等[42]提出評估了基于深度學習的2D卷積神經(jīng)網(wǎng)絡,并自動量化了非對比CT數(shù)據(jù)的EAT體積,結(jié)果與手動勾畫的體積一致,證明非對比CT測量EAT體積可行且具有臨床意義,未來或可整合到常規(guī)胸部CT中,用于預測AF。深度學習模型的應用可減少人工誤差,提高效率,助力AF患者的并發(fā)癥預防和預后評估。
目前,諸多研究證實了EAT與AF之間的相關(guān)性,并隨之衍生出了LAEAT、LAe-EAT等一系列影像學評估指標,其在AF的發(fā)生、發(fā)展、預后及消融術(shù)后的復發(fā)中,可作為獨立預測指標。EAT有可能為臨床提供更多潛在的治療靶點,而影像學技術(shù)的不斷革新也將更好地評估EAT。
[參考文獻]
[1]CAMM A J,LIP G Y,DE CATERINA R,et al.2012 focused update of the esc guidelines for themanagement of atrial fibrillation:an update of the 2O1O esc guidelinesfor the management ofatrial fibrillation-developed with the special contribution of the European heart rhythmassociation[J].Europace,2012,14(10):1385- 1413.
[2]WANGF,ZHU M,WANG X,et al.Predictive value of left atrial appendage lobes on left atrial thrombusor spontaneous echo contrast in patients with non-valvular atrial fibrillation[J].BMC Cardiovasc Disord,2018,18 (1):153.
[3]中華醫(yī)學會心血管病學分會.心房顫動診斷和治療中國 指南[J].中華心血管病雜志,2023,51(6):572-618.
[4]MAZUREK T,ZHANG L,ZALEWSKI A,et al. Human epicardial adipose tissue is a source of inflammatorymediators[J].Circulation,2003,108(20):2460-2466.
[5]NEELAND IJ,ROSS R,DESPRESJP,et al.Visceral andectopic fat,atherosclerosis,and cardiometabolic disease:a position statement[J].Lancet Diabetes Endocrinol,2019,7(9):715-725.
[6]CONTE M,PETRAGLIA L,CABARO S,et al. Epicardial adipose tissue and cardiac arrhythmias:focuson atrial fibrillation[J].Front Cardiovasc Med,2022,9: 932262.
[7]LINDHARDSEN J,AHLEHOFF O,GISLASON G H,et al.Risk of atrial fibrillation and stroke in rheumatoid arthritis:danish nationwide cohort study[J].BMJ,2012, 344:e1257.
[8]RHEE T M,LEE J H,CHOI E K,et al. Increased risk ofatrial fibrillation and thromboembolism in patients withseverepsoriasis:a nationwidepopulation-based study[J]. Sci Rep,2017,7(1):9973.
[9]HUXLEY R R,ALONSO A,LOPEZ F L,et al. Type 2 diabetes,glucose homeostasis and incident atrial fibrillation:the atherosclerosis risk in communities study[J]. Heart,2012,98(2):133-138.
[10]WATANABE T,TAKEISHI Y,HIRONO O,et al. Creactive protein elevation predicts the occurrence of atrial structural remodeling in patients with paroxysmal atrial fibrillation[J].Heart Vessels,20o5,20(2): 45-49.
[11]FRUSTACI A,CHIMENTI C,BELLOCCI F,et al. Histological substrate of atrial biopsies in patients with loneatrialfibrillation[J].Circulation,1997,96(4): 1180-1184.
[12]PATEL P,DOKAINISH H,TSAI P,et al. Update on theassociation ofinflammation and atrial fibrillation [J].JCardiovasc Electrophysiol,2010,21(9): 1064- 1070.
[13] MAROTT S C,NORDESTGAARD B G,ZACHO J,et al.Does elevated c-reactive protein increase atrial fibrillation risk?amendelian randomization of 47,000 individuals from the general population[J].JAm Coll Cardiol,2010,56(10):789-795.
[14]YAMASHITA T,SEKIGUCHI A,IWASAKI Y K,et al. Recruitment of immune cellsacross atrial endocardium in human atrial fibrillation[J].CircJ,2O10,74 (2):262-270.
[15]WONG C X,GANESAN A N,SELVANAYAGAM JB. Epicardial fat andatrial fibrillation:current evidence, potential mechanisms,clinical implications,and future directions[J]. Eur Heart J,2017,38(17):1294-1302.
[16]MEULENDIJKS ER,JANSSEN-TELDERSC,HULSMAN E L,et al. The change of epicardial adipose tissue characteristicsandvulnerabilityforatrialfibrilation upon drastic weight loss[J].Adipocyte,2024,13(1): 2395565.
[17]RABKIN S W.Epicardial fat: properties,function and relationship to obesity[J]. Obes Rev,2007,8(3):253- 261.
[18]ERNAULT A C,MEIJBORG V M F,CORONEL R. Modulation ofcardiac arrhythmogenesis by epicardial adipose tissue:jaccstate-of-the-art review [J].J Am Coll Cardiol,2021,78(17):1730-1745.
[19] GRUZDEVA O V,AKBASHEVA O E,DYLEVA Y A,et al.Adipokine and cytokine profiles of epicardial and subcutaneous adipose tissue inpatients with coronary heart disease[J].Bull Exp Biol Med,2017,163(5): 608-611.
[20]TSAO H M,HU W C,WU M H,et al. Quantitative analysis of quantity and distribution of epicardial adipose tissue surrounding the left atrium in patients with atrial fibrillation and effect of recurrence after ablation[J]. Am J Cardiol,2011,107(10):1498-1503.
[21] WONG C X,SUN M T,ODUTAYO A,et al. Associationsofepicardial,abdominal,and overall adiposity withatrialfibrillation[J].CircArrhythmElectrophysiol,2016,9(12):e004378.
[22] VAN ROSENDAEL A R,SMIT J M,EL'MAHDIUI M, et al.Association between left atrial epicardial fat,left atrialvolume,and the severity of atrial fibrillation[J]. Europace,2022,24(8):1223-1228.
[23] BOS D,VERNOOIJ M W,SHAHZAD R,et al. Epicardial fat volume and the risk of atrial fibrillation in thegeneral population free of cardiovascular disease [J].JACC Cardiovasc Imaging,2017,10(11) : 1405- 1407.
[24]HUBER A T,F(xiàn)ANKHAUSER S,CHOLLET L,et al. Therelationship between enhancing left atrial adipose tissue at CT and recurrent atrial fibrillation[J].Radiology,2022,305(1) :56-65.
[25]] SINGH N,SINGH H,KHANIJOUN H K,et al. Echocardiographic assessment of epicardial adipose tissue-- amarker of visceral adiposity[J].Mcgill JMed,2007, 10(1):26-30.
[26]IACOBELLIS G,ASSAEL F,RIBAUDO M C,et al. Epicardial fat from echocardiography:a new method forvisceral adipose tissue prediction[J].Obes Res, 2003,11(2) :304-310.
[27]IACOBELLIS G,WILLENS H J,BARBARO G,et al. Threshold values of high-risk echocardiographic epicardial fat thickness[J].Obesity (Silver Spring),2008,16 (4):887-892.
[28]GUNTURK EE,TOPUZ M,SERHATLIOGLUF,et al. Echocardiographically measured epicardial fat predicts new-onset atrial fibrillation after cardiac surgery[J]. Braz JCardiovasc Surg,2020,35(3):339-345.
[29]YAMAGUCHI S,OTAKI Y,TAMARAPPOO B,et al. Theassociation between epicardial adiposetissue thickness around the right ventricular free wall evaluatedby transthoracic echocardiography and left atrial appendage function[J].Int J Cardiovasc Imaging,2020, 36(4):585-593.
[30]MONTI C B,CAPRA D,ZANARDO M,et al. CTderived epicardial adipose tissue density:systematic review and meta-analysis[J].Eur JRadiol,2021,143: 109902.
[31] HUBER A T,F(xiàn)ANKHAUSER S,WITTMER S,et al. Epicardial adipose tissue dispersion at CT and recurrentatrial fibrillation afterpulmonaryvein isolation [J].Eur Radiol,2024,34(8):4928-4938.
[32]MONTI C B,CODARI M,De CECCO C N,et al. Novel imaging biomarkers:epicardial adiposetissue evaluation[J].BrJRadiol,2020,93(1113):20190770.
[33]SCHWARTZ F R,TAILOR T,GACA JG,et al.Impact of dual energy cardiac CT for metal artefact reduction post aortic valve replacement[J].Eur JRadiol,2020,129:109135.
[34]CHAHINE Y,MACHERET F,ORDOVAS K,et al. MRI-quantified left atrial epicardial adipose tissue predictsatrial fibrillation recurrence following catheter ablation[J].FrontCardiovasc Med,2022,9:1045742.
[35]馬延,王晶鑫,王斌,等.心外膜脂肪組織心臟磁共振成 像序列及研究進展[J].磁共振成像,2022,13(8):142- 145.
[36]NAKAMORI S,NEZAFAT M,NGO L H,et al.Left atrialepicardial fat volume is associated with atrial fibrillation:a prospective cardiovascular magnetic resonance 3D Dixon study[J].J Am Heart Assoc,2018,7 (6):e008232.
[37]HENNINGSSON M,BRUNDIN M,SCHEFFEL T,et al
Quantification ofepicardial fat using 3D cine Dixon MRI[J].BMC Med Imaging,2020,20(1):80.
[38]VAIDYANATHANS,PATELCN,SCARSBROOKAF, etal.FDG PET/CT in infection and inflammation--current and emerging clinical applications[J].Clin Radiol,2015,70(7):787-800.
[39]王冰,徐依多,邵山,等.F-FDGPET/CT測量的左 心房心外膜脂肪炎癥活性與心房顫動的相關(guān)性[J]. 中華心血管病雜志,2021,49(12)1213-1219.
[40]MAZUREK T,KILISZEK M,KOBYLECKA M,et al. Relation ofproinflammatoryactivityof epicardial adiposetissue to the occurrence of atrial fibrillation[J]. AmJCardiol,2014,113(9):1505-1508.
[41]WEST H W,SIDDIQUE M,WILLIAMS M C,et al. Deep-learning for epicardial adipose tissue assessment with computed tomography:implications for cardiovascularrisk prediction[J].JACC Cardiovasc Imaging,2023, 16(6):800-816.
[42]QU J,CHANG Y,SUN L,et al.Deep learning-based approach for the automatic quantification of epicardial adipose tissue from non-contrast CT[J].Cogn Comput2022,14:1392-1404.
(收稿日期 2024-07-18)