• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    質(zhì)子輻照對12Cr2W2Mn鐵素體/馬氏體鋼液態(tài)鉛鉍共晶合金腐蝕行為的影響

    2025-08-09 00:00:00鐘玉馨石柯張飛飛楊吉軍
    關(guān)鍵詞:馬氏體鐵素體責(zé)任編輯

    Effect proton irradiation on corrosion behavior 12Cr2W2Mn ferritic/martensiticsteelinliquidlead-bismutheutectic

    ZHONGYu-Xin,SHI Ke2 ,ZHANGFei-Fei,YANGJi-Jun (1. Education,InstituteNuclear Science ,Sichuan University,Chengdu 61Oo64,China;2.National Aerospace Chemical Power,Hubei Institute Aerospace Chemotechnology,Xiangyang 441Oo3,China; 3.China Nuclear Power Research Institute,Shenzhen 5l8O26,China)

    Abstract:Ferritic/Martensitic(F/M) steel is regarded asa promising structural material for lead-cooled fast reactors due to its excellnt radiation resistance mechanical properties.However,its long-term service performance is significantly affected by two factors :corrosion from high-temperature liquid lead-bismuth eutectic (LBE) iradiation damage caused by intense neutron flux.To systematically investigate the syner gistic effects irradiation corrosion on l2Cr2W2Mn F/M steel,this study evaluated the impact pro tonirrdiation on its corrosion behavior in liquidLBE.The samples were first iradiated with protons at

    400°C ,followed by exposure to liquid LBE at 400°C for 500 hours.A comparative analysis was conducted on the corrosion products corrosion depth between irradiated non-irrdiated samples. The results showed that proton irradiation induced the formation a large amount M23C6 phases on the surface. During subsequent corrosion in LBE,Cr-rich oxides were observed to preferentially grow around the M23C6 particles along grain boundaries.Notably,iradiated samples exhibited fewer oxide particles than non-irradiated ones,indicating that proton irradiation improves the corrosion resistance 12Cr2W2MnF/M steel. This improvement is attributed to the M23C6 phase blocking the diffusion paths iron chromium atoms,thereby inhibiting corrosion progression.These findings provide valuable insights for the development irradiation corrosion-resistant structural materials for future lead-cooled fast reactors.

    words: Liquid lead-bismuth eutectic;Proton irradiation;Corrosion; M23C6 phase;Cr-rich oxide

    1 Introduction

    Lead-Bismuth Eutectic(LBE) is widely recog nized as the most promising metallic coolant for the lead-cooledfastreactors[1.],primarilydue toits unique combination advantageous properties: low melting point,high boiling point,low vapor pressure,low viscosity,excellent thermal conductivity, negligible structural damage under irra diation[3.4]. However, the corrosion structural materials in contact with LBE remains the primary challenge for its practical application as a reactor coolant[5.6].

    Ferritic/martensitic (F/M) steels are recog nized as promising cidate structural materials for lead-cooled fast reactors,owing to their excellent corrosion resistance, high thermal conductivity, lowthermalexpansioncoefficient, costeffectiveness[7-0]. Extensive research has been conducted on the corrosion behavior F/M steels in liquid LBE,yielding significant findings. Kikuchi et al.[8] investigated the corrosion behavior F82H steel inacirculatingLBE loop at 450°C 500°C revealingthatthe corroded F82H steel exhibited a three-layer structure:an outer magnetite (Fe3O4) layer,a spinel-type FeCr2O4 intermediate layer, an oxygen diffusion layer.Weisenburger et al.[l] studied the corrosion T91 steel in flowing LBEunder varying flow velocities,demonstrating that the hydrodynamic effect flowing LBE induced delamination the outermagnetitelayer.Shi et al.[12] further explored the corrosion behavior SIMP T91 steels by exposing them to static oxygen-saturated liquid LBE at 600°C for up to 1000 h.Their results showed that the corroded structure comprised an outer layer columnar plumberrite magnetite,aninnerlayer FeCrspinel, adiffusionlayerwith Cr/Si -richox ide precipitates.

    Ontheotherh,structuralmaterialsinleadcooled fast reactors are subjected to irradiation, which induces damage such as voids,second-phase particles, dislocation loops[13-15]. Irradiation damagealters the internal microstructure materials, affecting theirperformance—including embrittlement,phaseinstability, irradiation-enhanced corrosion[16-18]. Researchers have investigated the effectirradiation onmaterialcorrosionbehavior,reportingboth irradiation-decelerated irradiationpromoted corrosion phenomena.

    In general, the corrosion resistance most materials deteriorates after irradiation. Li et al.[17] found that Si-ion irradiation accelerated the corrosion SiC in FLiNaK molten salt. Kenik et al.[19] reported radiation-induced degradation stainless steel in light water reactors,while Ickes et al.[18] observed irradiation-assisted stress corrosion crackingin 3l6 steels irradiated in commercial pressur ized water reactors.Notably,some studies have indicated that irradiation can mitigate corrosion under specific conditions. Zhou et al.[2o] found that proton irradiation decelerated intergranular corrosion NiCr alloys in molten salt,while Hanbury et al.[21] suggested that proton irradiation could reduce the corrosion rate 316L stainless steel in hightemperature water. Dai et al.[22] also demonstrated good compatibility between FeCrAlY/TiN coatings LBE under proton irradiation.However,limitedresearch has investigated the effect irradiation on the corrosion behavior F/M steels in liq uid LBE[23,24] , whether irradiation exerts a positiveor negative effect remains unclear.Previous studies on the LBE corrosion behavior F/M steels have primarily focused on parameters such as temperature,time,flow rate, oxygen content8.11.2]. Therefore,clarifying how irradiation influences corrosion behavior is critical for the development LBE-cooled reactors in the future.

    In our previous work, 12Cr2W2MnF/M steel wasdeveloped,itsirradiationperformancewas systematicallyinvestigated.In this study,a proton irradiation experiment was designed,followed by static oxygen-saturated liquid LBE corrosion tests, aiming to explore the effect proton irradiation on thecorrosion behavior12Cr2W2MnF/M steel in liquid LBE.

    2 Experimental procedures

    2.1 Materialssamples

    The 12Cr2W2Mn F/M steel was prepared by vacuum inductionmelting, the sintered ingotwas forged into a plate with dimensions 335mm× mm×20mm .The steel was normalized at 1050°C for 30min ,followed by tempering at 760°C for 2h withaircoolingaftereachheattreatment step.The chemical composition 12Cr2W2MnF/M steel is listed in Tab.1.Prior to testing,the steel surface was sequentially ground with 80o,100o,200O 3000 gritssilicon carbide papers,followed by mechanical polishing with diamond powder. Finally,the samples were electrochemically polished using a solution 20% perchloric acid 80% ethanol to remove the surface stress caused by previous processing steps. The electrochemical polishing parameters were as follows: voltage 20V ,current 2A ,pol

    ishingtime 20s

    2.2 Protonirradiationexperiments

    Proton irradiation experiments with 5 MeV protons were conducted at 400°C usinga 3MV temaccelerator at the Institute Nuclear Science ,Sichuan University,Chengdu, China. The ion beam flux was 3.4×1012cm-2?s-1 the H+ irradiation fluence was 6.2×1017cm-2 The total irradiation time was approximately 50h , while the cumulative time at 400°C (including heat ing cooling)was about 65h .Thedisplacement damage levels proton concentration prilesas a function depth were calculated by the Stopping Range Ions in Matter(SRIM) code,as shown in Fig.1.The fluencecorrespondstoapeak damage level O.27 dpa(displacement per atom) at 82μm below the surface.In the uniform damage areaextending from the surface to a depth 2O μm ,the damage level remains at approximately O.Oldpa,so that the influence irradiation damage changes with irradiation depth can be neglected.

    Fig.1 Distribution displacement damage H+ concentration asa function depthinthesteel irradiated with H+ ions at a fluence 6.2×1017cm-2 ,simulatedby SRIM

    2.3 CorrosionexperimentsinliquidLBE

    The quartz tube with a thickness 2mm served as the corrosion container,following a de sign similarto that reported by Bian et al.[25].As shown inFig.2,proton-irradiated samples solid LBE alloy were placed inside the quartz tube, which was then evacuated to a vacuum better than 1×10-2 Pa sealed by flame.The LBE consisted 44.5% (weight percentage) pure lead granules(Aladdin,purity 599.99% ) 55.5% (weight percentage) pure bismuth granules (Aladdin,puritygt; 99.999% ).The sealed quartz tubes werevertically positioned in a vertical furnace maintained at 400°C for 500h using a temperature controller. A quartz column ensured the samples werecompletelyimmersed in liquidLBE facilitatedtheir separation from theLBEafter the corro sion testing.Non-irradiation F/M steels samplesun derwent the same corrosion procedure as a control group.

    Tab.1 The composition the12Cr2W2MnF/M steel
    Fig.2Schematic the experimental setup for liquid LBE corrosion testing

    2.4 Samplescharacterization

    After the corrosion experiments,one subset samples was cleaned at room temperature using a fresh solution composed glacial acetic acid,absoluteethanol, hydrogen peroxide(volumeratio to remove adherent LBE from the surface[26,27] . These samples were then prepared for sur face characterization. The remaining samples were face-mounted with epoxy adhesive(FP14420, USA), their cross-sections were polished to a mirror finish using silicon carbide papers dia mond powder for cross-sectional analysis.

    The composition phases the F/M steels were analyzed by X-ray diffraction (XRD,DX2700, Dong Fangyuan, China). Foreach sample,the XRD 20 range was set from 20° to 90° , diffractogram analysis was performed using Jade6.5stware.Surfacecross-sectionalmor phologies,alongwith elemental distribution,were characterized by field-emission scanning electron microscopy(FESEM,Hitachi S480O) equipped with energy-dispersiveX-rayspectroscopy(EDS). Transmission electron microscopy(TEM,Titan Cubed Themis G2 3OO,F(xiàn)EI)was used to obtain selected area electron diffraction (SAED) patterns high-resolution (HR) images. Cross-sectional TEM specimens were prepared via ion thinning (Gatan69l)focusedionbeam(FIB,HELIOS Nano Lab 6OOi,F(xiàn)EI)milling,with Pt C pro tective layers deposited prior to processing.

    3 Results

    3.1 Surfacemorphologycorrosionsamples

    Fig.3 illustrates the surface topography samples after liquid LBE corrosion testing at 400° C for 500h .As shown in Fig.3a,the non-irradiated sample surface exhibited dense granular corrosion products that completely covered the metal matrix, with no exposed substrate visible.In contrast,the proton-irradiated sample(Fig.3b)displayed only a fewlarge particles numerous small particles after corrosion. The microstructure elemental composition these particleswillbe analyzed in the subsequent section.Notably, the non-irradiated sample showed significantly larger particle size higher density corrosion products compared to the proton-irradiated sample.This indicates that pro ton irradiation enhances the corrosion resistance 12Cr2W2MnF/M steel in liquid LBE.

    3.2XRD patterns corrosion samples

    Fig.4 presents XRD patterns samplesafter liquidLBE corrosionat 400°C for 500h ,withthe black curve representing the non-irradiated sample the red curve the proton-irradiated sample.Diffraction peaks corresponding to cubic Fe-Cr oxide (PDF #34-0140) Cr3O8 (PDF#36-1330)were detected on both sample surfaces.Characteristic peaks the body-centered cubic(bcc)structure F/Msteel—(11O),(20O),(211)—were also identified in all XRD spectra.

    Fig.3SEM micrographs the sample surfaces after liquid LBE corrosion testing at 400°C for 500 h

    These results indicate that the surfaces both samples were covered by Fe-Cr oxides (e. g., (202 Fe3O4 (Fe,Cr)3O4 spinel)[26.28] Cr-rich oxides(e.g., Cr3O8. )afterLBE corrosion.Notewor thy,thediffraction peak positions intensities differed between samples,suggesting that the protonirradiated sample had fewer corrosion products than the non-irradiated one. This finding aligns with the SEMobservationsin Fig.3,further confirming that proton irradiation enhances the corrosion resistance 12Cr2W2MnF/M steel in liquid LBE.

    Fig.4XRD patterns samplesafterliquidLBE corrosion at 400°C for 500h

    3.3Cross-sectional micrographs EDSanalysis corrosion samples

    As shown in Fig. 5, the cross-sectional morphology composition the samples after liquid LBEcorrosion were characterized in detail by SEM EDS.Ascanbeseen from Fig.5a Fig.5b, the corrosion layer the non-irradiated sampleis mainly divided into two layers:an oxide layer an internal oxidation zone(IOZ). According to the results XRD EDSanalysis,the oxide layer is about 3.6μm thick,mainly composed Fe-Cr oxides(such as Fe3O4 (Fe, Cr)3O4 spinel);the IOZ is about 0.9μm thick, its main component is Cr-rich oxides(such as Cr3O8, .The crosssectional area photon-irradiated sample(Fig.5c Fig.5d)exhibits a corrosion layerwith a thickness approximately 0.8μm ,containing Fe,Cr O element. Combining the XRD EDS results,this region can be attributed to Fe-Cr oxide Cr3O8 .Notably,the thicknesscorrosion layer issignificantly reduced after proton irradiation. These cross-sectional analysis results are consistent withthepreviousresultsin Fig.3 Fig.4,fur ther confirming that proton irradiation enhances the corrosion resistance 12Cr2W2Mn F/M steel in liquid LBE.

    4 Discussion

    Based on the above study,it was found that proton irradiation can enhance the corrosion resistance12Cr2W2MnF/M steel inliquid LBE. To explore the mechanism, technologiessuchas SEM,EDS,XRD TEM were used to analyze theoriginal samples,proton-irradiated samples, LBE-corroded samples, samples under the syn ergistic effect proton irradiation LBE corrosion.

    4.1The M23C6 phase induced byproton irradiation

    Fig.6 shows the surface morphology ele ments distribution samples before after pro ton irradiation using SEM EDS.In Fig. 6a, thereisno special matters on the sample surface except some micro scratches.In contrast,F(xiàn)ig.6b shows that a large number particulate precipitates adhere to the surface 12Cr2W2Mn F/M steel, theirmorphologyissimilarto thesmallparticles inFig.3b,indicating thatproton irradiation induces the formation numerous precipitated phases in the steel.EDS analysis Areas 1 2(Figs. 6c~6d ) shows that the carbon content significantly increases from 4.60% to 19.16% (atomic percentage), whilethecontents otherelements show no obvious changes. This indicates that the precipitates are carbides.Combined with the atomic percentage carbon content ( 19.16% atomic percentage),they are speculated to be M23C6 phase(Fe,Cr,W-rich carbide).The signals elements such as Cr ,Mn, W,Ni, Ta do not change,which is attributed to the fact that the matrix signal 12Cr2W2MnF/ M steel is too strong to reveal the real signal the precipitated phase.

    Fig.5Cross-sectional SEM micrographs EDS analysis samples after liquid LBE corrosion testing at 400°C for 500 h (a,b)Non-irradiated sample;(c,d) Proton-irradiated sample.IOZ sts for internal oxidation zone.

    Fig.7shows XRD patterns samples before after proton irradiation,exhibiting diffraction peaks the Fe-Cr bcc structure.The (11O), (200),(21l)peaks shift rightward after proton irradiation,which can be attributed to the change in lattice parameter 12Cr2W2Mn ferritic/martensitic steel induced by proton irradiation[29.30]. Magnified(21l) peaks the samples are inset in the toprightcornerFig.7.Notably,an impuritypeak emerges near the (2ll)peak in the irradiated sample,assigned to the M23C6 phase(PDF ?35 1 0783).This finding is consistent with the EDS results in Fig. 6, subsequent TEM analysis was conducted to confirm the M23C6 precipitates.

    Fig. 8 shows TEM micrographs protonirradiated sample in different areas where M23C6 pre cipitates(white arrows)are observed.The SAED pattern in Fig.8b shows that the(20O),(111), (11I) reflections correspond to a [Oll] zone axisinthered-circledarea,characteristicthefacecentered cubic(fcc)structure M23C6 precipitates. The EDS results(Fig. 8c) the red-circled area in Fig.8b confirm that it is a Cr-rich carbide precipitate,such as Cr23C6

    The M23C6 phase is one the common precipi tatesin F/M steels,typically distributed at grain boundaries rich in Fe,Cr,W elements[31.32]. The M23C6 precipitate was confirmed by SAED EDS analysis observed in various regions via TEM micrographs.By integrating the SEM,XRD, TEM results from Figs.6~8,it can be concludedthattheprecipitate inducedbyproton irradiationon the surface 12Cr2W2MnF/M steel is the M23C6 (Cr-rich carbide)phase.

    Fig.6SEMmicrographs EDS analysis the samples (a,c)Beforeprotonirradiation;(b,d)Afterprotonirradiation.
    Fig.7XRD patterns magnified (21l) peakssamplesbefore afterprotonirradiation

    4.2Analysis corrosion products in samples after LBE corrosion testing

    Fig.9 presents surface micrographs EDS analysis samples after LBE corrosion testing. Figs.9a 9b are high-magnification images Fig.3.Fig.9c shows the EDS results Area A in Fig.9a,where the detected main elements are Fe, Cr , O.Based ontheXRD(Fig.4) EDS results,AreaAisinferred to be Cr-richoxides,such as Fe-Cr mixed oxides Cr2O3 .Area B corresponds to one the large particles(white arrows) onthe surface the proton-irradiated sampleafter

    Fig.8TEMmicrographs(a),SAED pattern(b) EDS analysis(c) M23C6 phase(white arrows)in proton-irradiated sample

    LBE corrosion, EDS analysis confirms it as a Cr-rich oxide.ForArea C inFig.9b,the small par ticlesresemble those observed in the morphology Fig.6b.Fig. 9e reveals the main components Area C,which is presumed to be the M23C6 phase due to the high C content (22.68% atomic percentage).These results indicate that the large particles (Area B)in Fig.9b are Cr-rich oxidesformed dur ing LBE corrosion,whereas the small particles (Area C)are M23C6 phases induced by proton irra diation prior to LBE testing.It can be inferred that theproton irradiation-induced M23C6 phase enhances the corrosion resistance 12Cr2W2Mn F/M steel in liquid LBE.

    Fig.9SEM micrographs EDS analysis after LBE corrosion testing(a)Non-iradiatedsample;(b)Proton-irradiatedsample;(c)AreaA;(d)AreaB;(e)AreaC.WhitearrowsrepresentCr-richoxides

    4.3 Cr-rich oxideanalysisin proton-irradiated sample after LBE corrosion testing

    Fig.1O presents cross-sectional TEM micrographs HAADF image proton-irradiated sample afterLBE corrosion testing.Fig.lOa shows the overall perspective the cross-sectional sample prepared by FIB system,where Pt C were deposited as protective layers. The HAADF image the region outlined by the yellow dashed line clearly reveals the cross-sectional morphology,with dis tinct microscopic contrast enabling the observation M23C6 phases (marked by red arrows) Crrich oxides. These TEM observations are in good 920

    agreement with SEM results shown in Fig. 9b.

    Fig.11 displays an amplified HAADF image the area in Fig.1Ob,along with EDS mapping re sultsforFe,Cr,O,C,Welements.TheEDS mapping the black particulates on the sample sur face exhibits strong signals for oxygen chro mium,confirming that these particulates in Fig.10b (markedbyblue arrows) Fig.1lareCr-rich ox ides.Notably,the Cr-rich oxide particulates are sparsely distributed,with M23C6 particles acting as separators.The growth Cr-rich oxide particles is inhibited because M23C6 particles occupy the prefer ential growth sites.

    Fig.10Crossectional TEMmicrograph HAADF image proton-irrdiated sample afterLBEcorrosion testing (a)Bright-field(BF)cross-sectionalTEMmicrographproton-irrdiatedsample;(b)HAADFimagetheyellowdoted-line area.Red arrows represent the M23C6 phase, blue arrows indicate Cr-rich oxides.
    Fig.11Cross-sectional HAADF-STEM micrograph TEM/EDS elemental mappings Fe,Cr,O,C W in the proton-irradiated sample after LBE corrosion

    4.4Growth process cr-rich oxides in protonirradiated samples after Ibe corrosion testing

    Fig.12 shows a cross-sectional TEM micro graph a proton-irradiated sample afterLBE corrosion,with three typical areas selected for EDS analysis.Based on the particle size C content (21. 65% atomic percentage),the particle in Area A was identified as an M23C6 phase.Similarly,Area Bwas characterized as Cr-rich oxide.In Area C, EDSanalysis detected higher contents C (204號 (9.34% atomicpercentage)O( 19.19% (204號 atomic percentage).Additionally,TEM observations revealed a smaller particle encapsulated by a larger one,indicating that the larger particle is Crrich oxide while the smaller one is an M23C6 precipitate.The Cr-rich oxide growsaround the M 23C6 par ticle eventually wraps it up. As reported in Refs.[31,32], M23C6 precipitates preferentially format martensitic lath boundaries grain boundaries.Concurrently,diffusionFe Crelements occurs primarily at grain boundaries[7.26]. Thus,F(xiàn)e Cr atoms diffuse around M23C6 particles reactwith oxygen from LBE,leadingtothe formation Cr-rich oxides.

    Fig.12Cross-sectional TEMmicrograph EDS analysis the proton-irradiated sample afterLBEcorrosior

    Fig.13 shows the corrosion mechanism proton-irradiated samplesafterLBE corrosion.The growth mechanism the Cr-rich oxides in these samples during liquid LBE corrosion testing can be inferred as follows :

    Fig.13Corrosion mechanism the proton-irradiated sample afterLBE corrosion

    (1)As shown in Fig.13a, M23C6 precipitates cover the steel matrix surface after proton irradiation,as confirmed by Figs. 6~8

    (2)In the LBE corrosion experiment,F(xiàn)e atoms first diffuse into LBE liquid through gaps in the M23C6 precipitate layer.Concurrently,O atoms contacted with steel matrix via these gaps.However, dense M23C6 precipitates interdict most diffusion paths forFe Cr ,as depicted inFig.13b.

    (3)With Cr atoms diffusing more slowly than Fe,O atoms infiltrate the metal matrix along Fediffusionpathways react with diffused Cr to form oxides. Cr-rich oxides grow around M23C6 particles atnarrow gaps along the sample surface at widergaps(Fig.13b),as validatedbyFigs. 9~12 業(yè)

    (4)As Cr-rich oxides further fill the gaps be tween M23C6 particles,they block diffusion Fe Cr atoms the permeation Pb/Bi atoms, therebyenhancingLBEcorrosionresistance (Fig.13d supported by Figs. 1~5) :

    Additionally,theoxidelayernon-irradiated sample(Figs. 5a~5b )is consistent with previous studies[7.26]. There is no obvious boundary between theF e3O4 layer (Fe,Cr)3O4 layer,whichcan beattributed to the relatively thin thickness the Fe (Cr)oxide layer,making it difficult for EDS line scanning to distinguish them clearly.By the way, Frazer et al.[24] found that the corrosion resistance HT-9 steel degrades under the combined action ion beam irradiation liquid metal corrosion. Ourstudy differs from theirs in that the irradiation LBE corrosion experiments were conducted step-by-step(as inferred from simultaneousion irradiation liquid metal corrosion experiments). Investigatingthebehavior 12Cr2W2Mn F/M steel undersimultaneous irradiation corrosionwillbe ournext research focus.

    5 Conclusions

    Based on the study 12Cr2W2Mn F/M steel subjected to 5 MeVproton irradiation at 400°C in LBEliquid at 400°C for 500h ,the main conclu sions are summarized as follows :

    (1)Proton irradiation induced the formation abundant M 23C6 precipitates on the sample sur face.

    (2)In the LBE corrosion experiment,the nonirradiatedsampleformedtwoCr-richoxidelayersafter corrosion:The outer oxide layer (3.6μm )was mainlycomposedFe-CroxidessuchasF e3O4 (Fe, Cr)3O4 spinel,while the inner oxide layer (204號 (0.9μm )was primarily composed Cr-rich oxides with numerous oxideparticles. Theprotonirradiated sample only formed one Cr-rich oxide layer (0.8μm )small amount oxide particles after corrosion.

    (3)The Cr-rich oxide grow along the periph ery within the gaps M23C6 particles.

    (4)The M23C6 phase Cr-rich oxides inter dictthediffusionpathsFe Cratoms,deceler ateLBE corrosion, enhance the LBE corrosion resistance 12Cr2W2Mn ferritic-martensitic steel afterproton irradiation.

    References:

    [1] ZhangJ,LiN.Review the studies on fundamental issues in LBE corrosion[J].JNucl Mater,2008, 373:351.

    [2] KurataY,F(xiàn)utakawa M,Saito S.Corrosion behavior steels in liquid lead-bismuth with low oxygen concentrations[J].JNucl Mater,2O08,373:164.

    [3] Hosemann P,Hawley M,Koury D,et al. Characterization oxide layers grown on D9 austenitic stainless steel in lead bismuth eutectic[J].JNucl Mater, 2008,375:323.

    [4] Loewen E P,Tokuhiro A T. Status research development the lead-alloy-cooled fast reactor[J]. JNucl Sci Technol,2003,40:614.

    [5] AbellaJ,VerdaguerA,Colominas S,etal.Fundamental data:Solubility nickel oxygen diffusivity iron oxygen in molten LBE[J]. JNucl Mater,2011,415:329.

    [6] Short M P,Ballinger R G.A functionallygraded composite for service in high-temperature lead- lead-bismuth-cooled nuclear reactors—I: Design [J]. Nucl Technol,2012,177:366.

    [7] Chen G,Lei Y, Zhu Q,et al.Corrosion behavior CLAM steel weld bead in flowingPb-Biat 55O℃[J]. JNuclMater,2019,515:187.

    [8] Kikuchi K,Kamata K,Ono M,et al.Corrosion rate parent weld materials F82H JPCA steels under LBE flow with active oxygen control at 450 500°C [J].JNuclMater,2008,377:232.

    [9] Shi K, Zhang W, Ning Z,et al. Microstructural evolution hardening effect 12Cr2W2Mn ferritic/ martensitic steel under Au-ions irradiation [J].JAlloy Compd,2020,835:155360.

    [10]ZhengC,ReeseER,F(xiàn)ield KG,et al.Microstructure response ferritic/martensitic steel HT9 after neutron irradiation:Effect dose[J].JNucl Mater, 2019,523:421.

    [11]Weisenburger A,Heinzel A,Muller G,et al. T91 cladding tubes with without modified FeCrAlY coatings exposed in LBE at different flow,stress temperature conditions[J].JNucl Mater,2008, 376:274.

    [12]Shi Q,Liu J,Luan H,et al.Oxidation behavior ferritic/martensitic steels in stagnant liquid LBE saturated by oxygen at 600°C [J].J Nucl Mater,2015, 457:135.

    [13]Gelles D S.Microstructural examination commer cial ferritic alloys at 2OO dpa[J].J Nucl Mater, 1996,233-237:293.

    [14] Reese ER,Bachhav M,Wells P,et al. On α‘ precipitate composition in thermally annealed neutron-irradiated Fe-9-18Cr alloys [J].J Nucl Mater,2018,500:192.

    [15]GettoE,SunK,MonterrosaAM,etal.Void swelling microstructure evolution at very high damage levelinself-ionirradiatedferritic-martensitic steels[J].JNucl Mater,2016,480:159.

    [16]Yu Z,Kim T,Bachhav M,et al.Effect proton pre-irradiation on corrosion Zr-O.5Nb model alloys with different Nb distributions [J].Corros Sci, 2020,173:108790.

    [17]LiJ,Yan L,Huang H,et al. Corrosion behavior ion-irradiated SiC inFLiNaK moltensalt[J].Corros Sci,2020,163:108229.

    [18]Ickes MR,Mckinley J,Lee J-K,et al.Irradiationassisted stress corrosion cracking type 347 type 316 steels irradiated in commercial pressurized water reactors[J].JNuclMater,202O,536:152182.

    [19]Kenik E A,Busby JT.-induced degrada tion stainless steel light water reactor internals[J]. Mat SciEngR,2012,73:67.

    [20] Zhou W,Yang Y,Zheng G,et al.Proton irradiation-decelerated intergranular corrosion NiCr alloys in molten salt[J].Nat Commun,2020, 11: 3430.

    [21]HanburyRD,Was G S.Oxide growth dissolution on 316L stainless steel during irradiation in high temperature water[J].Corros Sci,2019,157:305.

    [22]Dai Y,BoutellierV,Gavillet D,et al.FeCrAlY TiN coatings on T91 steel after irradiation with 72MeV protons in flowing LBE[J].JNucl Mater, 2012,431: 66.

    [23]Lillard RS,Paciotti M,TcharnotskaiaV.The influence proton irradiation on the corrosion HT-9 during immersion in lead bismuth eutectic [J]. JNucl Mater,2004,335:487.

    [24]Frazer D,Qvist S,Parker S,et al. Degradation HT9 under simultaneous ion beam irradiation liquid metal corrosion[J].J Nucl Mater,2016, 479:382.

    [25]Bian L,Xia S,BaiQ,et al.The effects cold working on the corrosion behavior an austenitic stainless steel in liquid lead-bismuth eutectic under vacuum at 873 K [J].J Nucl Mater,2018, 509: 591.

    [26]Chen G,Ju N,Lei Y,et al. Corrosion behavior 410 stainless steel in flowing lead-bismuth eutectic alloyat 550°C [J].JNuclMater,2019,522:168.

    [27]Tsisar V,Schroer C,Wedemeyer O,et al.Characterization corrosion phenomena kineticson T91 ferritic/martensitic steel exposed at 45O (204號 550°C to flowing Pb-Bi eutectic with 10-7mass% dissolved oxygen [J]. JNucl Mater,2017,494: 422.

    [28]Schroer C,VoB Z,WedemeyerO,et al.Oxidation steel T9l in flowing lead-bismuth eutectic(LBE) at 550°C [J].JNucl Mater,2006,356:189.

    [29]Liu X,Le Flem M,BéChade J-L,et al.XRD investigation ion irradiated Ti3Si0.90Al0.10C2 [J].Nucl InstrumMethB,2010,268(5):506.

    [30]ZhangL,QiQ,ShiLQ,et al.Damage tolerance Ti3SiC2 to high energy iodine irradiation [J].Appl Surf Sci,2012,258(17):6281.

    [31]Yang Z,Jin S,SongL,et al.Dissolution M 23C6 (20 New Phase Re-Precipitation inFe Ion-Irradiated RAFM Steel[J].Metals,2018,8(5):349.

    [32]Kano S,Yang H,Shen J,et al. Investigation instability M 23C6 particles in F82H steel under electron ion irradiation conditions[J].JNucl Mater, 2018,502:263.

    (責(zé)任編輯:于白茹)

    猜你喜歡
    馬氏體鐵素體責(zé)任編輯
    失音癥
    青春(2025年7期)2025-08-18 00:00:00
    固溶溫度對Ti-10Mo-6Zr-4Sn-3Nb合金力學(xué)性能及顯微組織的影響
    貝氏體型非調(diào)質(zhì)鋼連鑄圓壞組織和力學(xué)性能研究
    Q420高強(qiáng)鋼板探傷不合格原因分析及改善措施
    熱軋卷冷卻方式對冷軋低合金高強(qiáng)鋼H800L性能的影響
    陸渾湖(外一首)
    牡丹(2025年13期)2025-08-13 00:00:00
    解題(組詩)
    右岸有片海
    99在线人妻在线中文字幕| 亚洲va在线va天堂va国产| a级毛色黄片| 精品国内亚洲2022精品成人| 永久网站在线| 在线免费观看的www视频| 日日摸夜夜添夜夜爱| 国产日本99.免费观看| 一级毛片aaaaaa免费看小| 成人亚洲欧美一区二区av| 日韩欧美精品v在线| 色综合站精品国产| 国产中年淑女户外野战色| 青春草视频在线免费观看| 国产亚洲精品久久久久久毛片| 少妇被粗大猛烈的视频| 欧美zozozo另类| 麻豆av噜噜一区二区三区| 欧美潮喷喷水| 欧美精品一区二区大全| 国产一区二区亚洲精品在线观看| 简卡轻食公司| 大又大粗又爽又黄少妇毛片口| 熟女电影av网| av又黄又爽大尺度在线免费看 | 亚洲国产色片| 亚洲丝袜综合中文字幕| 亚洲av中文av极速乱| 国产国拍精品亚洲av在线观看| 一本久久精品| 国产色爽女视频免费观看| 精品不卡国产一区二区三区| 在线免费观看的www视频| 亚洲精品久久国产高清桃花| 久久久a久久爽久久v久久| 小说图片视频综合网站| 长腿黑丝高跟| 麻豆成人午夜福利视频| 精品久久久久久久人妻蜜臀av| av在线蜜桃| 国产精品人妻久久久影院| 男人的好看免费观看在线视频| 国产av一区在线观看免费| 婷婷亚洲欧美| 久久99热这里只有精品18| 毛片一级片免费看久久久久| 亚洲第一电影网av| 天堂中文最新版在线下载 | 人妻久久中文字幕网| 亚洲,欧美,日韩| 久久精品人妻少妇| 国产精品精品国产色婷婷| 韩国av在线不卡| 国产在线男女| 男人舔奶头视频| 97在线视频观看| 人妻少妇偷人精品九色| 国产精品电影一区二区三区| 一进一出抽搐gif免费好疼| 久久精品影院6| 亚洲欧美日韩高清专用| 久久久久久久久中文| 久久热精品热| 超碰av人人做人人爽久久| 美女高潮的动态| 欧美日韩国产亚洲二区| 亚洲乱码一区二区免费版| 久久久久久国产a免费观看| 久久久色成人| 日韩大尺度精品在线看网址| 亚洲av中文av极速乱| 黄色视频,在线免费观看| 日本撒尿小便嘘嘘汇集6| 日韩成人伦理影院| 蜜臀久久99精品久久宅男| 一级二级三级毛片免费看| 日本黄色片子视频| 国产探花极品一区二区| 日韩欧美一区二区三区在线观看| 国产亚洲av嫩草精品影院| 国产精品麻豆人妻色哟哟久久 | 欧洲精品卡2卡3卡4卡5卡区| 99久久中文字幕三级久久日本| 又粗又爽又猛毛片免费看| 久久精品国产亚洲av香蕉五月| 色综合站精品国产| 深爱激情五月婷婷| 日本欧美国产在线视频| 久久精品久久久久久久性| 国产av一区在线观看免费| 尤物成人国产欧美一区二区三区| 一本精品99久久精品77| 精品久久久久久久人妻蜜臀av| 99久久九九国产精品国产免费| 天天躁夜夜躁狠狠久久av| 搡女人真爽免费视频火全软件| 国产一区二区亚洲精品在线观看| 六月丁香七月| 亚洲成a人片在线一区二区| 十八禁国产超污无遮挡网站| 国产伦在线观看视频一区| 你懂的网址亚洲精品在线观看 | 12—13女人毛片做爰片一| 国产一区二区在线av高清观看| 久99久视频精品免费| 国产在线男女| 亚洲精品成人久久久久久| 国产精品久久久久久av不卡| 亚洲av成人精品一区久久| 91久久精品电影网| 亚洲七黄色美女视频| 欧美高清性xxxxhd video| 国产精品1区2区在线观看.| av免费在线看不卡| 国产精品一二三区在线看| 国产免费男女视频| 成人国产麻豆网| 能在线免费看毛片的网站| 日本一本二区三区精品| 日本五十路高清| 日韩成人av中文字幕在线观看| 欧美成人精品欧美一级黄| 免费av不卡在线播放| 99热只有精品国产| a级毛色黄片| 九草在线视频观看| 天堂√8在线中文| 午夜激情福利司机影院| 亚洲色图av天堂| 97超视频在线观看视频| 狂野欧美白嫩少妇大欣赏| 欧美日韩国产亚洲二区| 精品一区二区免费观看| 51国产日韩欧美| 亚洲,欧美,日韩| 成人国产麻豆网| 国产精华一区二区三区| 国产伦在线观看视频一区| 久久精品夜夜夜夜夜久久蜜豆| 一本久久中文字幕| 国产伦理片在线播放av一区 | 国产精品一二三区在线看| www.av在线官网国产| 亚洲综合色惰| 欧美色欧美亚洲另类二区| 日韩,欧美,国产一区二区三区 | 亚洲精品久久国产高清桃花| 国产成人午夜福利电影在线观看| 国产一区二区在线观看日韩| 亚洲国产色片| 一个人看的www免费观看视频| 久久久久久久久久黄片| 午夜激情欧美在线| 熟女电影av网| 国产一区二区亚洲精品在线观看| 国产精品伦人一区二区| 插逼视频在线观看| 国产精品精品国产色婷婷| 免费黄网站久久成人精品| 国产精品久久久久久久电影| 免费大片18禁| 国产成人a区在线观看| 欧美+亚洲+日韩+国产| 免费观看人在逋| 别揉我奶头 嗯啊视频| 日本黄大片高清| 日韩强制内射视频| 观看免费一级毛片| 久久久午夜欧美精品| av视频在线观看入口| 国产在线精品亚洲第一网站| 亚洲欧美精品专区久久| 一本久久中文字幕| 搞女人的毛片| 九九久久精品国产亚洲av麻豆| 在现免费观看毛片| 日日摸夜夜添夜夜添av毛片| 亚洲一级一片aⅴ在线观看| 日韩 亚洲 欧美在线| 久久精品国产亚洲av涩爱 | 少妇的逼水好多| 黄片wwwwww| 国产亚洲av嫩草精品影院| 欧美日本视频| 国产伦精品一区二区三区视频9| 精品一区二区三区视频在线| 成人永久免费在线观看视频| 长腿黑丝高跟| 亚洲精品乱码久久久v下载方式| 国内精品美女久久久久久| 激情 狠狠 欧美| 直男gayav资源| 22中文网久久字幕| 18禁裸乳无遮挡免费网站照片| 成人午夜精彩视频在线观看| 亚洲av男天堂| 非洲黑人性xxxx精品又粗又长| 国产精品国产高清国产av| 日韩三级伦理在线观看| 校园春色视频在线观看| 日产精品乱码卡一卡2卡三| 一区二区三区免费毛片| 亚洲国产日韩欧美精品在线观看| 九九在线视频观看精品| 美女xxoo啪啪120秒动态图| 久久久久久久久久久丰满| 边亲边吃奶的免费视频| 日韩av在线大香蕉| 国产精品人妻久久久久久| 亚洲美女视频黄频| 色视频www国产| 精品不卡国产一区二区三区| 黄色视频,在线免费观看| 一本精品99久久精品77| 国产不卡一卡二| 99在线视频只有这里精品首页| 亚洲欧美日韩东京热| av又黄又爽大尺度在线免费看 | 国产 一区 欧美 日韩| 亚洲精品久久久久久婷婷小说 | 狂野欧美白嫩少妇大欣赏| 亚洲av二区三区四区| 色哟哟·www| 午夜精品国产一区二区电影 | www.色视频.com| а√天堂www在线а√下载| 色视频www国产| 欧美激情久久久久久爽电影| 男人舔奶头视频| 国产精品女同一区二区软件| 干丝袜人妻中文字幕| 亚洲,欧美,日韩| 天天躁夜夜躁狠狠久久av| 国产成人福利小说| 狂野欧美白嫩少妇大欣赏| 免费一级毛片在线播放高清视频| 边亲边吃奶的免费视频| 99在线人妻在线中文字幕| 一进一出抽搐动态| 看片在线看免费视频| 日韩av不卡免费在线播放| 黄色视频,在线免费观看| 亚洲精品456在线播放app| 国产亚洲精品av在线| 欧美日本亚洲视频在线播放| 天美传媒精品一区二区| 精品99又大又爽又粗少妇毛片| 国产女主播在线喷水免费视频网站 | 国产精品一区二区在线观看99 | 久久久久国产网址| 爱豆传媒免费全集在线观看| 夜夜夜夜夜久久久久| 欧美日本视频| 国产精品一区二区三区四区久久| 亚洲天堂国产精品一区在线| 婷婷色综合大香蕉| 精品无人区乱码1区二区| 夜夜看夜夜爽夜夜摸| av在线播放精品| 国产av麻豆久久久久久久| 九九久久精品国产亚洲av麻豆| 美女高潮的动态| 两个人的视频大全免费| 美女cb高潮喷水在线观看| 免费看光身美女| 久久精品影院6| 别揉我奶头 嗯啊视频| 村上凉子中文字幕在线| 麻豆乱淫一区二区| 男女啪啪激烈高潮av片| 久久久国产成人免费| 白带黄色成豆腐渣| 一个人免费在线观看电影| 啦啦啦韩国在线观看视频| 免费av毛片视频| 一级av片app| 12—13女人毛片做爰片一| 欧美xxxx黑人xx丫x性爽| 91狼人影院| 国产av不卡久久| 亚洲图色成人| 国产不卡一卡二| a级毛色黄片| 国产女主播在线喷水免费视频网站 | 亚洲欧美成人综合另类久久久 | 久久久久免费精品人妻一区二区| 国产一区二区激情短视频| 又爽又黄a免费视频| 国产 一区精品| 国产成人aa在线观看| 国产老妇女一区| 久久综合国产亚洲精品| 亚洲无线观看免费| 久久人人爽人人爽人人片va| 男女那种视频在线观看| 国产精品免费一区二区三区在线| 晚上一个人看的免费电影| 欧美又色又爽又黄视频| 午夜激情福利司机影院| av在线蜜桃| 99riav亚洲国产免费| 色综合色国产| 日日干狠狠操夜夜爽| 欧美日本视频| 欧美性猛交╳xxx乱大交人| 精品国内亚洲2022精品成人| 长腿黑丝高跟| 精品国内亚洲2022精品成人| 天堂√8在线中文| 老女人水多毛片| 国产不卡一卡二| 国产单亲对白刺激| 欧美日本亚洲视频在线播放| 麻豆av噜噜一区二区三区| 天天躁夜夜躁狠狠久久av| 久久午夜亚洲精品久久| 成年女人看的毛片在线观看| 最近手机中文字幕大全| 国产亚洲精品久久久久久毛片| 99久久无色码亚洲精品果冻| 精品少妇黑人巨大在线播放 | 久久99热6这里只有精品| 12—13女人毛片做爰片一| 毛片女人毛片| 三级国产精品欧美在线观看| 亚洲四区av| 欧美日韩综合久久久久久| 岛国在线免费视频观看| 少妇高潮的动态图| 女人十人毛片免费观看3o分钟| 国产精品不卡视频一区二区| 国产一区二区三区在线臀色熟女| 中文资源天堂在线| 最近视频中文字幕2019在线8| 99精品在免费线老司机午夜| 国产精品三级大全| 99久久精品一区二区三区| av又黄又爽大尺度在线免费看 | 最新中文字幕久久久久| 一级av片app| 中文欧美无线码| 夜夜夜夜夜久久久久| 欧美又色又爽又黄视频| 美女 人体艺术 gogo| 两个人的视频大全免费| 精品人妻熟女av久视频| 午夜福利高清视频| 亚洲四区av| 成年女人看的毛片在线观看| 欧美色视频一区免费| 日本-黄色视频高清免费观看| 亚洲五月天丁香| 亚洲人与动物交配视频| 国产极品精品免费视频能看的| 91在线精品国自产拍蜜月| 欧美一级a爱片免费观看看| 中文欧美无线码| 午夜福利视频1000在线观看| 国产午夜精品论理片| 国产私拍福利视频在线观看| 麻豆乱淫一区二区| 精品不卡国产一区二区三区| 国产视频首页在线观看| 别揉我奶头 嗯啊视频| 日韩精品青青久久久久久| 性插视频无遮挡在线免费观看| 赤兔流量卡办理| 久久婷婷人人爽人人干人人爱| 精品无人区乱码1区二区| 人体艺术视频欧美日本| 成人漫画全彩无遮挡| 老女人水多毛片| 91aial.com中文字幕在线观看| 美女cb高潮喷水在线观看| 变态另类成人亚洲欧美熟女| 亚洲精品国产av成人精品| 插逼视频在线观看| 日韩亚洲欧美综合| 日韩av不卡免费在线播放| 亚洲人与动物交配视频| 最好的美女福利视频网| 国产精品伦人一区二区| 一区福利在线观看| 乱码一卡2卡4卡精品| 我的女老师完整版在线观看| 日韩大尺度精品在线看网址| 欧美性猛交黑人性爽| 精品久久久久久久人妻蜜臀av| 久久久精品94久久精品| 中国美白少妇内射xxxbb| 欧美一区二区亚洲| www.av在线官网国产| 少妇猛男粗大的猛烈进出视频 | 一本一本综合久久| 大型黄色视频在线免费观看| 美女高潮的动态| 成人三级黄色视频| 亚洲久久久久久中文字幕| 国产高清激情床上av| 色尼玛亚洲综合影院| 精品一区二区免费观看| 精品久久久噜噜| 波多野结衣高清作品| 国产欧美日韩精品一区二区| 激情 狠狠 欧美| 伦精品一区二区三区| 一区二区三区四区激情视频 | 国产片特级美女逼逼视频| 悠悠久久av| 51国产日韩欧美| av在线观看视频网站免费| 国产精品伦人一区二区| 99久久精品热视频| 99热这里只有是精品50| 亚洲欧洲日产国产| 中国美白少妇内射xxxbb| 日韩成人av中文字幕在线观看| www.av在线官网国产| 18禁在线无遮挡免费观看视频| 中文亚洲av片在线观看爽| 日韩亚洲欧美综合| 国产极品天堂在线| 中出人妻视频一区二区| 99热网站在线观看| 国产探花在线观看一区二区| 欧美性猛交╳xxx乱大交人| 日韩国内少妇激情av| av视频在线观看入口| 变态另类成人亚洲欧美熟女| 国产老妇伦熟女老妇高清| 国产乱人视频| 久久精品国产99精品国产亚洲性色| 男人舔女人下体高潮全视频| 一本精品99久久精品77| 亚洲国产欧美人成| 国产免费男女视频| 97热精品久久久久久| av.在线天堂| 国产淫片久久久久久久久| 男女啪啪激烈高潮av片| 99久国产av精品| 男女做爰动态图高潮gif福利片| 久久久a久久爽久久v久久| 国产黄a三级三级三级人| 91精品一卡2卡3卡4卡| av在线播放精品| 日本成人三级电影网站| av在线观看视频网站免费| 午夜激情欧美在线| 精品久久久久久久久亚洲| 99久久人妻综合| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 少妇被粗大猛烈的视频| 国产高清三级在线| 狂野欧美激情性xxxx在线观看| 一个人看视频在线观看www免费| 亚洲高清免费不卡视频| 一区二区三区高清视频在线| 国产亚洲欧美98| 久久精品夜夜夜夜夜久久蜜豆| 日本一本二区三区精品| 最近视频中文字幕2019在线8| 看免费成人av毛片| 日本一二三区视频观看| 亚洲精品久久久久久婷婷小说 | 啦啦啦观看免费观看视频高清| 噜噜噜噜噜久久久久久91| 黄色配什么色好看| 免费观看的影片在线观看| 欧美+亚洲+日韩+国产| 99久国产av精品| av免费在线看不卡| 午夜免费男女啪啪视频观看| 99国产精品一区二区蜜桃av| 色哟哟哟哟哟哟| 国产视频内射| 九九久久精品国产亚洲av麻豆| 国内精品久久久久精免费| 淫秽高清视频在线观看| www.av在线官网国产| 午夜福利视频1000在线观看| 国产av在哪里看| 99热这里只有精品一区| 99在线人妻在线中文字幕| 国产伦在线观看视频一区| 午夜福利在线观看吧| 欧美一区二区精品小视频在线| 成人二区视频| 日韩欧美三级三区| 尾随美女入室| 亚洲精品久久国产高清桃花| 此物有八面人人有两片| 亚洲国产精品久久男人天堂| 亚洲欧洲日产国产| 国产精品一区二区三区四区免费观看| 国产精品嫩草影院av在线观看| 此物有八面人人有两片| 亚洲不卡免费看| 中文精品一卡2卡3卡4更新| 色5月婷婷丁香| 97热精品久久久久久| 国产乱人视频| 九九爱精品视频在线观看| 变态另类丝袜制服| 熟妇人妻久久中文字幕3abv| 美女cb高潮喷水在线观看| 99国产极品粉嫩在线观看| 成年av动漫网址| 少妇的逼好多水| 特级一级黄色大片| 毛片女人毛片| 深夜a级毛片| 国产高清三级在线| 久久综合国产亚洲精品| av.在线天堂| 国产亚洲欧美98| 国产私拍福利视频在线观看| 欧美日本视频| 高清毛片免费观看视频网站| 人人妻人人澡欧美一区二区| av黄色大香蕉| 欧美性猛交╳xxx乱大交人| 成人亚洲欧美一区二区av| 国产精品一区www在线观看| 91av网一区二区| 成人美女网站在线观看视频| 欧美性感艳星| 成年女人看的毛片在线观看| 成人二区视频| 国产精品一区二区三区四区久久| 日韩国内少妇激情av| 久久午夜亚洲精品久久| 哪个播放器可以免费观看大片| 丝袜喷水一区| 观看美女的网站| 全区人妻精品视频| 久久久国产成人精品二区| 亚州av有码| 91狼人影院| 99久久精品国产国产毛片| 国产精品无大码| 亚洲av成人精品一区久久| 午夜亚洲福利在线播放| .国产精品久久| 久久久色成人| 成人毛片a级毛片在线播放| 日韩欧美一区二区三区在线观看| 亚洲精品影视一区二区三区av| 日本一本二区三区精品| 亚州av有码| 国产伦精品一区二区三区四那| 久久久久久久午夜电影| 免费观看精品视频网站| 欧美一区二区国产精品久久精品| 久久久久网色| 亚洲第一区二区三区不卡| 午夜激情欧美在线| 国产真实伦视频高清在线观看| 亚洲精品乱码久久久v下载方式| 亚洲av免费在线观看| 少妇的逼水好多| 亚洲av第一区精品v没综合| 波野结衣二区三区在线| 久久久久网色| 免费看a级黄色片| 国产精品久久电影中文字幕| 国产成年人精品一区二区| 亚洲人成网站在线观看播放| 日日干狠狠操夜夜爽| 插逼视频在线观看| 简卡轻食公司| 中文欧美无线码| 内地一区二区视频在线| 亚洲精品乱码久久久久久按摩| 狂野欧美白嫩少妇大欣赏| 亚洲成人精品中文字幕电影| 如何舔出高潮| 99热只有精品国产| 中文字幕av在线有码专区| 岛国在线免费视频观看| 亚洲第一区二区三区不卡| 国产黄色视频一区二区在线观看 | 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av熟女| 人体艺术视频欧美日本| 1024手机看黄色片| 亚洲欧美精品专区久久| 国产av一区在线观看免费| 99在线人妻在线中文字幕| 日本熟妇午夜| 亚洲精品国产av成人精品| 一进一出抽搐gif免费好疼| 精品人妻熟女av久视频| 日韩中字成人| 欧洲精品卡2卡3卡4卡5卡区| 99热网站在线观看| 极品教师在线视频| 3wmmmm亚洲av在线观看| 又爽又黄a免费视频| 亚洲国产欧美人成| 国产免费男女视频| 欧美成人一区二区免费高清观看| 亚洲成人久久性| 亚洲最大成人手机在线| 日本免费一区二区三区高清不卡| 一本久久中文字幕| 日韩欧美 国产精品| 精品无人区乱码1区二区| 亚洲欧洲国产日韩| 又黄又爽又刺激的免费视频.| 亚洲精品粉嫩美女一区| 国产亚洲精品av在线| 国产黄色小视频在线观看| 波野结衣二区三区在线| 日本欧美国产在线视频|