Influence of different preparation processes on the microstructure and properties of Ti-5.1Al-3.1Mo-2.9Cr-0. 9Zr alloy
ZENG Qi1 ,WANG Shao-Yang1, ZHANG Ying-Bc )2 ,ZHUKai,HU Yun-Feng2 (1.Chengdu Aircraft Industry(Group) Company Limited,Chengdu 6loo92,China; 2.School of Materials Science and Engineering,Southwest Jiaotong University, Chengdu 6lOo31,China)
Abstract: Ti-5.1Al-3.1Mo-2.9Cr-O.9Zr alloy has comprehensive high-performance characteristics such as high strength,high plasticity,high toughness,resistance to high-speed impact,fatigue resistance,and damage tolerance.It has broad application prospects in the fields of transportation and aerospace.In this study,different forging and heat treatment processes (two-phase zone forging and double annealing,quasi- β forging and double annealing,and two-phase zone forging and quasi- β annealing)were applied to the Ti-5.1Al3.1Mo-2.9Cr-O.9Zr alloy,resulting in three typical microstructures: bimodal,basketweave,and lamellar. Through the microstructure and fracture analysis of room temperature tensile,the relationship between micro structure and fracture and the correlation between mechanical properties and fracture are analyzed and dis cussed. The results show that the basketweave structure formed by quasi- β forging + double annealing has the highest room temperature mechanical properties,reaching 1085.7MPa ,yield strength of 956.7MPa , and elongation of 13.2% ,and the lamellar microstructure formed by two-phase zone forging and quasi- β annealing has the lowest strength and ductility,with a tensile strength of 956.0MPa ,a yield strength of 853. 0 MPa,and an elongation of 9.9% ,and the bimodal microstructure formed by two-phase zone forging and double annealing exhibits the best ductility,with a tensile strength of 974.3MPa ,ayield strength of 884.3 MPa ,and an elongation of 16.7% . The fracture mechanisms are all ductile fractures,but there are slight differences in fracture morphologies.The study concludes that the microstructure of titanium alloy is closely related to performance and the heat treatment processis crucial.These conclusions provide theoretical basis and technical support for the application of this alloy in transportation and other fields.
Keywords: Ti-5.1A1-3.1Mo-2. 9Cr-0. 9Zr alloy;Microstructure; Forging process;Mechanical properties; Fracture mechanism
1引言
鈦及鈦合金因比強(qiáng)度與比剛度高、可焊接、耐高溫、耐蝕等優(yōu)異的綜合性能,一直受到交通運(yùn)輸領(lǐng)域的極大重視與青睞.并隨著高速列車和飛機(jī)不斷更新迭代,對鈦合金材料的綜合性能要求也越來越高,高用量、高性能與低成本將是我國航空用鈦合金材料在21世紀(jì)所面臨的主要挑戰(zhàn)[1-3].TC32鈦合金是國內(nèi)開發(fā)自主可控的中高強(qiáng)度、高塑高韌性 α+β 型的新型高綜合性能鈦合金,其名義成分為Ti-5Al-3Mo-3Cr-1Zr-0.1Si,同時具備成本低、工藝簡單等特點(diǎn),在交通運(yùn)輸與航空航天領(lǐng)域擁有巨大的工業(yè)應(yīng)用潛力.
目前,國內(nèi)已經(jīng)有越來越多的學(xué)者對TC32鈦合金進(jìn)行研究,張元東團(tuán)隊[4.5研究鍛造與熱處理工藝參數(shù)對TC32鈦合金的組織與性能的影響;朱知壽團(tuán)隊對TC32鈦合金的合金元素、顯微組織[7]、損傷容限[8-10]、疲勞性能與斷裂韌度[1]、沖擊韌性[12.13]、斷裂機(jī)制[14,15]等性能進(jìn)行系統(tǒng)研究;王澤民團(tuán)隊[16分析探討TC32鈦合金的高周疲勞性能;薛添淇[1和周文昌[18]分別針對TC32鈦合金的焊接與切削工藝進(jìn)行應(yīng)用研究.雖然有這么多學(xué)者對TC32鈦合金進(jìn)行研究,仍缺乏對不同鍛造和熱處理工藝下TC32鈦合金組織形態(tài)、力學(xué)性能、斷裂機(jī)制的系統(tǒng)研究.
因此,本文以TC32鈦合金作為研究對象,通過不同的鍛造和熱處理工藝獲得3種典型鈦合金組織(雙態(tài)、網(wǎng)籃、片層組織),分析不同組織下的力學(xué)性能差異,研究其室溫斷裂行為,本研究結(jié)果將對TC32鈦合金在交通運(yùn)輸領(lǐng)域的工程化應(yīng)用提供一定的工業(yè)網(wǎng)籃編織實踐價值.
2 實驗方法
依據(jù)TC32鈦合金的名義成分進(jìn)行合金配料,經(jīng)過3次真空自耗電弧爐熔煉出合金鑄錠,后經(jīng)開坯、鍛造等工藝獲得本研究的原材料棒材.再經(jīng)過化學(xué)成分測試,其結(jié)果顯示鈦合金成分為Ti5.1Al-3.1Mo-2.9Cr-0.9Zr(wt%),并測得相變點(diǎn)溫度為 918°C
采用兩相區(qū)鍛造 + 雙重退火工藝制備Ti-5.1Al-3.1Mo-2.9Cr-0.9Zr 鍛件,其顯微結(jié)構(gòu)呈雙態(tài)組織;運(yùn)用準(zhǔn) β 鍛造 + 雙重退火工藝制備出顯微結(jié)構(gòu)為網(wǎng)籃組織的Ti-5.1Al-3.1Mo-2.9Cr-0.9Zr鍛件;應(yīng)用兩相區(qū)鍛造 + 準(zhǔn) β 退火工藝制備Ti-5.1Al-3.1Mo-2.9Cr-0.9Zr 鍛件,其顯微結(jié)構(gòu)呈片層組織.其中兩相區(qū)鍛造溫度為 880±10°C ,準(zhǔn) β 鍛造溫度為 920±10°C 準(zhǔn) β 退火工藝為:在 875± 15°C 保溫一定時間后隨爐升溫至 930±15°C ,保溫30min 后爐冷,然后加熱到 550±15°C ,保溫6h后爐冷.雙重退火工藝為:加熱溫度到 875±15°C ,保溫 30min 后爐冷,然后加熱到 550±15°C ,保溫 后爐冷:
最后采用電子萬能拉伸試驗機(jī)(CMT4304設(shè)備)金相顯微鏡(OM,蔡司AxioLabA1)、掃描電子顯微鏡(SEM,JSM7800F)等設(shè)備進(jìn)行Ti-5.1Al-3.1Mo-2.9Cr-0.9Zr 合金的力學(xué)性能和微觀組織測試分析.
3 結(jié)果與討論
3.1不同工藝對顯微組織的影響
Ti-5.1Al-3.1Mo-2.9Cr-0.9Zr鈦合金經(jīng)過不同鍛造和熱處理工藝后獲取的3種典型顯微組織如圖1所示.經(jīng)過兩相區(qū)鍛造 + 雙重退火后,其顯微組織為雙態(tài)組織如圖1a所示,其中呈層片狀的 β 轉(zhuǎn)變基體相上分布著不連續(xù)的初生 α 相, α 相含量約 30% , α 相整體呈等軸狀或橢圓狀,尺寸約為5μm ;同時在圖1d上發(fā)現(xiàn) β 基體相上彌散析出少量的 α 相.經(jīng)準(zhǔn) β 鍛造 + 雙重退火后,如圖1b所示,顯微組織為網(wǎng)籃組織;其 β 晶界破碎,晶界 α 相呈斷續(xù)扭曲狀,晶內(nèi) α 相呈短棒狀交錯分布,編織成網(wǎng)籃結(jié)構(gòu);測量圖1e可知 α 相寬度約為 1.6μm 經(jīng)兩相區(qū)鍛造 + 準(zhǔn) β 退火后,顯微組織為片層組織,如圖1c和f所示.其具有粗大的等軸原始 β 晶粒,晶界完整清晰,晶粒尺寸約 250μm ,且晶粒內(nèi)部由不同位相的α集束組成(一般為3~5個 α 集束).
3.2 不同工藝對拉伸性能的影響
表1為Ti-5.1A1-3.1Mo-2.9Cr-0.9Zr鈦合金3種工藝狀態(tài)下鍛件的室溫拉伸性能,顯示3種鍛件的室溫力學(xué)性能存在較大的差異.Ti-5.1Al-3.1Mo-2.9Cr-0.9Zr 鈦合金經(jīng)準(zhǔn) β 鍛造 + 雙重退火后,其強(qiáng)度最好,且鍛件 L 向(鍛件流線方向,縱向)和 T 向(垂直鍛件流線方向,橫向)性能差異不大,其 T 向抗拉強(qiáng)度最大為 1082.3MPa ,屈服956.7MPa ,延伸率為 13.2% .Ti-5.1A1-3.1Mo-2.9Cr-0.9Zr 鈦合金經(jīng)兩相區(qū)鍛造 + 雙重退火后,鍛件 L 向和 T 向性能同樣差異不大,其塑性最好,延伸率達(dá)到 16.7% , T 向抗拉強(qiáng)度為 974.3MPa ,屈服884.3MPa .Ti-5.1Al-3.1Mo-2. 9Cr-0.9Zr 鈦合金經(jīng)兩相區(qū)鍛造 + 準(zhǔn) β 退火后,鍛件 L 向和 T 向性能差異明顯,且拉伸性能輕度和塑性均最低,其 T 向抗拉強(qiáng)度為 956.0MPa ,屈服 853.0MPa ,延伸率為 9.9% :
3.3不同工藝?yán)鞌嗫谛蚊卜治?/p>
Ti-5.1Al-3.1Mo-2.9Cr-0.9Zr鈦合金經(jīng)兩相區(qū)鍛造 + 雙重退火后,其室溫拉伸斷口形貌如圖2所示,其中 L 向(圖 2a~c) )和 T 向(圖 2d~f) )的斷口形貌非常類似.拉伸斷口低倍局部頸縮變形非常明顯,斷面呈杯錐狀;心部纖維區(qū)呈橢圓形或圓形,心部低倍較平整,微觀可見細(xì)小起伏和沿長軸的棱線,高倍為較均勻的韌窩,呈現(xiàn)典型剪切韌窩形貌.
Ti-5.1Al-3.1Mo-2.9Cr-0.9Zr鈦合金經(jīng)兩相區(qū)鍛造 + 準(zhǔn)β退火后,其室溫拉伸斷口形貌如圖3所示,其中L向(圖 3a~c) 和T向(圖3d~f的斷口形貌比較接近.拉伸斷口整體呈現(xiàn)均勻頸縮變形,無明顯集中變形,斷口起伏更大,斷面為非典型杯錐狀;低倍粗糙,邊緣略呈斜面,心部高倍可見明顯的微觀起伏,斷面滑移、變形明顯,斷口邊緣可見剪切韌窩形貌.
Ti-5.1Al-3.1Mo-2.9Cr-O.9Zr鈦合金經(jīng)準(zhǔn) β 鍛造 + 雙重退火后,其室溫拉伸斷口形貌如圖4所示,其中 L 向(圖 4a~c) 和 T 向(圖 4d~f) 的斷口形貌比較接近.拉伸斷口局部頸縮較為集中且變形較大,斷口大致沿橫向斷裂;心部纖維區(qū)呈橢圓形,低倍起伏較大,棱線沿著纖維區(qū)長軸方向;高倍下心部韌窩粗大,周邊傾斜的剪切唇區(qū)較明顯,表面為剪切韌窩形貌.
3.4不用工藝組織性能對比分析
Ti-5.1Al-3.1Mo-2.9Cr-0.9Zr鈦合金經(jīng)3種不同制備工藝(兩相區(qū)鍛造 + 雙重退火、準(zhǔn) β 鍛造十雙重退火、兩相區(qū)鍛造 + 準(zhǔn) β 退火制度)可以獲得不同的顯微組織,其力學(xué)性能也具有很大差異.從圖5的性能對比分析可以發(fā)現(xiàn),Ti-5.1A1-3.1Mo-2.9Cr-0.9Zr 鈦合金經(jīng)兩相區(qū)鍛造 + 準(zhǔn) β 退火后,其強(qiáng)度和塑性最低,因為晶粒粗的大片層組織降低了合金的強(qiáng)度,其斷口心部的雜亂起伏表面,較多的二次裂紋,以及高倍下的粗大、雜亂韌窩形貌均是抗拉強(qiáng)度下降的有力支撐;同時較大的 α 片層距離引起塑性降低,其拉伸斷口均勻頸縮變形,無集中頸縮區(qū),其佐證了塑性相對較差.
同時,Ti-5.1A1-3.1Mo-2.9Cr-0.9Zr鈦合金準(zhǔn)β 鍛造 + 雙重退火后,其抗拉強(qiáng)度最高,塑性居中.
其顯微組織為典型鈦合金網(wǎng)籃組織,而 β 晶界破碎和晶界 α 相呈斷續(xù)扭曲狀,在一定程度上延緩了裂紋的萌生和擴(kuò)展,從而保證了合金具有足夠的塑性,而晶內(nèi) α 相呈短棒狀交錯分布,編織成網(wǎng)籃結(jié)構(gòu)可以提升合金強(qiáng)度.相較于兩相區(qū)鍛造 + 雙重退火工藝,拉伸斷口局部頸縮變形程度進(jìn)一步弱化,呈現(xiàn)更大的橢圓形和圓形纖維區(qū),心部韌窩粗大、雜亂,撕裂棱線清晰,這一斷口形貌變化趨勢驗證了鍛件塑性降低和強(qiáng)度提升變化趨勢:
4結(jié)論
(1)Ti-5.1A1-3.1Mo-2.9Cr-0.9Zr鈦合金通過兩相區(qū)鍛造 + 雙重退火、準(zhǔn) β 鍛造 + 雙重退火和兩相區(qū)鍛造 + 準(zhǔn) β 退火工藝后,其顯微組織分別為雙態(tài)組織、網(wǎng)籃組織和片層組織.(2)Ti-5.1A1-3.1Mo-2.9Cr-0.9Zr 鈦合金經(jīng)過準(zhǔn) β 鍛造 + 雙重退火后,其抗拉強(qiáng)度最高 (L 向均值為 1085.7MPa) ;經(jīng)兩相區(qū)鍛造 + 雙重退火后,其塑性最好,其延伸率達(dá)到 14.7% ,斷面收縮率超過 50% ,L向最好達(dá)到 54.1% .(3)3種不同制備工藝的Ti-5.1A1-3.1Mo-2.9Cr-0.9Zr 鈦合金鍛件的斷裂機(jī)制均為韌性斷裂,但斷口形貌存在差異.
參考文獻(xiàn):
[1] ShangGQ,ZhangXY,WangXN,etal.Influenceofmicrostructures on high cycle fatigue properties ofTB17 titanium alloy [J].Rare Met Mater Eng,2024,53:529.[商國強(qiáng),張曉泳,王新南,等.顯微組織對TB17鈦合金高周疲勞性能的影響[J].稀有金屬材料與工程,2024,53:529.]
[2] YangR,MaYJ,LeiJF,etal.Tougheninghighstrength titanium alloys through fine tuning phasecomposition and refining microstructure [J].ActaMetall Sin,2021,57:1455.[楊銳,馬英杰,雷家峰,等.高強(qiáng)韌鈦合金組成相成分和形態(tài)的精細(xì)調(diào)控[J].金屬學(xué)報,2021,57:1455.]
[3] Zhu ZS,ShangGQ,WangXN,et al.Microstructure controlling technology and mechanical propertiesrelationship of titanium alloys for aviation applications[J].JAeronaut.Mater,202O,40:1.[朱知壽,商國強(qiáng),王新南,等.航空用鈦合金顯微組織控制和力學(xué)性能關(guān)系[J].航空材料學(xué)報,2020,40:1.]
[4]Zhang YD,Zhang A,Che AD,et al. Effect of forging temperature on the microstructure and propertiesof TC32 alloy[J].Forgingamp;Metalforming,2023,13:75.[張元東,張安,車安達(dá),等.鍛造溫度對TC32合金組織和性能的影響[J].鍛造與沖壓,2023,13:75.]
[5] ZhangYD,WangXW,WangDY,et al.Effect ofheat treatment temperature and cooling method onmicrostructure and properties of TC32 alloy [J].Forgingamp;Metalforming,2023,15:52.[張元東,王曉巍,王德勇,等.熱處理溫度和冷卻方式對TC32合金組織和性能的影響[J].鍛造與沖壓,2023,15:52.]
[6] FeiY,WangXN,ShangGQ,et al.Influence of al-loying elements on microstructure and property ofnew TC32 titanium alloy[J]. Hot Working Technol-ogy,2022,51:64.[費(fèi)躍,王新南,商國強(qiáng),等.合金元素對新型TC32鈦合金組織和性能的影響[J].熱加工工藝,2022,51:64.]
[7]LiMB,Zhu Z S,Wang XN,et al. Influence of mi-crostructure on high cycle fatigue properties of TC32titanium alloy[J].Chin JNonferrous Met,2016,26:1886.[李明兵,朱知壽,王新南,等.顯微組織對TC32鈦合金高周疲勞性能的影響[J].中國有色金屬學(xué)報,2016,26:1886.]
[8]WangXN,F(xiàn)eiY,LiuZ,et al.Research of the relationshipbetweenmicrostructureanddamage-tolerance property of new low cost titanium alloy inaviation applications [J]. Titanium Ind Prog,2013,30:7.[王新南,費(fèi)躍,劉洲,等.航空用新型低成本鈦合金顯微組織與損傷容限性能關(guān)系研究[J].鈦工業(yè)進(jìn)展,2013,30:7.]
[9]LiMB,Wang XN,Shang GQ,et al.Ballisticproperties and failure mechanisms of TC32 titaniumalloy with bimodal microstructure[J]. Chin JNonfer-rousMet,2021,31:365.[李明兵,王新南,商國強(qiáng),等.雙態(tài)組織TC32鈦合金的抗彈性能及損傷機(jī)制[J].中國有色金屬學(xué)報,2021,31:365.]
[10]LiMB,Zhu Z S,Wang XN,et al. Investigation ofdynamic mechanical behavior and damage characteris-tics in TC32alloy[J].JAeronautMater,2O16,36:7.[李明兵,朱知壽,王新南,等.TC32鈦合金的動態(tài)力學(xué)性能及損傷特點(diǎn)[J].航空材料學(xué)報,2016,36:7.]
[11]Shang GQ,Wang XN,F(xiàn)eiY,et al.High-cycle fa-tigue properties and fracture toughness of new lowcost titanium alloy[J].FailureAnalysisandPrevention,2013,8:74.[商國強(qiáng),王新南,費(fèi)躍,等.新型低成本鈦合金高周疲勞性能和斷裂韌度[J].失效分析與預(yù)防,2013,8:74.]
[12]LiMB,WangXN,ShangGQ,et al.Effects of β (204號heat treatment cooling methods on microstructureand impact toughness of TC32 titanium alloy[J].HotWorking Technology,20l2,51:107.[李明兵,王新南,商國強(qiáng),等.β熱處理冷卻方式對TC32鈦合金組織和沖擊韌性的影響[J].熱加工工藝,2012,51:107.]
[13]XinYP,Zhu ZS,Wang XN,et al.Microstructuralevolution behavior of adiabatic shearbands inducedbyhigh-speed projectile impact in TC32 titanium al-loy[J].RareMetMaterEng,202O,49:3361.[信云鵬,朱知壽,王新南,等.TC32鈦合金中高速彈丸沖擊誘發(fā)絕熱剪切帶的組織演化行為[J].稀有金屬材料與工程,2020,49:3361.]
[14]LiMB,Wang XN,ShangGQ,et al.Microstruc-ture,mechanical properties and fracture mechanismof TC32 titanium alloy with different heat treatmentprocesses[J].HeatTreatMet,2021,46:112.[李明兵,王新南,商國強(qiáng),等.TC32鈦合金不同熱處理工藝下的組織性能及斷裂機(jī)制[J].金屬熱處理,2021,46:112.]
[15]Lij,ZhuLW,Li MB,et al.Characterization ofhot deformation behavior of TC32 titanium alloy[J].IOP Conf Ser Mater Sci Eng,2019,474:012045.
[16]WangZM,WangXR,MengY,et al.Studyonultra-high cycle fatigue performance of TC32 titaniumalloy[J].HeatTreatMet,2019,44:595.[王澤民,王曉瑞,孟揚(yáng),等.TC32鈦合金超高周疲勞性能研究[J].金屬熱處理,2019,44:595.]
[17]Xie TQ,Yan SS,Zhang M,et al.Study on microstructure and mechanical properties of TIG weldedjointof TC32 titaniumalloy[J].Welded PipeandTube,2024,47:70.[薛添淇,閆少帥,張敏,等.TC32鈦合金TIG焊接接頭顯微組織及力學(xué)性能研究[J].焊管,2024,47:70.]
[18]ZhouWC,Cao ZP,LiXB,et al.Research on surface roughness and parameter optimization of TC32titanium alloyhigh speed milling process based on response surface method[J].Tool Engineering,2022,56:43.[周文昌,曹澤平,李小兵,等.基于響應(yīng)曲面法的TC32鈦合金高速銑削加工表面粗糙度研究及參數(shù)優(yōu)化[J].工具技術(shù),2022,56:43.]
(責(zé)任編輯:伍少梅)