DOI:10.3969/j.issn.1000-9973.2025.07.033
中圖分類號(hào):TS236.9 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1000-9973(2025)07-0223-05
Research Progress on Starch-Hydrophilic Colloid Interactions and Their Effects on Functional Properties of Starch
NIU Bin1 ,ZHU Xiao-pei2,YAN Yi-zhe2 * (1.College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China;2.College of Food and Bioengineering,Zhengzhou University of Light Industry,Zhengzhou 45ooo1,China)
Abstract: Starch is a kind of high-molecular carbohydrate from a wide range of sources,which has unique physicochemical properties.However, the structural stability of starch is limited under extreme pH and shear conditions. Compounding with non-starch hydrophilic coloids is one of the ways to improve the functional properties of starch. In this paper,the effects of compounding of starch and hydrophilic colloids (Arabic gum,guar gum,pectin, konjac gum,and so on) on the physicochemical properties of starch are mainly introduced,the possible interaction mechanism during the compounding of starch and hydrophilic colloids is analyzed,and the application of starch and hydrophilic colloids in modern food industry is further summarized,which has provided a theoretical basis for the development of new and efficient composite food additives.
Key words:starch;hydrophilic colloid;interaction;mechanism;application
天然淀粉作為一種可再生和能夠生物降解的綠色資源,一直作為增稠劑、黏合劑、甜味劑和乳化劑廣泛應(yīng)用于食品中。但天然淀粉糊化后易老化、抗剪切力差等缺點(diǎn)限制了其在食品中的應(yīng)用[1]。因此,天然淀粉需要通過(guò)一些改性方法生成變性淀粉,進(jìn)而改善其性質(zhì)[2]。從20世紀(jì)五六十年代開(kāi)始,國(guó)內(nèi)外就有研究人員開(kāi)始嘗試將淀粉與天然親水膠體復(fù)配使用,以期改善淀粉的理化特性,進(jìn)而調(diào)節(jié)谷物制品、調(diào)味料、速凍食品、冰淇淋、果凍、水果餡等食品的生產(chǎn)加工過(guò)程,改善其穩(wěn)定性與感官品質(zhì)。本文主要綜述了淀粉與親水膠體相互作用后對(duì)淀粉功能性質(zhì)的影響以及可能的相互作用機(jī)理,為淀粉-親水膠體復(fù)配體系在食品生產(chǎn)中的實(shí)際應(yīng)用提供了理論支撐。
1親水膠體的概述
親水膠體通常是指溶于水或在水中充分溶脹,形成黏稠、光滑、有一定透明度的黏性溶液的高分子聚合物,其大多由天然多糖和蛋白質(zhì)組成[3]。根據(jù)來(lái)源可分為三類:自然界中發(fā)現(xiàn)的天然食品膠;基于天然食品膠化學(xué)改性制成的改性(半合成)食品膠;基于直接化學(xué)合成生產(chǎn)的合成食品膠。根據(jù)其化學(xué)結(jié)構(gòu)可分為兩類:多糖類,如淀粉、果膠、纖維素、魔芋葡甘聚糖等;多肽類,如干酪素、魚(yú)膠、明膠、蛋清粉等。根據(jù)離子性質(zhì)可分為兩類:離子型,如黃原膠、羧甲基纖維素鈉、明膠、卡拉膠等;非離子型,如淀粉、羥丙基淀粉、海藻酸丙二醇酯等[4]。
在食品工業(yè)中,親水膠體作為一種食品添加劑,可以增加黏稠度、穩(wěn)定體系、形成凝膠,改善食品體系的質(zhì)構(gòu),并且其使用量非常小,只要使用千分之幾即可,在達(dá)到理想效果的同時(shí)降低經(jīng)濟(jì)成本。親水膠體還可以作為凝膠劑、乳化穩(wěn)定劑、持水劑等用于食品中,以改善乳液的穩(wěn)定性和質(zhì)地,防止冰晶形成和脫水收縮[5]。
2淀粉-親水膠體相互作用對(duì)淀粉功能特性的影響
親水膠體作為一種含有多個(gè)親水基團(tuán)(如羥基)的高分子化合物,在水中有良好的溶解性,在水溶液中分子之間相互交聯(lián)而形成網(wǎng)絡(luò)結(jié)構(gòu),當(dāng)加入到淀粉溶液中后,親水膠體可與淀粉相互作用,從而影響淀粉的物理化學(xué)特性,如糊化特性、老化特性、流變學(xué)特性等。該影響主要取決于淀粉和親水膠體的類型、淀粉和親水膠體的濃度、相互作用的水平和類型以及制備條件[6-9]。
2.1對(duì)淀粉流變特性的影響
淀粉-親水膠體相互作用可以改變淀粉顆粒的流變特性,如流變指數(shù)、黏度系數(shù)和流動(dòng)能等。作為流變特性的重要參數(shù),它們能夠有效地反映出食品的流動(dòng)狀態(tài),以及對(duì)食品口感(硬度、黏稠度和咀嚼性等)的影響。不同的親水膠體加入到不同的天然淀粉中后會(huì)產(chǎn)生不同的流變效應(yīng)[10]。有研究向木薯淀粉中添加不同濃度的黃原膠(XG)、羧甲基纖維素鈉(CMC),其流變特性結(jié)果表明,XG與木薯淀粉之間有很強(qiáng)的相互作用,滲透到淀粉顆粒之間,導(dǎo)致儲(chǔ)能模量 (G′) 和損耗模量 (G′′) 增加;CMC 也增加了淀粉混合物的 G′ 和 G′′[11] 。百合淀粉在添加到不同親水膠體中后,混合溶液會(huì)形成假塑性流體。添加瓜爾膠(GG)的混合體系的 G′,G′′ 顯著提高,流動(dòng)系數(shù) Ψ(nΨ) 降低,假塑性增強(qiáng);而其他膠體混合體系的 G′ 和 G′′ 呈現(xiàn)不規(guī)律變化[12]。Cengiz等[13]研究了添加CMC、XG和GG對(duì)玉米淀粉溶液和用玉米淀粉配制的面糊流變特性的影響。溶液和面糊樣品的 G′ 和G′′ 之間存在明顯差異, G′ 的增量高于 G′′ 。添加親水膠體后CMC的表觀黏度最高,其次是XG和 CG 。在 70~ 80°C 的溫度范圍內(nèi),玉米淀粉和CMC混合面糊的復(fù)合黏度值最高。因此,利用玉米淀粉-親水膠體的相互作用能夠有效改善面糊的流變特性。
2.2對(duì)淀粉糊化特性的影響
淀粉-親水膠體相互作用對(duì)淀粉的糊化特性也有一定影響[。糊化特性主要包括峰值黏度、終值黏度、崩解值、回生值和糊化溫度。當(dāng)?shù)矸壑写嬖谟H水膠體時(shí),其糊化特性通常隨淀粉和親水膠體的類型和濃度的變化而變化。研究顯示,通過(guò)添加一定量親水膠體于玉米[14]、甘薯[15]、馬鈴薯[16]等淀粉中,可改變共混體系的糊化特性,使峰值黏度和終值黏度增加[17]。較低濃度(0.5% 和 1.0% 的果膠會(huì)降低玉米淀粉的峰值黏度,相反,較高濃度(高于 2% )會(huì)增加其峰值黏度[18]。加入0.03% 和 0.15% GG后,蓮子淀粉的最終黏度和回生黏度降低,而加入 0.30%.0.60%.0.90% GG后,最終黏度和回生黏度又逐漸增加[19]。Alam等[20]對(duì)不同濃度、不同種類親水膠體對(duì)芋頭淀粉糊化特性的影響進(jìn)行了研究,發(fā)現(xiàn)所有膠體都能顯著影響芋頭淀粉的糊化特性,尤其是GG和XG,即使在最低濃度下也能提高其峰值黏度。
2.3對(duì)淀粉熱力學(xué)特性的影響
親水膠體的添加會(huì)使淀粉的凝膠化溫度升高,而對(duì)凝膠化焓( (ΔH )的影響沒(méi)有一致的結(jié)論。李遠(yuǎn)等[21]發(fā)現(xiàn)添加GG后,馬鈴薯淀粉的糊化過(guò)程延長(zhǎng),混合體系吸熱,增大了起始凝膠化溫度 (To )、峰值凝膠化溫度( ?Tp )與終點(diǎn)凝膠化溫度( ),凝膠化焓提高,這與Yadav等[22]將GG添加到芋頭淀粉中的研究結(jié)果相同。Nawab等[23]研究發(fā)現(xiàn),GG、果膠和XG都能提高豇豆淀粉的凝膠化溫度,但 ΔH 不變。Khanna 等[24]對(duì)魔芋膠(KGM)-玉米淀粉、KGM-馬鈴薯淀粉混合體系進(jìn)行研究發(fā)現(xiàn), Tc 隨著體系中KGM濃度的增加逐漸升高, Tc 增加與水的體積分?jǐn)?shù)直接相關(guān),親水膠體和淀粉在凝膠化過(guò)程中競(jìng)爭(zhēng)吸收水分,使淀粉更難凝膠化。在另一項(xiàng)關(guān)于親水膠體(AG、GG、XG)對(duì)玉米淀粉熱力學(xué)特性的影響研究中發(fā)現(xiàn),添加阿拉伯膠(AG)會(huì)略微增加淀粉的
和
,但對(duì)
和 ΔH 沒(méi)有顯著影響。然而,添加X(jué)G和GG的凝膠化溫度均增加, ΔH 顯著降低,在相同條件下XG的效果最顯著[25]。
2.4對(duì)淀粉老化特性的影響
淀粉老化是指糊化后的淀粉溫度降低到一定程度時(shí),淀粉分子從無(wú)序狀態(tài)轉(zhuǎn)變?yōu)橛行驙顟B(tài)的過(guò)程[26]。研究表明,添加親水膠體能夠有效延緩或抑制淀粉的老化。Lee等[27將多種親水膠體與甘薯淀粉復(fù)配,研究其老化特性,結(jié)果表明只有海藻酸鈉能有效延緩甘薯淀粉的老化。Aguirre-Cruz等[28]研究表明,CMC和XG的添加會(huì)降低玉米淀粉的老化程度;當(dāng)添加量從 0.2% 增加至 0.5% 時(shí),XG能夠顯著降低淀粉的老化,而CMC對(duì)淀粉的老化程度沒(méi)有顯著影響。然而,在一定條件下親水膠體也能促進(jìn)淀粉的老化。Kim等[29]在大米淀粉-XG混合體系糊化冷卻過(guò)程中發(fā)現(xiàn),XG促進(jìn)了大米淀粉的老化,且隨著XG添加量的增加作用逐漸明顯。
2.5對(duì)淀粉凍融穩(wěn)定性的影響
凍融穩(wěn)定性是淀粉的一項(xiàng)重要功能特性,通過(guò)從淀粉凝膠中分離出的水來(lái)測(cè)量脫水收縮[30]。析水率是評(píng)價(jià)凍融循環(huán)過(guò)程中淀粉-親水膠體抵御劣變能力的一個(gè)重要指標(biāo)。親水膠體能夠有效改善淀粉的凍融穩(wěn)定性。鐘蓓等[31]發(fā)現(xiàn)添加X(jué)G或GG能夠有效改善小麥淀粉的凍融穩(wěn)定性,且凍融穩(wěn)定性隨著XG或GG添加量的增加而逐漸增加。Muadklay等[32]認(rèn)為XG能夠提高木薯淀粉的凍融穩(wěn)定性,而GG的改善作用不明顯。Chantaro等[33]在研究蔗糖對(duì)木薯淀粉-XG混合體系熱特性和糊化特性的影響中發(fā)現(xiàn),隨著XG添加量增加,體系的老化程度顯著降低,凍融穩(wěn)定性提高。
2.6對(duì)淀粉膨脹度的影響
淀粉顆粒的膨脹是指淀粉顆粒在吸收自由水后體積膨大,顆粒內(nèi)部結(jié)構(gòu)變松散,淀粉的膨脹度(SP)主要取決于淀粉顆粒結(jié)晶區(qū)鍵的牢固性[34]。淀粉-親水膠體混合體系的SP和溶解度受親水膠體的類型和濃度的影響。Lutfi等[35]發(fā)現(xiàn)將GG、XG、CMC 和AG 添加到菱角淀粉中,能顯著降低菱角淀粉的SP,增加混合體系的溶解度,但不同親水膠體之間存在差異。木薯淀粉、陰離子木薯淀粉和陽(yáng)離子木薯淀粉的SP和溶解度因添加AG而降低,而添加AG后SP和溶解度降低的范圍取決于木薯淀粉陰離子電荷的類型[36]。然而,也有研究表明,低濃度的親水膠體會(huì)增加顆粒的膨脹度[37]。
2.7對(duì)淀粉其他特性的影響
親水膠體的加入對(duì)淀粉的其他性質(zhì)(體外消化性、質(zhì)構(gòu)特性等)也會(huì)產(chǎn)生影響。Jang等[38研究了在面條中添加不同類型(GG、海藻酸鈉、XG)和不同濃度的親水膠體對(duì)淀粉體外消化率的影響,結(jié)果表明3種親水膠體對(duì)面條的蒸煮特性產(chǎn)生了積極影響,面條的體外消化率明顯降低,預(yù)測(cè)血糖指數(shù)也下降。郝夢(mèng)爽等[39]研究發(fā)現(xiàn),在擠壓過(guò)程中添加魔芋葡甘聚糖顯著提高了山藥淀粉的抗性淀粉含量。淀粉的質(zhì)構(gòu)特性由硬度、彈性、內(nèi)聚性、膠黏性、咀嚼性和回復(fù)性綜合表現(xiàn),GG、XG等親水膠體的存在增加了淀粉的硬度、內(nèi)聚性和膠黏性,但對(duì)淀粉的彈性沒(méi)有影響[40]。添加 XG、GG和涼粉草膠(MCG)后,豌豆淀粉凝膠的應(yīng)變抵抗力、彈性和硬度增強(qiáng),這是因?yàn)橥愣沟矸?親水膠體中形成了更致密的氫鍵結(jié)構(gòu)[41]。Dangi等[42]發(fā)現(xiàn)添加GG后,珍珠粟淀粉凝膠的硬度、彈性、內(nèi)聚性和膠黏性無(wú)顯著性差異。在甘薯淀粉中添加X(jué)G后,其硬度降低,這是因?yàn)閄G對(duì)直鏈淀粉老化具有抑制作用[16]。
3淀粉-親水膠體相互作用模式及對(duì)淀粉的影響機(jī)制
3.1相互作用模式
淀粉-親水膠體共混體系會(huì)呈現(xiàn)出致密、緊湊、均勻的形態(tài)特征。Shi等[43]認(rèn)為,淀粉-親水膠體相互作用可能存在兩種模式:親水膠體與從淀粉顆粒中浸出的直鏈淀粉分子相互作用,通過(guò)協(xié)同作用使體系黏度增加并抑制回生;膠體分子與浸出的直鏈淀粉分子發(fā)生相互作用,并部分粘連在糊化顆粒上。
3.2相互作用對(duì)淀粉功能特性的影響機(jī)制
當(dāng)?shù)矸叟c親水膠體相互作用時(shí),親水膠體與膨脹的淀粉或浸出的直鏈淀粉之間會(huì)產(chǎn)生協(xié)同效應(yīng),此外,還會(huì)抑制水分子的擴(kuò)散移動(dòng),從而導(dǎo)致黏度增加[44]。加入膠體后,膠體與直鏈淀粉通過(guò)氫鍵結(jié)合,抑制淀粉分子的運(yùn)動(dòng)和重排,從而抑制短期回生[45]。由于親水膠體的吸水性較強(qiáng),能夠和淀粉競(jìng)爭(zhēng)吸收水分,導(dǎo)致淀粉顆粒膨脹和糊化可利用的水減少,同時(shí)吸水后的親水膠體能夠均勻吸附于淀粉顆粒表面,從而使顆粒膨脹度下降并且更難糊化[46]。親水膠體使淀粉和支鏈淀粉相分離不完全,導(dǎo)致支鏈淀粉的溶脹能力下降,不易發(fā)生崩解[47]。親水膠體也會(huì)干擾淀粉顆粒的支鏈分子的重結(jié)晶,降低凝膠體系的硬度[48]。當(dāng)親水膠體與淀粉相互作用時(shí),親水膠體會(huì)弱化淀粉顆粒自身的網(wǎng)絡(luò)結(jié)構(gòu),而與淀粉分子間形成更加穩(wěn)定的網(wǎng)絡(luò)結(jié)構(gòu),降低淀粉的剛性和彈性[49]。
4淀粉-親水膠體復(fù)配體系在食品中的應(yīng)用
在食品體系中使用淀粉和親水膠體均能有效地改善產(chǎn)品品質(zhì),因此發(fā)揮兩者間的協(xié)同互補(bǔ)作用,可減少原料用量,降低產(chǎn)品成本,擴(kuò)大淀粉和膠體的應(yīng)用范圍。Sikora等[50]研究發(fā)現(xiàn),淀粉(馬鈴薯淀粉、燕麥淀粉和玉米淀粉)-XG復(fù)配體系能作為草莓醬的增稠劑,維持其良好的感官特性和質(zhì)構(gòu)特性。此外,淀粉-親水膠體混合物已被用作無(wú)麩質(zhì)意大利面制作中的強(qiáng)化劑,它們賦予了意大利面硬度和口感[51]。將GG、海藻酸鈉和XG添加到小麥、全麥、蕎麥粉中制作成面條,可有效降低面條的體外消化率和預(yù)測(cè)血糖生成指數(shù)[52]。姬娜等[53]使用綠豆淀粉-CMC復(fù)配體系制作可食用膜,相比于單獨(dú)的淀粉膜,復(fù)配體系制成的淀粉膜的抗拉伸強(qiáng)度和延伸率均得到提升。此外,淀粉-親水膠體復(fù)配能增加冰淇淋的黏稠度,降低其流動(dòng)性,抑制冰晶的形成。
5 結(jié)論與展望
綜上所述,在淀粉中添加親水膠體會(huì)導(dǎo)致兩者發(fā)生相互作用,從而顯著改善淀粉的流變、糊化、熱力學(xué)、老化、凍融穩(wěn)定性等性質(zhì)。然而,膠體的化學(xué)結(jié)構(gòu)和濃度、淀粉的鏈支比和有序結(jié)構(gòu)等均會(huì)影響復(fù)配體系的理化性質(zhì),進(jìn)而影響淀粉的功能性質(zhì)。因此,為達(dá)到理想的結(jié)果,需要合適的天然淀粉和親水膠體復(fù)配使用。因此,需發(fā)展新的研究方法,進(jìn)一步明確淀粉和親水膠體的相互作用機(jī)制。此外,由于現(xiàn)有的親水膠體種類有限,亟需挖掘新的膠體資源或者研究現(xiàn)有膠體的復(fù)配效應(yīng),豐富產(chǎn)品種類。最后,需進(jìn)一步探索淀粉-親水膠體復(fù)配體系對(duì)食品品質(zhì)的影響,為其在食品和調(diào)味品行業(yè)的推廣應(yīng)用提供理論依據(jù)。
參考文獻(xiàn):
[1]LAWAL MV. Modified starches as direct compression excipients effect of physical and chemical modifications on tablet properties: areview[J].Starch-Starke,2019,71(1-2):1800040.
[2]徐忠,孫月,藍(lán)英閣,等.變性淀粉在調(diào)味品加工中的應(yīng)用研 究進(jìn)展[J].中國(guó)調(diào)味品,2018,43(11):179-182,190.
[3]PIRSA S,HAFEZI K.Hydrocolloids:structure,preparation method,and application infood industry[J].Food Chemistry, 2022,399:133967.
[4]張利,楊迎伍.食品品質(zhì)改良劑——親水膠體[J].四川食品 與發(fā)酵,2002(1):30-33.
[5]譚智峰,張闖闖,許澤坤,等.常見(jiàn)親水膠體對(duì)烘焙食品品質(zhì) 影響的研究進(jìn)展[J].糧油食品科技,2021,29(4):116-121.
[6]MAHMOODK,KAMILAHH, SHANG PL,et al. A review: interaction of starch/non-starch hydrocolloid blending and therecent food applications[J].Food Bioscience,2ol7,19: 110-120.
[7]NAWAB A,ALAMF,HAQMA,etal. Effect of guar and xanthan gums on functional properties of mango(Mangifera indica)kernel starch[J]. International Journal ofBiological Macromolecules,2016,93:630-635.
[8]郭曉娟,劉成梅,吳建永,等.親水膠體對(duì)淀粉理化性質(zhì)影響 的研究進(jìn)展[J].食品工業(yè)科技,2016,37(6):367-371.
[9]VARELA MS,NAVARRO A S,YAMULDK. Effectof hydrocolloids on the properties of wheat/potato starch mixtures[J]. Starch-Starke,2016,68(7-8):753-761.
[10]蔡旭冉,徐祝萍,徐忠東,等.瓜爾膠和黃原膠對(duì)馬鈴薯淀粉 糊化特性影響的比較研究[J].食品工業(yè)科技,2015,36(21): 280-284.
[11]LEITE T D,NICOLETI JF,PENNA A L B,et al. Effect of addition of diffrent hydrocolloids on pasting,thermal,and rheological properties of cassava starch[J].Food Science and Technology,2012,32(3):579-587.
[12]黎歡,王蓉蓉,劉潔,等.不同親水膠體對(duì)百合淀粉糊化及 流變學(xué)特性的影響[J].中國(guó)食品學(xué)報(bào),2021,21(5):57-66.
[13]CENGIZ E,DOGAN M. Effect of corn starch-hydrocolloid interactions on the rheological properties of coating batters[J]. Journal of Food Processing and Preservation,2o21,45(3):15250.
[14]ZHANG Y Y,GU Z B, ZHU L,et al. Comparative study on theinteraction between native corn starch and different hydrocolloids during gelatinization[J]. International Journal of Biological Macromolecules,2018,116:136-143.
[15]SHAHZAD S A,HUSSAIN S,ALAMRI MS, et al. Use of hydrocolloid gums to modify the pasting,thermal,rheological, and textural properties of sweet potato starch[J]. International Journal of Polymer Science,2019(4) :6308591.
[16]HORSTMANN S W,AXEL C,ARENDT E K. Water absorption as a prediction tool for the application of hydrocolloids in potato starch-based bread[J].Food Hydrocolloids,2018, 81:129-138.
[17]FANG F,LUO X A,BEMILLER J N, et al. Neutral hydrocolloids promote shear-induced elasticity and gel strength of gelatinized waxy potato starch[J].Food Hydrocolloids,2020,107:105923.
[18]MA Y S,PAN Y, XIE Q T,et al. Evaluation studies on effects of pectin with different concentrations on the pasting, rheological and digestibility properties of corn starch[J]. Food Chemistry,2019,274(1):319-323.
[19]ZHENG M J, YOU Q X,LIN Y, et al. Effect of guar gum on the physicochemical properties and in vitro digestibility of lotus seed starch[J].Food Chemistry,2019,272:286-291.
[20]ALAM F,NAWAB A,LUTFI Z,et al. Effect of non-starch polysaccharides on the pasting,gel,and gelation properties of taro(Colocasia esculenta) starch[J].Starch-Starke,2021, 73(1-2):2000063.
[21]李遠(yuǎn),辛士剛,趙秀紅,等.瓜爾豆膠對(duì)馬鈴薯淀粉消化性 和糊化特性的影響[J].食品工業(yè)科技,2019,40(8):61-65.
[22]YADAV K,YADAV B S,YADAV R B, et al. Physicochemical, pasting and rheological properties of colocasia starch as influenced by the addition of guar gum and xanthan gum[J]. Journal of Food Measurement and Characterization,2018,12(4):2666-2676.
[23]NAWAB A, ALAM F,HASNAIN A. Functional properties of cowpea (Vigna unguiculata) starch as modified by guar, pectin,and xanthan gums[J]. Starch-St?rke,2014,66(9-10): 832-840.
[24]KHANNA S,TESTER R F. Influence of purified konjac glucomannan on the gelatinisation and retrogradation properties of maize and potato starches[J].Food Hydrocolloids,2006, 20(5):567-576.
[25]ZHANG YY,GU ZB,ZHUL,et al. Comparative study onthe interaction between native corn starch and different hydrocolloids during gelatinization[J].International Journal of Biological Macromolecules,2018,116:136-143.
[26]王心,閆璟圓,張倩,等.甜菜果膠對(duì)小麥淀粉老化的影響[J]. 中國(guó)食品學(xué)報(bào),2023,23(7):169-176.
[27]LEE M H, BAEK MH, CHA D S,et al. Freeze-thaw stabilization of sweet potato starch gel by polysaccharide gums[J]. Food Hydrocolloids,2002,16(4) :345-352.
[28]AGUIRRE-CRUZ A, MENDEZ-MONTEALVO G, SOLORZAFERIA J,et al. Effect of carboxymethylcellulose and xanthan gum on the thermal, functional and rheological properties of dried nixtamalised maize masa[J]. Carbohydrate Polymers,2005, 62(3):222-231.
[29]KIM C, YOO B.Rheological properties of rice starch-xanthan gum mixtures[J]. Journal of Food Engineering,20o6,75(1): 120-128.
[30]YAMAZAKI E, SAGO T, KASUBUCHI Y, et al. Improvement on the freeze-thaw stability of corn starch gel by the polysaccharide from leaves of Corchorus olitorius L.[J]. Carbohydrate Polymers, 2013,94(1) :555-560.
[31]鐘蓓,許喜林.黃原膠和瓜爾豆膠對(duì)小麥淀粉凍融穩(wěn)定性 的影響[J].現(xiàn)代食品科技,2016,32(6):118-121.
[32]MUADKLAY J,CHAROENREIN S. Effects of hydrocolloids and freezing rates on freeze-thaw stability of tapioca starch gels[J].Food Hydrocolloids,2008,22(7) :1268-1272.
[33]CHANTARO P,PONGSAWATMANIT R. Influence of sucrose on thermal and pasting properties of tapioca starch and xanthan gum mixtures[J]. Journal of Food Engineering, 2010,98(1) :44-50.
[34]范欣,李小平,胡經(jīng)緯,等.親水膠體對(duì)淀粉理化性質(zhì)的影響 及機(jī)理研究進(jìn)展[J].中國(guó)糧油學(xué)報(bào),2020,35(9):195-202.
[35]LUTFI Z,NAWAB A,ALAM F,et al. Influence of xanthan, guar,CMC and gum acacia on functional properties of water chestnut(Trapa bis pinosa)starch[J]. International Journal of Biological Macromolecules,2017,103:220-225.
[36]CHEN H M,F(xiàn)U X,LUO Z G. Effect of gum arabic on freeze-thaw stability,pasting and rheological properties of tapioca starch and its derivatives[J].Food Hydrocolloids, 2015,51:355-360.
[37]SIKORA M, TOMASIK P, KRYSTYJAN M. Characterization of potato starch fractions and their interaction with hydrocollids[J]. Starch-Starke,2010,62(7):341-349.
[38]JANG HL,BAE IY,LEE HG. In vitro starch digestibility of noodles with various cereal flours and hydrocolloids[J]. LWT-Food Science and Technology ,2015,63(1):122-128.
[39]郝夢(mèng)爽,冀曉龍,史苗苗,等.魔芋膠提高擠壓山藥淀粉中 抗性淀粉含量的工藝研究[J].中國(guó)調(diào)味品,2025,50(1): A1-4501
[40]DA SILVA COSTA RA,BONOMO R C F,RODRIGUES L B,et al. Improvement of texture properties and syneresis of arrowroot (Maranta arundinacea)starch gels by using hydrocolloids (guar gum and xanthan gum)[J]. Journal of the Science of Food and Agriculture,202o,100(7):3204-3211.
[41]RONG L Y, SHEN MY,WEN HL,et al. Effects of xanthan, guar and Mesona chinensis Benth gums on the pasting, rheological, texture properties and microstructure of pea starch gels[J].Food Hydrocolloids,2022,125(1) :107391.
[42]DANGI N,YADAVBS,YADAV RB.Pasting,rheological, thermal and gel textural properties of pearl millet starch as modified by guar gum and its acid hydrolysate[J]. International Journal of Biological Macromolecules,2019,139(2):387-396.
[43]SHI X H,BEMILLER J N. Effects of food gums on viscosities of starch suspensions during pasting[J]. Carbohydrate Polymers, 2002,50(1) :7-18.
[44]XU J,F(xiàn)AN XR,NING Y W, et al. Effect of spring dextrin on retrogradation of wheat and corn starch gels[J]. Food Hydrocolloids,2013,33(2) :361-367.
[45]高群玉,吳磊,趙升熙.食品膠對(duì)甘薯淀粉糊黏度性質(zhì)的影 響[J].現(xiàn)代化工,2008(2):231-234.
[46]朱玲,張雅媛,洪雁,等.木薯淀粉-黃原膠復(fù)配體系中淀粉 糊化機(jī)理[J].食品科學(xué),2011,32(3):81-85.
[47]ACHAYUTHAKAN P, SUPHANTHARIKA M. Pasting and rheological properties of waxy corn starch as affected by guar gum and xanthan gum[J]. Carbohydrate Polymers,20o8,71(1) : 9-17.
[48]FUNAMI T,KATAOKA Y,NODA S,et al. Functions of fenugreek gum with various molecular weights on the gelatinization and retrogradation behaviors of corn starch-2: characterizations of starch and investigations of corn starch/ fenugreek gum composite system at a relatively low starch concentration;5 w/v%[J].Food Hydrocolloids,2008,22(5): 777-787.
[49]KAUR L, SINGH J, SINGH H,et al. Starch-cassia gum interactions:a microstructure rheology study[J].Food Chemistry, 2008,111(1) :1-10.
[50]SIKORA M, KOWALSKI S, TOMASIK P, et al. Rheological and sensory properties of dessert sauces thickened by starchxanthan gum combinations[J]. Journal of Food Enginering, 2007,79(4):1144-1151.
[51]PADALINO L,CONTE A,DEL NOBILE M A. Overview on the general approaches to improve gluten-free pasta and bread[J].Foods,2016,5(4) :87.
[52]JANG HL,BAE IY,LEE HG.In vitro starch digestibility of noodles with various cereal flours and hydrocolloids[J]. LWT-Food Science and Technology,2015,63(1) :122-128.