[摘要] 目的 利用生物信息學(xué)對兒童暴發(fā)性心肌炎(fulminant myocarditis,F(xiàn)M)患兒血清中差異表達(dá)的微RNA(microRNA,miRNA)及其靶基因進(jìn)行分析,探索其發(fā)病機(jī)制。方法 選擇高通量公共基因表達(dá)數(shù)據(jù)庫(Gene Expression Omnibus,GEO)中的數(shù)據(jù)集GSE221090,并利用GEO2R在線工具進(jìn)行生物信息學(xué)分析,篩選出差異表達(dá)miRNA。利用在線miRDB數(shù)據(jù)庫預(yù)測差異表達(dá)miRNA的靶基因。采用DAVID工具對篩選出的靶基因進(jìn)行基因本體(gene ontology,GO)功能分析和京都基因與基因組百科全書(Kyoto Encyclopedia of Genes and Genomes,KEGG)通路富集分析。通過STRING數(shù)據(jù)庫和Cytoscape軟件構(gòu)建與差異表達(dá)基因相關(guān)聯(lián)的蛋白質(zhì)–蛋白質(zhì)相互作用(protein-protein interaction networks,PPI),并篩選出核心基因。結(jié)果 對FM患兒與健康志愿者血清中差異表達(dá)miRNA進(jìn)行篩選,共獲得148個(gè)差異表達(dá)miRNA,其中上調(diào)109個(gè)、下調(diào)39個(gè)。上調(diào)miRNA和下調(diào)miRNA各取評(píng)分排名前10位,利用在線miRDB數(shù)據(jù)庫對上述miRNA進(jìn)行靶基因預(yù)測,納入表達(dá)上調(diào)miRNA所調(diào)控的靶基因291個(gè),表達(dá)下調(diào)miRNA所調(diào)控的靶基因290個(gè)。對靶基因進(jìn)行GO和KEGG分析,顯示表達(dá)上調(diào)miRNA所調(diào)控的靶基因主要涉及磷脂酰肌醇3-激酶-蛋白激酶B(phosphatidylinositol 3-kinase/protein kinase B signaling pathway,PI3K/Akt)信號(hào)通路、叉頭盒O信號(hào)通路等相關(guān)信號(hào)通路,表達(dá)下調(diào)miRNA所調(diào)控的靶基因主要涉及轉(zhuǎn)化生長因子β(transforming growth factor-β,TGF-β)等相關(guān)信號(hào)通路。通過PPI和Cytoscape軟件篩選出相關(guān)度評(píng)分排名前10位的差異表達(dá)基因:沉默調(diào)節(jié)蛋白1(sirtuin 1,SIRT1)、信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活因子3、雌激素受體1、H3.3組蛋白B、核受體共抑制因子1、干擾素調(diào)節(jié)因子4、白細(xì)胞介素-1β、Dicer1核糖核酸酶Ⅲ、組蛋白去乙?;?(histone deacetylase 1,HDAC1)、DEAD盒解旋酶6。結(jié)論 miR-22-3p、miR-4284等在兒童FM發(fā)病過程中發(fā)揮重要作用,可能與其調(diào)控的SIRT1和HDAC1表達(dá)水平相關(guān),其機(jī)制可能通過PI3K/Akt、TGF-β等信號(hào)通路發(fā)揮生物學(xué)效應(yīng)。
[關(guān)鍵詞] 暴發(fā)性心肌炎;微小RNA;基因芯片;生物信息學(xué)
[中圖分類號(hào)] R542.2" """"[文獻(xiàn)標(biāo)識(shí)碼] A """""[DOI] 10.3969/j.issn.1673-9701.2025.18.003
Screening and bioinformatics analysis of expressed miRNA in pediatric fulminant myocarditis
WANG Luyin1, YAO Jiafang2, TANG Kankai1
1.Department of Critical Care Medicine, the First Affiliated Hospital of Huzhou Normal University, the First People’s Hospital of Huzhou, Huzhou 313000, Zhejiang, China; 2.Department of Cardiology, the First Affiliated Hospital of Huzhou Normal University, the First People’s Hospital of Huzhou, Huzhou 313000, Zhejiang, China
[Abstract] Objective To analyze the differentially expressed microRNA (miRNA) and their target genes in the serum of pediatric patients with fulminant myocarditis (FM) through bioinformatics methods, and to explore the pathogenesis. Methods GSE221090 dataset from the high-throughput Gene Expression Omnibus (GEO) were selected, and bioinformatics analysis was performed by using the GEO2R online tool to screen for differentially expressed miRNA. The online miRDB database was used to predict the target genes of the differentially expressed miRNA. The DAVID tool was employed for gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the screened target genes. Additionally, protein-protein interaction networks (PPI) associated with the differentially expressed genes was constructed by using STRING database and Cytoscape software, and core genes were screened. Results A total of 148 differentially expressed miRNA were identified in the serum of pediatric FM group compared to normal children group, including 109 up-regulated and 39 down-regulated miRNA. The top ten up-regulated and down-regulated miRNA based on their scores were selected, and target gene prediction for a forementioned miRNA was conducted by using the online miRDB database, identifying 291 target genes regulated by up-regulted miRNA and 290 target genes regulated by down-regulated miRNA. Subsequent GO and KEGG analyses demonstrated that the target genes of up-regulated miRNA were primarily enriched in signaling pathways including phosphatidylinositol 3-kinase/protein kinase B signaling pathway (PI3K/Akt) and forhead box O, whereas the target genes of down-regulated miRNA predominantly participated in the transforming growth factor-β (TGF-β) signaling pathway and related pathways. The top ten differentially expressed genes with the highest relevance scores using PPI and Cytoscape software were identified, including sirtuin 1 (SIRT1), signal transducer and activator of transcription 3, estrogen receptor 1, H3.3 histone B, nuclear receptor corepressor 1, interferon regulatory factor 4, interleukin-1 Beta, dicer 1 ribonucleaseⅢ, histone deacetylase 1 (HDAC1), and DEAD-box helicase. Conclusion miR-22-3p, miR-4284, and others are crucial in the pathogenesis of pediatric FM, possibly related to the expression levels of SIRT1 and HDAC1 regulated, with mechanisms that may exert biological effects via the PI3K/Akt, TGF-β, and other signaling pathways.
[Key words] Fulminant myocarditis; microRNA; Gene chip; Bioinformatics
暴發(fā)性心肌炎(fulminant myocarditis,F(xiàn)M)是一種罕見且嚴(yán)重的心臟疾病,好發(fā)于兒童和青壯年,表現(xiàn)為快速進(jìn)展的心功能不全和循環(huán)衰竭[1]。兒童FM病程短暫、進(jìn)展迅速,可導(dǎo)致嚴(yán)重并發(fā)癥,甚至危及生命。大多數(shù)兒童經(jīng)積極治療預(yù)后良好,但仍有部分患兒面臨高死亡率或需心臟移植的風(fēng)險(xiǎn)[2]。兒童FM的臨床表現(xiàn)多樣且缺乏特異性,早期診斷和及時(shí)治療尤為重要[3]。本研究利用生物信息學(xué)篩選并分析FM差異表達(dá)微RNA(microRNA,miRNA)及其靶基因,探討其相互作用機(jī)制,有助于深入理解兒童FM的發(fā)病機(jī)制,為生物標(biāo)志物篩選提供支持,為早期診斷與預(yù)防提供理論基礎(chǔ)。
1" 資料與方法
1.1 "數(shù)據(jù)獲取與miRNA的篩選
從公共基因表達(dá)數(shù)據(jù)庫(gene expression omnibus,GEO)獲取基因表達(dá)譜數(shù)據(jù)集GSE221090。數(shù)據(jù)集由3例FM患兒和3名健康志愿者的血清miRNA表達(dá)陣列數(shù)據(jù)構(gòu)成。使用GEO2R在線分析工具對數(shù)據(jù)集進(jìn)行分析,設(shè)置條件|LogFC|gt;2和調(diào)整后Plt;0.01,篩選出差異表達(dá)的miRNA,同時(shí)按miRNA對應(yīng)的|LogFC|進(jìn)行評(píng)分,其中LogFC是計(jì)算FM兒童樣本和對應(yīng)健康志愿者樣本miRNA表達(dá)量的倍數(shù),分別選取評(píng)分前10位的上調(diào)miRNA和下調(diào)miRNA。
1.2" miRNA對應(yīng)靶基因獲取
使用miRDB數(shù)據(jù)庫在線預(yù)測上調(diào)及下調(diào)差異表達(dá)miRNA的靶基因,通過支持向量機(jī)模型整合序列互補(bǔ)性、熱力學(xué)穩(wěn)定性、進(jìn)化保守性等特征生成目標(biāo)評(píng)分,取每個(gè)miRNA目標(biāo)評(píng)分前30位的靶基因,且對應(yīng)的目標(biāo)評(píng)分gt;80分。
1.3 "基因本體功能和京都基因與基因組百科全書通路富集分析
通過使用DAVID在線分析工具,對與兒童FM相關(guān)的靶基因進(jìn)行基因本體(gene ontology,GO)功能分析和京都基因與基因組百科全書(Kyoto Encyclopedia of Genes and Genomes,KEGG)通路富集分析。采用超幾何分布檢驗(yàn)計(jì)算GO和KEGG富集顯著性,并用Benjamini-Hochberg法校正多重假設(shè),Plt;0.05為差異有統(tǒng)計(jì)學(xué)意義。
1.4" 蛋白質(zhì)-蛋白質(zhì)相互作用網(wǎng)絡(luò)構(gòu)建與分析
使用STRING數(shù)據(jù)庫對上述靶基因構(gòu)建蛋白質(zhì)–蛋白質(zhì)相互作用(protein-protein interaction networks,PPI)網(wǎng)絡(luò)圖,并使用Cytoscape3.7.1軟件進(jìn)行可視化分析。使用Cytohubba插件對PPI網(wǎng)絡(luò)上的靶基因與兒童FM的相關(guān)性進(jìn)行評(píng)分,篩選出相關(guān)度評(píng)分排名前10位的核心基因。
2" 結(jié)果
2.1" 差異表達(dá)miRNA和靶基因的鑒定與篩選
通過GEO2R在線分析工具,對FM患兒及健康志愿者的轉(zhuǎn)錄組數(shù)據(jù)進(jìn)行分析,共篩選出148個(gè)差異表達(dá)miRNA,其中109個(gè)miRNA呈上調(diào)狀態(tài),39個(gè)miRNA則顯示下調(diào)趨勢,見圖1。FM患兒血清miRNA差異表達(dá)評(píng)分排名前10位的上調(diào)miRNA和下調(diào)miRNA分析見表1和表2。使用在線miRDB數(shù)據(jù)庫對上述20個(gè)miRNA預(yù)測靶基因,取每個(gè)miRNA評(píng)分排名前30位的靶基因,剔除重復(fù)基因后,表達(dá)上調(diào)miRNA所調(diào)控的靶基因共291個(gè),表達(dá)下調(diào)miRNA所調(diào)控的靶基因共290個(gè),共納入581個(gè)靶基因。
2.2" GO功能分析與KEGG通路富集分析
通過使用DAVID在線分析工具,分別對291個(gè)表達(dá)上調(diào)和290個(gè)表達(dá)下調(diào)miRNA所調(diào)控的靶基因進(jìn)行GO功能分析與KEGG通路富集分析。表達(dá)上調(diào)的miRNA所調(diào)控的靶基因生物學(xué)過程(biological process,BP)分析顯示主要與基因表達(dá)負(fù)調(diào)控、成纖維細(xì)胞生長因子受體(fibroblast growth factor receptor,F(xiàn)GFR)信號(hào)通路正調(diào)控、RNA聚合酶Ⅱ(polymerase Ⅱ,PolⅡ)對轉(zhuǎn)錄的正調(diào)控作用等相關(guān)。細(xì)胞成分(cellular component,CC)分析顯示主要影響細(xì)胞核、細(xì)胞核質(zhì)、高爾基體等。分子功能(molecular function,MF)分析顯示主要參與蛋白結(jié)合、DNA結(jié)合轉(zhuǎn)錄因子活性、序列特異性DNA結(jié)合等。KEGG分析結(jié)果顯示主要富集在磷脂酰肌醇3-激酶-蛋白激酶B(phosphatidylinositol 3-kinase/ protein kinase B signaling pathway,PI3K/Akt)信號(hào)通路、叉頭盒(forhead box,F(xiàn)ox)O信號(hào)通路等,見表3。表達(dá)下調(diào)miRNA所調(diào)控的靶基因BP分析顯示主要與RNA PolⅡ?qū)D(zhuǎn)錄的調(diào)節(jié)、RNA PolⅡ?qū)D(zhuǎn)錄的正調(diào)控作用、子宮內(nèi)胚胎發(fā)育等相關(guān)。CC分析顯示主要影響細(xì)胞核質(zhì)、染色質(zhì)間顆粒、染色質(zhì)等。MF分析顯示主要影響金屬離子結(jié)合、mRNA結(jié)合、RNA PolⅡ順式調(diào)控區(qū)序列特異性DNA結(jié)合等。KEGG分析結(jié)果顯示主要富集在轉(zhuǎn)化生長因子β(transforming growth factor-β,TGF-β)信號(hào)通路,見表4。
2.3" 靶基因的PPI分析
本研究使用STRING數(shù)據(jù)庫對差異表達(dá)miRNA的581個(gè)靶基因構(gòu)建PPI網(wǎng)絡(luò)圖,并使用Cytoscape 3.7.1軟件進(jìn)行可視化,見圖2。使用Cytohubba插件對PPI網(wǎng)絡(luò)上的靶基因與兒童FM的相關(guān)性進(jìn)行評(píng)分,篩選出相關(guān)度評(píng)分排名前10位的核心基因,其中表達(dá)上調(diào)miRNA所調(diào)控的靶基因有6個(gè):沉默調(diào)節(jié)蛋白1(sirtuin 1,SIRT1)、信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活因子3(signal transducer and activator of transcription 3,STAT3)、雌激素受體1(estrogen receptor 1,ESR1)、H3.3組蛋白B(H3.3 histone B,H3-3B)、核受體共抑制因子1(nuclear receptor corepressor 1,NCOR1)、干擾素調(diào)節(jié)因子4(interferon regulatory factor 4;IRF4);表達(dá)下調(diào)miRNA所調(diào)控的靶基因有4個(gè):白細(xì)胞介素-1β(interleukin-1 Beta,IL-1β)、Dicer1核糖核酸酶Ⅲ(dicer 1 ribonuclease Ⅲ,DICER1)、組蛋白去乙?;?(histone deacetylase 1,HDAC1)、DEAD盒解旋酶6(DEAD-box helicase 6,DDX6),見圖3。
3 "討論
miRNA在基因表達(dá)調(diào)控中發(fā)揮重要作用,且在心肌炎等心血管疾病的發(fā)病機(jī)制中扮演關(guān)鍵角色[4]。針對兒童FM中miRNA的研究相對匱乏。本研究對納入的581個(gè)靶基因進(jìn)行GO功能分析發(fā)現(xiàn)兒童FM相關(guān)的miRNA靶基因主要涉及信號(hào)傳導(dǎo)、分子結(jié)合能力等,包括FGFR的正調(diào)控、RNA PolⅡ?qū)D(zhuǎn)錄的調(diào)控等。FGFR的正調(diào)控可能對心肌細(xì)胞的存活和功能恢復(fù)具有重要影響。研究顯示心肌缺血再灌注損傷后激活FGFR信號(hào)通路,從而影響心臟功能恢復(fù)和血管重塑能力[5]。此外,研究發(fā)現(xiàn)FGFR可通過調(diào)節(jié)N-鈣黏附蛋白的穩(wěn)定性影響細(xì)胞間接觸,限制炎癥反應(yīng)并促進(jìn)細(xì)胞遷移[6]。RNA PolⅡ是負(fù)責(zé)轉(zhuǎn)錄蛋白編碼基因的關(guān)鍵酶,通過影響轉(zhuǎn)錄延伸速率和暫停模式調(diào)節(jié)mRNA合成維持心臟功能[7]。RNA PolⅡ的活性可能受病毒感染或免疫反應(yīng)的影響導(dǎo)致心肌細(xì)胞內(nèi)基因表達(dá)異常,并進(jìn)一步加重炎癥反應(yīng)和細(xì)胞損傷[8]。未來針對RNA PolⅡ及其調(diào)控機(jī)制進(jìn)行深入研究,將有助于揭示其在兒童FM中的具體作用。
本研究KEGG通路富集分析結(jié)果發(fā)現(xiàn)PI3K- Akt、FoxO及TGF-β信號(hào)通路在兒童FM中被大量激活。研究表明PI3K/Akt信號(hào)通路可通過抑制凋亡途徑保護(hù)心肌細(xì)胞,減輕炎癥反應(yīng)促進(jìn)修復(fù)[9];通過抑制PI3K/Akt路徑降低病理狀態(tài)下過度活躍的免疫反應(yīng),減輕心肌損傷[10]。FoxO信號(hào)通路通過調(diào)控多種基因的表達(dá),參與細(xì)胞周期停滯、氧化應(yīng)激反應(yīng)及細(xì)胞凋亡等生物學(xué)過程[11]。在心肌缺氧–再灌注模型中,F(xiàn)oxO信號(hào)通路被認(rèn)為可減輕氧化應(yīng)激引起的細(xì)胞損傷促進(jìn)細(xì)胞存活[12]。在小鼠模型中,通過抑制FoxO信號(hào)通路導(dǎo)致心肌損傷加重,這進(jìn)一步支持其在保護(hù)心臟中的重要角色[13]。TGF-β信號(hào)通路在組織修復(fù)和纖維化過程中發(fā)揮關(guān)鍵作用。研究報(bào)道在病毒性心肌炎小鼠模型中,血小板因子4表達(dá)顯著增加,通過激活TGF-β1/Smad2/3信號(hào)通路,促進(jìn)心臟成纖維細(xì)胞的活化和細(xì)胞外基質(zhì)的合成,最終導(dǎo)致心臟纖維化的發(fā)生[14]。此外,研究指出TGF-β信號(hào)通路在心肌炎巨噬細(xì)胞中調(diào)節(jié)細(xì)胞因子的產(chǎn)生,尤其是促炎和抗炎細(xì)胞因子的生成,表明TGF-β信號(hào)在心臟炎癥過程中具有關(guān)鍵的調(diào)節(jié)作用[15]。通過靶向干預(yù)上述信號(hào)通路,有望為兒童FM提供新的治療策略。
本研究通過對納入研究的靶基因與兒童FM的相關(guān)性進(jìn)行評(píng)分,篩選出相關(guān)度排名前10位的核心基因,包括SIRT1、HDAC1等。其中SIRT1是一種依賴于NAD+的去乙?;福瑓⑴c調(diào)節(jié)細(xì)胞代謝、應(yīng)激反應(yīng)和炎癥過程。研究表明SIRT1可通過激活SIRT1/PGC-1α/PI3K/Akt信號(hào)通路,降低心肌纖維化和氧化應(yīng)激,保護(hù)心肌細(xì)胞功能[16]。HDAC1是一種關(guān)鍵的表觀遺傳調(diào)控因子,通過去乙酰化作用影響基因表達(dá),參與細(xì)胞增殖、凋亡及免疫反應(yīng)等生物學(xué)過程。研究顯示抑制HDAC1的活性可顯著減輕TGF-β1對過氧化物酶體增殖物激活受體γ轉(zhuǎn)錄的抑制作用,從而影響心臟的重塑和功能[17]。本研究顯示SIRT1、HDAC1上游miRNA分別是miR-22-3p、miR-4284,據(jù)此推測miR-22-3p/SIRT1/ PI3K-Akt信號(hào)軸、miR-4284/HDAC1/TGF-β信號(hào)軸可能影響兒童FM的發(fā)生發(fā)展。
綜上,本研究篩選出差異表達(dá)的miRNA及其靶基因,揭示這些分子在兒童FM中的潛在生物學(xué)機(jī)制。在未來的研究中,本課題組將進(jìn)一步驗(yàn)證這些結(jié)果并探索其臨床應(yīng)用。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻(xiàn)]
[1]"" HOXHA S, PORETTI G, GARDELLINI J, et al. Venoarterial extracorporeal membrane oxygenation using magnetic levitation centrifugal pumps for fulminant myocarditis in infants, children and young adults[J]. Transl Pediatr, 2024, 13(12): 2233–2241.
[2]"" SCHUBERT S, OPGEN-RHEIN B, BOEHNE M, et al. Severe heart failure and the need for mechanical circulatory support and heart transplantation in pediatric patients with myocarditis: Results from the prospective multicenter registry “MYKKE”[J]. Pediatr Transplant, 2019, 23(7): e13548.
[3]"" POPA A, LAZEA C, AGOSTON-COLDEA L. Novel insights on acute myocarditis in pediatric patients[J]. Eur Rev Med Pharmacol Sci, 2023, 27(23): 11479–11495.
[4]"" CHIMENTI C, MAGNOCAVALLO M, VETTA G, et al. The Role of microRNA in the myocarditis: A small actor for a great role[J]. Curr Cardiol Rep, 2023, 25(7): 641–648.
[5]"" HOUSE S L, CASTRO A M, LUPU T S, et al. Endothelial fibroblast growth factor receptor signaling is required for vascular remodeling following cardiac ischemia-reperfusion injury[J]. Am J Physiol Heart Circ Physiol, 2016, 310(5): H559–71.
[6]"" NGUYEN T, DUCHWSNE L, SANKARA NARAYANA G H N, et al. Enhanced cell-cell contact stability and decreased N-cadherin-mediated migration upon fibroblast growth factor receptor-N-cadherin cross talk[J]. Oncogene, 2019, 38(35): 6283–6300.
[7]"" KHITUN A, BRION C, MOQTADERI Z, et al. Elongation rate of RNA polymeraseⅡ affects pausing patterns across 3' UTRs[J]. J Biol Chem, 2023, 299(11): 105289.
[8]"" ZHANG J, SHENG J, DONG L, et al. Cardiomyocyte- specific loss of RNA polymeraseⅡ subunit 5-mediating protein causes myocardial dysfunction and heart failure[J]. Cardiovasc Res, 2019, 115(11): 1617–1628.