中圖分類(lèi)號(hào) S966.12 文獻(xiàn)標(biāo)識(shí)碼 A 文章編號(hào) 1000-2421(2025)03-0112-08
克氏原蝦(Procambarusclarkii)原產(chǎn)于北美地區(qū),1929年首次引入我國(guó)南京[1],2023年產(chǎn)量已達(dá)到316.1萬(wàn)t,在淡水甲殼類(lèi)養(yǎng)殖中排名第—[2]。但克氏原螯蝦養(yǎng)殖過(guò)程中仍存在飼料品質(zhì)不穩(wěn)定3投喂過(guò)度導(dǎo)致水質(zhì)惡化以及擁擠脅迫4等問(wèn)題,導(dǎo)致其抵抗力低下,病害瀕發(fā)。腐殖酸鈉是腐殖酸的鈉鹽,作為綠色添加劑,含有多種生物活性物質(zhì)和礦物元素[5],可以調(diào)節(jié)水質(zhì)[6和養(yǎng)殖動(dòng)物腸道的菌群平衡[7]增強(qiáng)其消化酶活性及抗氧化能力[8],具有無(wú)殘留、成本低的特點(diǎn);但過(guò)量添加會(huì)導(dǎo)致魚(yú)類(lèi)鰓和肝臟組織細(xì)胞損傷9,且克氏原螯蝦幼蝦的鰓組織對(duì)添加劑更加敏感,故評(píng)估腐殖酸鈉對(duì)克氏原螯蝦機(jī)體的潛在影響具有重要意義??莶菅挎邨U菌(Bacillussubtilis)是一種革蘭氏陽(yáng)性菌,可將營(yíng)養(yǎng)物質(zhì)分解為易消化組分,提高養(yǎng)殖動(dòng)物消化酶活性并優(yōu)化腸道組織結(jié)構(gòu),從而提高其抗氧化性能[10]、生長(zhǎng)性能和存活率[11];聯(lián)合添加核糖核苷酸[12]或戊糖片球菌[13]可以顯著提高水生動(dòng)物的消化、生長(zhǎng)和抗氧化性能,但枯草芽孢桿菌對(duì)不同養(yǎng)殖動(dòng)物的作用效果差異較大[11],且目前枯草芽孢桿菌和腐殖酸鈉在水產(chǎn)動(dòng)物上的聯(lián)合使用鮮有報(bào)道。為解析腐殖酸鈉和枯草芽孢桿菌對(duì)克氏原螯蝦的功效,本研究以克氏原螯蝦幼蝦為試驗(yàn)對(duì)象,探究飼料中添加腐殖酸鈉和枯草芽孢桿菌對(duì)其生長(zhǎng)性能、抗氧化能力和免疫酶活的影響,以期為克氏原螯蝦養(yǎng)殖過(guò)程中飼料添加劑的選擇和科學(xué)投喂提供理論依據(jù)。
1 材料與方法
1.1試驗(yàn)設(shè)計(jì)和飼養(yǎng)管理
試驗(yàn)對(duì)象為克氏原螯蝦,以市售克氏原螯蝦飼料為基礎(chǔ)飼料(粗蛋白質(zhì)水平為 30% ;粗脂肪水平為6% ;在對(duì)照組飼糧的基礎(chǔ)上添加腐殖酸鈉(武漢市宇銘生物科技有限公司;純度 99% )和枯草芽孢桿菌(蔚藍(lán)生物科技有限公司;有效活菌數(shù) ?1.0× 1011CFU/g )。養(yǎng)殖試驗(yàn)在湖北省武漢市華中農(nóng)業(yè)大學(xué)健康淡水養(yǎng)殖基地溫室循環(huán)水養(yǎng)殖系統(tǒng)中進(jìn)行。試驗(yàn)蝦暫養(yǎng)于網(wǎng)箱中,2周后選取規(guī)格相近、生長(zhǎng)狀態(tài)良好的克氏原螯蝦360尾[初始體質(zhì)量( 13.59± 0.25)g],隨機(jī)分為4組:對(duì)照組投喂基礎(chǔ)飼料,試驗(yàn)組設(shè)為枯草芽孢桿菌添加組(Bacillussubtilis,BS)、腐殖酸鈉添加組(sodiumhumate, HNa 和聯(lián)合添加組 ΔBS+HNa) 。BS組在基礎(chǔ)飼料中添加 0.5% 枯草芽孢桿菌,HNa組在基礎(chǔ)飼料中添加 0.5% 腐殖酸鈉的,BS+HNa組在基礎(chǔ)飼料中添加 0.5% 腐殖酸鈉和 0.5% 枯草芽孢桿菌。試驗(yàn)前先將腐殖酸鈉和枯草芽孢桿菌溶解到適量的水中,均勻噴涂到飼料上,再置于 45°C 烘箱中烘干至水分含量低于 10% ,用自封袋密封保存于 -20°C 冰箱備用。
試驗(yàn)蝦分組后轉(zhuǎn)移到裝有曝氣設(shè)備和脫氯自來(lái)水的纖維玻璃養(yǎng)殖缸 (1.20m×0.60m×0.45m) 中,每個(gè)缸放置15根PVC管 (25cm×7.5cm 作為試驗(yàn)蝦的棲息場(chǎng)所。試驗(yàn)期間,每天使用曝氣自來(lái)水換水 30%~40% 以維持養(yǎng)殖水體的健康狀態(tài),養(yǎng)殖水質(zhì)情況:水溫 24.1~26.8°C ,溶解氧含量 5.7~7.6 mg/L ,pH值 7.2~8.1 ,總氮 0.032~0.071mg/L 。每天08:00和18:00投喂,投喂量為蝦體質(zhì)量的 2%~ 3% ,每天記錄每缸投喂量,觀察試驗(yàn)蝦停止攝食后,使用虹吸法移除養(yǎng)殖缸底部的糞便和殘餌,將未攝食完的飼料烘干至恒質(zhì)量,用于估算飼料消耗量。試驗(yàn)過(guò)程中及時(shí)撈出死蝦并記錄,飼養(yǎng)試驗(yàn)進(jìn)行6周。
1.2 樣品采集
養(yǎng)殖試驗(yàn)結(jié)束后試驗(yàn)蝦禁食24h,每個(gè)玻璃缸中選取3尾蝦用丁香酚麻醉,記錄終末體質(zhì)量(finalbodyweight,F(xiàn)BW)、肝胰腺質(zhì)量和尾部肌肉質(zhì)量以計(jì)算增重率(weightgainrate,WGR)、特定生長(zhǎng)率(specialgrowthratio,SGR)飼料系數(shù)(feedconversionratio,F(xiàn)CR)、蛋白質(zhì)效率(protein efficiency ratio,PER)存活率(survival rate,SR)肝體比(hepatosomatic index,HSI)和出肉率(dressing percentage,DP),計(jì)算公式參照文獻(xiàn)[14]。使用 1mL 無(wú)菌注射器從蝦的頭胸甲后部刺入心臟,抽取 0.5mL 血淋巴,放入 1.5mL 裝有等量抗凝劑的離心管內(nèi), 4°C 靜置 4h 后 12 000r/min 離心 20min ,取上清液保存;分離出肝胰腺組織置于 1.5mL 離心管后轉(zhuǎn)移至 -80°C 冰箱中保存,以檢測(cè)抗氧化和免疫酶活水平。
1.3血淋巴和肝胰腺抗氧化能力、免疫酶活的測(cè)定
取少量肝胰腺組織裝人 離心管,加9倍體積的預(yù)冷生理鹽水進(jìn)行機(jī)械勻漿,于 4°C 下2500r/min 離心 10min ,收集上清液備用。采用南京建成生物工程研究所試劑盒測(cè)定克氏原螯蝦血淋巴和肝胰腺的總抗氧化能力(T-AOC)、過(guò)氧化氫酶(CAT)、超氧化物歧化酶(SOD)、堿性磷酸酶(AKP)和酸性磷酸酶(ACP的活性以及丙二醛(MDA)的含量,并嚴(yán)格按照說(shuō)明書(shū)進(jìn)行操作。
1.4 數(shù)據(jù)分析
數(shù)據(jù)均采用SPSS19軟件進(jìn)行分析,先進(jìn)行單因素分析(One-wayANOVA)和鄧肯氏新復(fù)極差檢驗(yàn)(Duncan'stest)( α=0.05 ),然后采用雙因素方差分析檢驗(yàn)腐殖酸鈉和枯草芽孢桿菌對(duì)克氏原螯蝦是否存在交互作用(Two-wayANOVA),結(jié)果以平均值士標(biāo)準(zhǔn)差(mean ± SD)表示。
2 結(jié)果與分析
2.1克氏原螯蝦的生長(zhǎng)性能
由表1可知,聯(lián)合添加腐殖酸鈉和枯草芽孢桿菌組試驗(yàn)蝦的終末體質(zhì)量(FBW)增重率(WGR)和特定生長(zhǎng)率(SGR)均為最高,均顯著高于對(duì)照組( Plt; 0.05),并且隨著腐殖酸鈉和枯草芽孢桿菌添加量的升高,F(xiàn)BW、WGR和SGR有增加的趨勢(shì),但BS組、HNa組與對(duì)照組之間沒(méi)有顯著差異( Pgt;0.05 ); BS+ HNa組的飼料系數(shù)(FCR)最低,BS+HNa、BS和HNa組試驗(yàn)蝦的FCR均顯著低于對(duì)照組( 1Plt;0.05 。雙因素分析結(jié)果顯示:試驗(yàn)蝦的FBW受到單一因素腐殖酸鈉的影響顯著 (Plt;0.05) ;WGR和SGR受到單一因素枯草芽孢桿菌的影響顯著( (Plt;0.05) ;腐殖酸鈉和枯草芽孢桿菌的交互作用對(duì)試驗(yàn)蝦生長(zhǎng)性能的提高未產(chǎn)生顯著影響 (Pgt;0.05) ),為單純的疊加作用。
由表2可知, BS+HNa 組試驗(yàn)蝦的蛋白質(zhì)效率(PER)、存活率(SR)和出肉率(DP)均為最高,BS、
HNa和BS+HNa組的PER均顯著高于對(duì)照組( Plt; 0.05),且BS+HNa組PER顯著高于BS和HNa組( Plt;0.05 );HNa組和BS+HNa組的DP顯著高于BS組和對(duì)照組 (Plt;0.05 ,但各組之間的SR沒(méi)有顯著差異 (Pgt;0.05 )。 BS+HNa 組試驗(yàn)蝦的肝體比(HSI)最低,顯著低于其他各組( 1lt;0.05 。統(tǒng)計(jì)結(jié)果顯示:試驗(yàn)蝦的DP受到單一因素腐殖酸鈉的影響顯著( .P?0.05 );試驗(yàn)蝦的PER和HSI受到枯草芽孢桿菌和腐殖酸鈉的影響顯著 (Plt;0.05 ),但為單純的疊加作用,未出現(xiàn)顯著的交互作用 (Pgt;0.05 )。
2.2克氏原螯蝦的抗氧化能力
由表3可知, BS+HNa 組血淋巴CAT、SOD活性和T-AOC水平均為最高,均顯著高于對(duì)照組中 (Plt;0.05 ),并且CAT活性和T-AOC水平顯著高于BS組和HNa組 (Plt;0.05) ;BS+HNa組的MDA含量最低,顯著低于BS組、HNa組和對(duì)照組中 (Plt;0.05) ,并且BS和HNa組的MDA含量顯著低于對(duì)照組( (Plt;0.05 。雙因素分析結(jié)果顯示,單一因素腐殖酸鈉對(duì)試驗(yàn)蝦血淋巴的CAT、T-AOC水平和MDA含量的影響極顯著 (Plt;0.001 ,對(duì)試驗(yàn)蝦血淋巴的SOD活性的影響顯著( (Plt;0.05) ;單一因素枯草芽孢桿菌對(duì)試驗(yàn)蝦血淋巴的CAT活性和MDA含量的影響極顯著( Plt;0.001 ),對(duì)試驗(yàn)蝦血淋巴的T-AOC水平的影響顯著( Plt;0.05 ;腐殖酸鈉和枯草芽孢桿菌的交互作用對(duì)試驗(yàn)蝦血淋巴MDA的含量影響顯著( (Plt;0.05) ,對(duì)試驗(yàn)蝦血淋巴CAT、T-AOC水平和SOD活性未產(chǎn)生顯著影響1 Pgt;0.05 ),為單純的疊加作用。
由表4可知, BS+HNa 組試驗(yàn)蝦肝胰腺的CAT、SOD活性和T-AOC的水平均為最高,均顯著高于對(duì)照組 (Plt;0.05 ),其中CAT的活性顯著高于BS、HNa組 .Plt;0.05) ,是對(duì)照組的2.94倍,T-AOC的水平與BS和HNa組沒(méi)有顯著差異 (Pgt;0.05) 。 BS+HNa 組試驗(yàn)蝦肝胰腺的MDA含量最低,為 (13.13±1.08) )nmol/mL,顯著低于BS、HNa和對(duì)照組( (Plt;0.05) ,BS和HNa組試驗(yàn)蝦肝胰腺的MDA含量也顯著低于對(duì)照組 (Plt;0.05) 。雙因素分析結(jié)果顯示,單一因素腐殖酸鈉對(duì)試驗(yàn)蝦肝胰腺的CAT活性和MDA含量影響極顯著( Plt;0.001 ,單一因素枯草芽孢桿菌對(duì)試驗(yàn)蝦肝胰腺的CAT活性和MDA含量影響極顯著L (Plt;0.001 ),對(duì)試驗(yàn)蝦肝胰腺的SOD活性影響顯著中 Plt;0.05) ;枯草芽孢桿菌和腐殖酸鈉的交互作用對(duì)試驗(yàn)蝦肝胰腺抗氧化性能的影響并不顯著(Pgt;0.05) 。
2.3克氏原螯蝦的免疫酶活性
由表5可知, BS+HNa 組試驗(yàn)蝦血淋巴和肝胰腺的AKP和ACP的活性最高,均顯著高于BS、HNa和對(duì)照組( (Plt;0.05 ,并且與對(duì)照組相比,BS和HNa組試驗(yàn)蝦血淋巴和肝胰腺的AKP、ACP活性均顯著提高 (Plt;0.05 ,但BS和HNa組之間沒(méi)有顯著差異中 (-Pgt;0.05 。雙因素分析結(jié)果顯示,克氏原螯蝦血淋巴和肝胰腺中ACP和AKP活性受到腐殖酸鈉和枯草芽孢桿菌的影響顯著( .P?0.05 ,其中枯草芽孢桿菌對(duì)試驗(yàn)蝦肝胰腺的AKP活性的影響極顯著( Plt; 0.001),而枯草芽孢桿菌和腐殖酸鈉的交互作用對(duì)克氏原螯蝦血淋巴中ACP、AKP無(wú)顯著影響0 Pgt;0.05 )。
3討論
3.1腐殖酸鈉和枯草芽孢桿菌對(duì)克氏原螯蝦生長(zhǎng)性能的影響
飼料中添加腐殖酸鈉[15]或枯草芽孢桿菌[16]能顯著改善養(yǎng)殖動(dòng)物的生長(zhǎng)性能和腸道健康,本研究中,聯(lián)合添加枯草芽孢桿菌和腐殖酸鈉可以顯著提高克氏原螯蝦的終末體質(zhì)量、增重率、出肉率、蛋白質(zhì)效率和特定生長(zhǎng)率,顯著降低其飼料系數(shù)和肝體比,并且相比單獨(dú)添加枯草芽孢桿菌或腐殖酸鈉的試驗(yàn)組其增重率、蛋白質(zhì)效率和出肉率也顯著提高。研究發(fā)現(xiàn)飼料中添加 360mg/kg 的腐殖酸鈉[9]可以略微提高鯉的生長(zhǎng)性能和飼料利用效率,但添加腐殖酸鈉會(huì)導(dǎo)致鯉鰓和肝組織損傷,與本試驗(yàn)結(jié)果有一定的差異,推測(cè)其添加量過(guò)高產(chǎn)生了負(fù)面影響;研究者發(fā)現(xiàn)添加枯草芽孢桿菌可以顯著提高紅螯蝦(Cheraxquadricarinatus)[17]和凡納濱對(duì)蝦(Litope-naeusuanmamei)[18]終末體質(zhì)量、特定增長(zhǎng)率和飼料利用率,與本試驗(yàn)結(jié)果類(lèi)似。已有研究證實(shí)腐殖酸鈉可以刺激養(yǎng)殖動(dòng)物腸絨毛長(zhǎng)度增加[19],從而促進(jìn)養(yǎng)殖動(dòng)物的營(yíng)養(yǎng)攝取,并且腐殖酸鈉20和枯草芽孢桿菌[21]可以增加腸道菌群有益菌豐度,而定植的枯草芽孢桿菌和其他益生菌在腸道本身可以分泌一些重要的營(yíng)養(yǎng)物質(zhì)(如維生素K、維生素 B12 和氨基酸)22來(lái)補(bǔ)充養(yǎng)殖動(dòng)物的營(yíng)養(yǎng)需求,本研究中二者促生長(zhǎng)作用的疊加使得克氏原螯蝦的生長(zhǎng)性能顯著提升,但具體的分子調(diào)控機(jī)制還有待轉(zhuǎn)錄組或代謝組學(xué)的深入分析。
3.2腐殖酸鈉和枯草芽孢桿菌對(duì)克氏原螯蝦抗氧化能力的影響
生物體內(nèi)活性氧的生成和消除為動(dòng)態(tài)平衡,平衡狀態(tài)被打破,會(huì)引起體內(nèi)脂肪的過(guò)度氧化,產(chǎn)生具有生物毒性的MDA,該指標(biāo)反映了機(jī)體氧化損傷的程度,抗氧化酶系統(tǒng)可以分解過(guò)量的自由基,緩解機(jī)體中脂肪產(chǎn)生的過(guò)氧化反應(yīng)[23]。本研究中,單獨(dú)或聯(lián)合添加腐殖酸鈉和枯草芽孢桿菌均能顯著提高克氏原螯蝦血淋巴和肝胰腺的CAT、SOD活性和T-AOC水平,降低MDA含量,并且聯(lián)合添加效果優(yōu)于單獨(dú)添加效果,腐殖酸鈉和枯草芽孢桿菌對(duì)克氏原螯蝦血淋巴中MDA含量的降低產(chǎn)生了顯著的交互作用。在Deng等24研究中,添加 3% 的腐殖酸鈉能顯著提升尼羅羅非魚(yú)的生長(zhǎng)性能和中腸的抗氧化性能,但對(duì)羅非魚(yú)血漿CAT、SOD的活性無(wú)顯著影響,與本研究結(jié)果有一定的差異,推測(cè)甲殼類(lèi)動(dòng)物免疫防御更依賴(lài)血淋巴,所以對(duì)腸道吸收的外源添加劑更敏感,而魚(yú)類(lèi)血漿中的酶活性變化閾值較高;在張冬梅等[25]研究中,枯草芽孢桿菌可以顯著提升大口黑鱸幼魚(yú)的抗氧化性能,并且顯著降低MDA含量,與本研究結(jié)果類(lèi)似。SOD活性與乳酸菌豐度正相關(guān),MDA含量和乳酸菌和雙歧桿菌豐度負(fù)相關(guān)[26],而腐殖酸鈉[27]和枯草芽孢桿菌[21]都可以促進(jìn)乳酸菌和雙歧桿菌的定植,從而提高機(jī)體抗氧化能力,推測(cè)協(xié)同效應(yīng)的產(chǎn)生可能是腐殖酸鈉通過(guò)調(diào)節(jié)腸道pH值8和促進(jìn)枯草芽孢桿菌定植,而枯草芽孢桿菌則是通過(guò)分泌代謝產(chǎn)物增強(qiáng)腐殖酸鈉的抗氧化效果[22]。綜上,單獨(dú)或聯(lián)合添加枯草芽孢桿菌和腐殖酸鈉能提高克氏原螯蝦抗氧化應(yīng)激能力,但產(chǎn)生協(xié)同效應(yīng)的具體機(jī)制仍需要進(jìn)一步的探索。
3.3腐殖酸鈉和枯草芽孢桿菌對(duì)克氏原螯蝦免疫酶活的影響
由于缺少特異性的免疫球蛋白,甲殼類(lèi)動(dòng)物免疫反應(yīng)主要依賴(lài)于機(jī)體分泌的多種細(xì)胞及體液免疫因子[28]。其中,ACP和AKP是重要的非特異性免疫酶類(lèi),在機(jī)體的體液免疫及疾病防御等方面發(fā)揮著重要作用[29]。研究發(fā)現(xiàn)腐殖酸鈉可以顯著提升尼羅羅非魚(yú)[24]的免疫功能,枯草芽孢桿菌可以顯著提高凡納濱對(duì)蝦18的免疫球蛋白水平,這與本研究結(jié)果類(lèi)似,本研究中單獨(dú)或聯(lián)合添加腐殖酸鈉和枯草芽孢桿菌可顯著提高克氏原螯蝦血淋巴和肝胰腺ACP和AKP的活性,并且聯(lián)合添加效果優(yōu)于單獨(dú)添加。已有研究證實(shí)枯草芽孢桿菌定植后可以產(chǎn)生多種抗菌代謝物如細(xì)菌素、枯草芽孢桿菌素和表面活性素等,從而增強(qiáng)養(yǎng)殖動(dòng)物的抗病力[30],推測(cè)聯(lián)合添加效果更佳可能是腐殖酸鈉促進(jìn)枯草芽孢桿菌定植從而顯著提升克氏原螯蝦的非特異性免疫能力。聯(lián)合添加枯草芽孢桿菌和腐殖酸鈉有助于提升克氏原螯蝦幼蝦的免疫性能,但二者聯(lián)合顯著提高克氏原螯蝦免疫酶活的途徑和機(jī)理還有待于進(jìn)一步探究。
本研究中飼料單獨(dú)或聯(lián)合添加 0.5% 腐殖酸鈉和 0.5% 枯草芽孢桿菌能有效提高克氏原螯蝦幼蝦的生長(zhǎng)性能、抗氧化性能和免疫酶活水平,并且二者聯(lián)合使用效果更佳,建議克氏原螯蝦養(yǎng)殖過(guò)程中聯(lián)合使用腐殖酸鈉和枯草芽孢桿菌,以達(dá)到更好的綜合養(yǎng)殖效益。
參考文獻(xiàn)References
[1] YUEG H,LIJ,BAI Z,etal.Genetic diversity and population structure of the invasivealienred swamp crayfish[J].Biol invasions,2010,12:2697-2706.
[2] 農(nóng)業(yè)部漁業(yè)漁政管理局.2023年中國(guó)漁業(yè)統(tǒng)計(jì)年鑒[M].北 京:中國(guó)農(nóng)業(yè)出版社,2O23.FisheriesBureauof theMinistryof Agriculture.China fisheries statistical yearbook 2O23[M].Beijing:ChinaAgriculturalPress,2O23(inChinese).
[3] 趙勇,段為旦,王友成,等.益生菌在水產(chǎn)養(yǎng)殖可持續(xù)發(fā)展中 的應(yīng)用現(xiàn)狀及展望[J].水產(chǎn)學(xué)報(bào),2024,48(3):3-15.ZHAO Y,DUANWD,WANGYC,etal.Researchprogressand prospect of probiotics in sustainable aquaculture[J].Journal of fisheries of China,2024,48(3):3-15(in Chinese with English abstract).
[4] 覃寶利,王信海,王宣朋,等.不同養(yǎng)殖參數(shù)對(duì)克氏原螯蝦生 長(zhǎng)及生理生化的影響[J].江蘇農(nóng)業(yè)科學(xué),2023,51(5):183- 190.QINBL,WANGXH,WANGXP,etal.Influencesof different breeding parameters on growth performance,physiologyand biochemistryofProcambarusclarkia[J].Jiangsu agricultural sciences,2023,51(5):183-190 (in Chinese with English abstract).
[5] 范秋麗,蔣守群.腐殖酸和腐殖酸鈉的生物學(xué)功能及其在畜 禽營(yíng)養(yǎng)中的研究進(jìn)展[J].中國(guó)飼料,2021(11):1-6.FANQ L,JIANG S Q.The biological function of humic acid and sodiumhumate and application in livestock and poultry nutrition [J].China feed,2O21(11):1-6(in Chinesewith English abstract).
[6] 葛玲瑞,向勁,劉科均,等.腐殖酸鈉對(duì)稻蝦養(yǎng)殖環(huán)境中水質(zhì) 和浮游生物的短期影響[J].四川農(nóng)業(yè)大學(xué)學(xué)報(bào),2021,39 (4):440-450.GELR,XIANGJ,LIU KJ,et al.Short-term effect of sodium humate on physicochemical properties and plankton community of water in rice shrimp co-culture environment[J].Journal of SichuanAgricultural University,2O21,39 (4):440-450 (in Chinese with English abstract).
[7]SWIDSINSKI A,DORFFEL Y,LOENING-BAUCKEV, etal.Impact of humic acidson the colonic microbiome in healthy volunteers[J].World J Gastroenterol,2O17,23(5): 885-890.
[8]ZHANG A R,PIRZADO S A,LIU G H,et al.Dietary supplementation with sodium humate improves egg quality and immune function of laying hens[J].JAppl Anim Nutr,2020,8: 93-99.
[9]RESEARCHARTICL E,SHAR M I M, SHARAF M.Tag growth performance,gill,liver and kidney histomorphology of common carp (Cyprinus carpio) fingerlings fed humic acid supplemented diets[J].EgyptJExp Biol,20l1,7:285-294.
[10] 單金峰,吳春,王騰,等.芽孢桿菌對(duì)克氏原螯蝦生長(zhǎng)性能、消 化、非特異性免疫和抗病力的影響[J].中國(guó)農(nóng)學(xué)通報(bào),2024, 40(31):159-164.SHANJF,WUC,WANGT,etal.Effect ofBacillus on growth performance,digestion,non-specific immunity and disease resistance of Procambarus clarkii[J].Chinese agricultural science bulletin,2024,40(31) :159-164(in Chinese with English abstract).
[11]KUEBUTORNYEFKA,ABARIKEED,LUY.A review on the application of Bacillus as probiotics in aquaculture[J]. Fish shellfish immunol,2019,87:820-828.
[12]SAENGRUNG J,BUNNOY A,DU X M,et al.Effects of ribonucleotide supplementation in modulating the growth of probioticBacillus subtilisand thesynergistic benefitsfor improving the health performance of Asian seabass (Lates calcarifer) [J/OL].Fish amp;.shelfish immunology,2023,140:108983 [2024-09-30].htps://doi.org/10.1016/j.fsi.2023.108983.
[13]HAMKA M S,MERYANDINI A,WIDANARNI W. Growth performance and immuneresponse of catfish Clarias sp.given probiotics Bacillus megaterium PTB1.4 and Pediococcus pentosaceus E22l1[J]. Jurnal akuakultur indonesia, 2020,19(1):50-60.
[14]彭迪,陳效儒,文華,等.飼料脂肪水平對(duì)克氏原螯蝦親蝦生 長(zhǎng)性能、肌肉成分、繁殖性能以及血淋巴生化指標(biāo)的影響 [J].水產(chǎn)學(xué)報(bào),2019,43(10):2175-2185.PENGD,CHEN X R,WENH,et al.Effectsof dietary lipid levels on growth performance,muscle composition,reproductive performance and hemolymph biochemical indices of Procambarus clarkii brood-stock [J].Journal of fisheries of China,2O19,43(10): 2175-2185 (in Chinese with English abstract).
[15]WANG D,HE Y,LIU K,et al.Sodium humate alleviates enterotoxigenic Escherichiacoli induced intestinal dysfunction via alteration of intestinal microbiota and metabolites in mice [J/OL]. Front microbiol,2022,13:809086[2024-09-30]. https://doi.org/10.3389/fmicb.2022.809086.
[16]INTERAMINENSEJA,VOGELEY JL,GOUVEIA CK, etal.In vitroand inuivopotential probioticactivityof Bacillus subtilisandShewanella algaeforuseinLitopenaeus uannamei rearing[J].Aquaculture,2018,488:114-122.
[17]王守全.枯草芽孢桿菌影響紅螯螯蝦生長(zhǎng)和免疫性能及其腸 道菌群的研究[D].泰安:山東農(nóng)業(yè)大學(xué),2021.WANG SQ. Effectsof Bacillus subtilis on growth,immunityand intestinal flora of Cherax quadricarinatus[D].Taian:Shandong AgriculturalUniversity,2O2l(inChinesewith Englishabstract).
[18]SADAT HOSEINI MADANI N,ADORIAN T J,GHAFARIFARSANIH,etal.The effectsof dietary probiotic Bacilli(Bacillus subtilis and Bacillus licheniformis)ongrowth performance,feed efficiency,body composition and immune parameters of whiteleg shrimp(Litopenaeus uannamei) postlarvae[J].Aquaculture research,2018,49(5):1926-1933.
[19]ARIF M,ALAGAWANY M,ABD EL-HACKME,etal. Humicacid asa feed additive in poultry diets:areview[J].Iranian journal of veterinary research,2O19,20(3):167-172.
[20]WANGD,ZHENGYC,F(xiàn)ANYY,et al.Sodium humate-derived gut microbiota ameliorates intestinal dysfunction induced by Salmonella typhimurium in mice[J/OL]. Microbiology spectrum,2023,11(3):e0534822[2024-09-30].https://doi. org/10.1128/spectrum.05348-22.
[21] CHEN P,LV HM,DUM M,et al.Bacillus subtilis HW2 enhances growth performance and alleviates gut injury via attenuation of endoplasmic reticulum stress and regulation of gut microbiota in broilers under necrotic enteritis challenge[J/OL]. Poultryscience,2024,103(5):103661[2024-09-30].https:// doi.org/10.1016/j.psj.2024.103661.
[22]LEBLANCJG,CHAINF,MARTiNR,etal.Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria[J/ OL].Microbial cell factories,2017,16(1) :79[2024-09-30]. https://doi.org/10.1186/s12934-017-0691-z.
[23]FREEMAN B A,CRAPO J D.Biology of disease: free radicals and tissue injury[J].Laboratory investigation:a journal of technical methods and pathology,1982,47(5):412-426.
[24]DENG JM,LIN B B,ZHANG X D,et al.Effects of dietary sodium humate on growth,antioxidant capacity,non-specific immuneresponse,and resistance toAeromonas hydrophila in genetic improvement of farmed Tilapia (GIFT,Oreochromis niloticus)[J/OL].Aquaculture,2020,520:734788[2024-09- 30].http://doi./10.1016/j.aquaculture.2019.734788.
[25]張冬梅,顏浩驍,羅茂林,等.飼料中添加枯草芽孢桿菌對(duì)大 口黑鱸幼魚(yú)生長(zhǎng)、腸道組織結(jié)構(gòu)、抗氧化能力、免疫能力和腸 炎的影響[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2022,34:575-588.ZHANGD M,YANHX,LUOML,etal.Effects of dietaryBacillus subtilis on growth,intestinal tissue structure,antioxidant capacity, immunityand enteritis of juvenile largemouth bass (Micropterus salmoides)[J].Chinese journal of animal nutrition,2022, 34:575-588 (in Chinese with English abstract).
[26]LIUJ,WANG B,LAIQF,et al.Boosted growth perfor mance,immunity,antioxidant capacity and disease resistance of crucian carp(Carassius auratus)by single or in combination dietary Bacillus subtilis and xylo-oligosaccharides[J/OL]. Comparative biochemistry and physiology part C:toxicology amp;pharmacology,2022,256:109296[2024-09-30].https:// doi.org/10.1016/j.cbpc.2022.109296.
[27]HEY J,WANG D,LIU K X,et al.Sodium humate alleviates LPS-induced intestinal barrier injury by improving intestinal immune function and regulating gut microbiota[J].Molecular immunology,2023,161:61-73.
[28]BOUALLEGUI Y.A comprehensive review on crustaceans’ immune system with a focus on freshwater crayfish in relation to crayfish plague disease[J/OL].Frontiers in immunology, 2021,12:667787[2024-09-30].https://doi.org/10.3389/fimmu.2021.667787.
[29]ZHANGJJ,YANGHL,YANYY,etal.Effects of fish origin probiotics on growth performance,immune response and intestinal health of shrimp (Litopenaeus vannamei) fed diets with fish meal partiallyreplaced by soybeanmeal[J].Aquaculture nutrition,2020,26(4):1255-1265.
[30]ZHOU S,SONG D,ZHOU X,et al.Characterization of Bacillus subtilis from gastrointestinal tractof hybrid Hulong grouper (Epinephelus fuscoguttatus ×E lanceolatus)and itseffectsas probiotic additives[J].Fishamp;.shelfish immunology,2019,84: 1115-1124.
Effects of sodium humate and Bacillus subtilis on growth performance,antioxidant capacity and immunoenzyme activity of Procambarusclarkii
ZHANG Qian1,GUO Wei1,MO Aijie2,YANG Huijun1,GU Zemao12,YUAN Yongchac 1,2
1.College ofFisheries,Huazhong Agricultural University,Wuhan 43OO7O,China;
2.Shuangshui Shuanglu Research Institute ,Huazhong Agricultural University/Engineering Research Center
ofMinistry of Education for Green Development of Aquatic Biological Industry in Yangtze River Economic Belt/HubeiHongshanLaboratory,Wuhan 430070,China
AbstractTo enhance the stress resistance of Procambarus clarkii and improve the economic and ecological benefits of its aquaculture by identifying suitable feedadditives,this studyselected 36O P.clarki (2號(hào) [(13.59±0.25)g] and randomly divided them into four treatment groups.The subjects were fed a basal diet (control,CN),a basal diet supplemented with 0.5% Bacillus subtilis (BS), 0.5% sodium humate (HNa),or a combination of 0.5% sodium humate +0.5% B.subtilis(BS+HNa),respectively,to investigate the effects of sodium humate and B . subtilis supplementation on the growth performance,antioxidant capacity,and immunoenzyme activity of P .clarkii.The results showed that,regarding growth performance, the feed conversion ratio in the BS,HNa and BS + HNa groups was significantly lower than that in the CN group.Conversely,the protein efficiency ratio in the BS,HNa,and BS + HNa groups was significantly higher than that in the CN group.Additionally,the feed conversion ratio in the BS+HNa group was significantly lower than that in the BS and HNa groups.The weight gain rate,specific growth rate,and protein efficiency ratio in the experimental groups were significantly higher than those in the CN group.Regarding antioxidant property,the activities ofcatalase (CAT)and total antioxidant capacity(T-AOC) in the hemolymphatic and hepatopancreas tissues of the BS+HNa group were significantly higher than those in the other groups.Additionally,the malondialdehyde(MDA)content was significantly lower than that in the other groups,and the superoxide dismutase(SOD)level was significantly higher than that in the CN group. Moreover,sodium humate and . subtilis exhibited significant interaction in reducing MDA levels in shrimp. Regarding immunoenzyme activity,the alkaline phosphatase (AKP)and acid phosphatase(ACP) activities activity levels in the hemolymph and hepatopancreas of the BS,HNa and BS + HNa groups were significantly higher than those in the CN group.Furthermore,the activity levels in the BS+HNa group were significantly greater than those in the BS and HNa groups.These results indicate that both individual and combined supplementation with 0.5% sodium humate and 0.5% B. subtilis both improved the growth performance,antioxidant capacity,and immune performance of P .clarkii,with the combined supplementation showing superior efects compared to individual theatment.Therefore,the combined use of sodium humate and B? ,subtilis isrecommended.
KeywordsProcambarus clarki ; sodium humate;Bacillus subtilis; growth performance;; antioxidantcapacity;immunoenzyme activity
(責(zé)任編輯:邊書(shū)京)
華中農(nóng)業(yè)大學(xué)學(xué)報(bào)2025年3期