中圖分類號:U271.91 文獻標志碼:A
Abstract:To investigate the issue of snowaccumulationand icing in theregionof the permanent magnetdirectdrive(PMD)bogie of an intercity EMU(electric multipleunit),this study employs aful-scale three carmodel of a specific intercity EMU.Using the Realizable
turbulence model with the unsteady Reynolds-averaged NavierStokes (URANS) method and the discrete phase model (DPM),the snow and wind movement characteristics in the PMD bogie region and the conventional bogie region were simulated under conditions of -30C ambient temperature and an operating speed of 160km/h . The research results show that,compared to the conventional bogie,the PMD bogie exhibits alesscomplex flow field structure with smoother airflow.Although the total snow accumulation in he PMD bogie region is higher,after accounting forthe snow adhered to the motor,the overallsnow accumulation is reduced by 23.83% ,and the snow accumulation on the brake calipers is reduced by 78.368% . Thus,it can be concluded thatasignificant portion of thesnow inthePMD bogie area adheres to thesurfaceof the permanent magnet direct-drive motor,with relatively little snow accumulation on other components,especially the brake calipers.Considering that the heat generated by the motor during operation can melt the snow on its surface,the snow accumulations on the motor surface.Based on these properties,the direct-drive configuration of the intercity EMU bogie offers a notable advantage in mitigating snow accumulation and icing issues.
Key words:intercity EMU;permanent magnet direct-drive;bogie ;snow accumulation;numerical simulation
當列車在高寒豐雪地區(qū)運行時,軌道上的積雪會被列車氣流吸至列車底部,并進入轉向架內部,從而引發(fā)顯著的積雪與結冰問題[1.車軸與輪對表面的大量積雪結冰會使得輪軌間的磨損增加.在制動過程中,溫度的升高和振動可能會導致轉向架表面的冰塊脫落.由于列車運行速度過快,這些脫落的冰塊極有可能損壞列車底部的設備,并且會提升列車脫軌的風險3.制動夾鉗表面的積雪和冰層會導致列車的制動系統(tǒng)無法正常工作,進而引發(fā)重大安全隱患4.列車的減振系統(tǒng)會因空氣彈簧表面的積雪結冰而受到影響,進而導致列車運行穩(wěn)定性顯著降低[5].轉向架區(qū)域的積雪結冰現(xiàn)象可能會妨礙轉向架部件的正常運作,進而導致列車運行品質顯著降低,并嚴重威脅列車的運行安全[6-8].
為了克服列車轉向架區(qū)域積雪結冰的難題,進而提升列車的運行安全性和效率,鐵路科研人員對列車轉向架區(qū)域的積雪結冰問題進行了深人研究[9-13].韓運動等[14]設計了一種高速列車轉向架艙內流場狀態(tài)測試裝置,并對轉向架艙內流場進行了數(shù)值模擬,研究了高速列車轉向架區(qū)域流場特點,發(fā)現(xiàn)氣流由列車底部以及兩側裙板灌入轉向架艙內,流經(jīng)端板時產(chǎn)生流動分離現(xiàn)象,大部分氣流由端板底部及兩側裙板后部流出.Xie等15]用三維URANS方程結合RNG雙方程湍流模型和DPM研究了高速列車單向架區(qū)域攜帶雪相的流場,并監(jiān)測了雪相的運動.Wang等[16-17]利用URANS與DPM耦合的方法研究了三節(jié)組高速列車轉向架上的積雪,發(fā)現(xiàn)斜板轉向架安裝區(qū)域的防雪性能優(yōu)于直板轉向架安裝區(qū)域,這對轉向架區(qū)域上部空間的流動結構和雪濃度分布有很大影響.Gao等[18-19]研究了側風作用下高速列車轉向架區(qū)域周圍的風雪流,討論了轉向架區(qū)域周圍的流動特征,分析了轉向架整流罩高度對轉向架上積雪的影響,并且設計了兩種減少積雪的導流板,一種安裝在轉向架前端,另一種安裝在轉向架后端,最后通過風洞試驗驗證了CFD方法的準確性.Liu等[20]通過分析轉向架表面的積雪結冰情況,研究了風雪對于城軌列車的轉向架區(qū)域的影響,并給出了轉向架區(qū)域積雪結冰的原因與導流防積雪裝置的防治方案.Kwon等21]研究了雪量和雪密度對積雪現(xiàn)象的影響,提出了與積雪現(xiàn)象相關的降雪條件.Ding等[22]提出了一種基于不連續(xù)變形分析(DDA)方法的數(shù)值模型,用于研究高速鐵路中雪/冰塊掉落引起的道砟飛行,分析道砟顆粒與雪/冰塊碰撞時的動力學行為.蔡路等[23-24]通過拉格朗日方法模擬雪相的流動,研究了高速列車轉向架區(qū)域的雪相運動特性與沉積特性,發(fā)現(xiàn)轉向架中部橫梁區(qū)域積雪較多. Kim 等[25]提出了一種安裝在前車的非接觸式除雪裝置,以防止冬季在降雪路段行駛的高速列車底部積雪的問題.Bae等[26通過模擬積雪從地面漂移的初始運動,即雪躍現(xiàn)象來研究火車上的積雪堆積問題,將半經(jīng)驗雪躍模型應用于積雪地面的邊界條件,求解雪相流的歐拉控制方程.Lan等[27研究發(fā)現(xiàn),雪顆粒形態(tài)的改變會影響其在轉向架區(qū)域的運動阻力,從而影響其在轉向架區(qū)域的流動性.Wang等[28]采用滑動網(wǎng)格技術再現(xiàn)靜止地面上移動的火車的實際場景,并結合DPM提出了一種新的積雪模擬方法,對比了靜止列車和靜止列車的流場、積雪分布和堆積特征.Zhao等[29]提出了一種高速氣流中固體三維粒子軌跡跟蹤、積雪積冰建模的仿真框架HADICE,該框架將氣動流場求解為雷諾平均納維-斯托克斯(RANS),并可選擇混合RANS/LES功能來模擬復雜的湍流.
近年來,永磁直驅轉向架因其小型化、輕量化以及綠色高效的特點,贏得了鐵路相關企業(yè)的青睞,在軌道交通領域展現(xiàn)出了廣闊的應用前景.考慮到永磁直驅轉向架同樣面臨高寒豐雪地區(qū)的積雪結冰困擾,本文基于風雪兩相流的數(shù)值模擬方法,對比分析了永磁直驅轉向架區(qū)域與普通轉向架區(qū)域的積雪結冰規(guī)律,為風雪環(huán)境下的永磁直驅轉向架區(qū)域的防冰雪設計提供理論依據(jù).
1數(shù)值方法
1.1數(shù)學模型
本研究采用基于Realizable k-ε 湍流模型的非定常雷諾時均方法(URANS)和離散相模型(DPM)模擬轉向架區(qū)域內的風雪運動特性[30-31].Realizable k-ε 湍流模型能準確模擬流線彎曲程度較大的流動現(xiàn)象,故選用此湍流模型模擬轉向架區(qū)域的復雜流場.雷諾時均方法在保證計算精度的同時還可極大減少計算資源,因而廣泛應用于列車空氣動力學數(shù)值模擬研究[3].文獻[33]準確給出了非定常雷諾時均方法的連續(xù)性方程、動量方程和雷諾應力方程以及Re-alizable k-ε 湍流模型的k方程和 ε 方程.由于雪相密度與空氣密度的比值遠大于1,雪相在空氣中所受的虛假質量力、壓力梯度力、Basset力均可忽略34,故本文只考慮曳力和重力對雪相的影響,即雪相只受到氣流對它的電力作用以及自身的重力作用,雪相受力平衡微分方程[35-36]為:
式中: u 為空氣流動速度; up 為雪相速度; ρ 為空氣密度, ρ=1.453kg/m3;μ 為動力粘度, μ=1.57×10-5Pa?s dp 為粒子直徑, dp=0.15mm;ρp 為粒子密度, ρp= 250kg/m3;g 為重力加速度; Cp 為電力系數(shù); Rep 為相對雷諾數(shù); α1 , α2 , α3 為常數(shù), α1=0.519 1, α2= -1662.5 , α3=5.1467×106
1.2幾何模型
本文采用的幾何模型是某型城際動車組三車全尺寸模型,頭車、中間車和尾車的行走部都使用動力轉向架,完整的模型如圖1(a)所示.研究對象使用相同的車體,只有底部的轉向架不同,一個模型的底部裝載普通列車轉向架,記為普通轉向架模型;另一個模型的底部裝載永磁直驅轉向架,記為永磁直驅轉向架模型.
鑒于研究重點在于兩種動力轉向架表面的積雪結冰現(xiàn)象,因此對車體模型和轉向架模型進行了適度簡化.盡管如此,列車轉向架的所有關鍵部件均得到了完整保留.簡化后的兩種動力轉向架模型分別展示在圖1(b)和圖1(c)中.從圖中可以看到,普通轉向架比永磁直驅轉向架多了齒輪箱,此外兩者的電機有所不同,其他的部件均一致.本研究以軌道上頂面至車體頂部的高度 H=4.0m 作為特征長度,城際動車組模型的總長為 14.8H ,寬度為 0.7H 業(yè)
1.3計算域和邊界條件
本文重點研究兩種不同轉向架的積雪結冰情況.兩種模型均采用相同的計算域尺寸、相對位置和邊界條件,如圖2所示.
研究所采用的城際動車組模型位于長方體計算域中.計算域無量綱尺寸為 54.8H×20H×10H ,入口距離頭車前端 10H ,出口距離尾車末端 30H ,以保證動車組尾流區(qū)域內的風雪運動得以充分發(fā)展.此外,數(shù)值仿真計算域的阻塞比為 3.76% ,滿足列車空氣動力學數(shù)值模擬計算域阻塞比低于 5% 的要求[37].計算域人口的空氣流動速度 U 與列車運營時速 160km- 致,出口的靜壓 P 設置為0.計算域的兩側面和上頂面的邊界條件設置為對稱邊界.列車在運行過程中,列車與地面是相對運動的,所以在模擬時為了實現(xiàn)這種相對運動,將地面與軌道設置為運動壁面,將列車和轉向架設置為靜止壁面.其中,地面與軌道的運動速度與速度人口的風速相同.此外,保持計算域中的環(huán)境溫度為 -30°C. 在離散相邊界條件設置中,將計算域的入口與出口的邊界都設置為逃逸,即當雪相運動至這兩個邊界時,雪相運動的計算便會終止.將轉向架表面的邊界設置為捕捉,即當雪相撞擊轉向架表面時,便附著在轉向架表面.由于本文重點研究轉向架表面的積雪分布特性,需要有充足的雪相運動至列車轉向架區(qū)域,所以將車體表面、軌道表面、路面的邊界條件都設置為反彈,即當雪相撞擊到這些表面時,并不會附著在其表面,而是反彈后繼續(xù)跟隨氣流運動.雪相的發(fā)射平面設置在頭車前方底部區(qū)域,高度為從軌道至列車底部,寬度設置為 3m 雪相的質量流率設置為 8×10-8kg/s ,粒徑設置為 0.15mm 密度設為 250kg/m3
1.4網(wǎng)格策略
本文在商用CFD軟件AnsysFluent中對兩相風、雪流進行網(wǎng)格劃分以及數(shù)值模擬.采用以六面體為主的笛卡兒混合網(wǎng)格對普通轉向架模型與永磁直驅轉向架模型進行網(wǎng)格劃分,如圖3所示.轉向架最小表面網(wǎng)格尺寸為 20mm ,車體及軌道最小表面尺寸為 40mm. 為了準確捕捉列車底部特別是轉向架區(qū)域流場邊界層內的空氣流動規(guī)律,在轉向架表面及車體表面設置14層棱柱層網(wǎng)格,并保證棱柱層網(wǎng)格與六面體網(wǎng)格良好的過渡,其中棱柱層網(wǎng)格的法向增長率設置為1.2.采用3層網(wǎng)格對計算區(qū)域進行加密,而且重點對列車底部進行加密,保證列車底部流場的準確模擬.整個計算域的網(wǎng)格數(shù)量約為 1.1×108 ,棱柱層網(wǎng)格數(shù)量約為 6.5×107
為了確保計算結果的準確性,同時兼顧計算資源的有效利用,對模型進行了網(wǎng)格無關性驗證.由于普通轉向架模型與永磁直驅轉向架模型的區(qū)別僅在于列車底部轉向架,只需對普通轉向架模型進行網(wǎng)格無關性驗證.在計算區(qū)域的列車底部中心位置 (γ=0) 0設置一條壓力系數(shù)監(jiān)測線,分別對粗糙網(wǎng)格、中等網(wǎng)格以及精細網(wǎng)格的穩(wěn)態(tài)計算進行監(jiān)測,得到如圖4所示的壓力系數(shù)分布圖.中等網(wǎng)格的壓力系數(shù)曲線與精細網(wǎng)格的壓力系數(shù)曲線基本吻合,故采用中等網(wǎng)格的網(wǎng)格劃分策略對普通轉向架模型與永磁直驅轉向架模型進行網(wǎng)格劃分.
1.5數(shù)值計算方法及其驗證
AnsysFluent采用有限體積法將偏微分方程組在網(wǎng)格節(jié)點處劃分為代數(shù)方程組.在數(shù)值模擬中將對流項劃分為二階迎風格式,利用壓力求解器和SIMPLEC算法對壓力-速度場進行耦合.為了提高兩相風雪流的模擬精度,采用雙向耦合算法求解空氣相和雪粒子相.計算過程中,雪相之間互不影響,雪相的物理參數(shù)始終保持不變.本文所采用的數(shù)值計算方法和相關參數(shù)設置與文獻[35-36]一致,模型構造高度相似,僅幾何模型存在差異,因而參考文獻中所采用參數(shù)與計算方法完全適用于本文模型.文獻[35-36]為驗證所用數(shù)值模擬方法的正確性,完成了高速列車轉向架區(qū)域兩相流風洞試驗研究以及轉向架區(qū)域兩相流試驗細節(jié)及數(shù)值方法驗證,其中轉向架區(qū)域兩相流風洞試驗開展于中南大學高速列車研究中心開口環(huán)境風洞的高速試驗段4].
在數(shù)值模擬的過程中,首先執(zhí)行了穩(wěn)態(tài)流場的仿真計算,進而獲得了城際動車組周圍已經(jīng)充分發(fā)展的流場.然后,通過粒子發(fā)射面將雪相子注入流場穩(wěn)定的計算域中,進行了物理持續(xù)時間為3s的非定常計算,以求解非定常流場.在非定常計算中,可以得到雪相子的運動軌跡,不同轉向架區(qū)域的雪相濃度以及轉向架表面的積雪分布結果.非定常計算的時間步長設置為 0.1ms ,以確保在整個模擬過程中庫朗數(shù)在1以內.
2結果和討論
為了更好地分析轉向架關鍵部件附近的空氣流動特性與積雪分布特性,考慮到普通轉向架以及永磁直驅轉向架的輪對、電機及齒輪箱的分布特點,在普通轉向架以及永磁直驅轉向架的相同特殊位置做了5個垂直于 y 軸的切片,分別是 y=0m,y=0.4m y=-0.4m , y=0.75m 以及 y=-0.75m 的位置,如圖5所示.
2.1轉向架區(qū)域流場分析
由圖6(a普通轉向架區(qū)域流線切片可見:從轉向架1到轉向架6,隨著轉向架與車頭的距離逐漸增加,普通轉向架模型底部氣流速度逐漸減小,轉向架1區(qū)域底部氣流速度最大.轉向架1區(qū)域的前端空間較為寬敞,使得氣流能夠更充分地上升,從而導致了較大的氣流流速差異.這種差異在電機、齒輪箱以及輪對的前方形成了顯著的低速渦流.此外,轉向架底部的少量氣流會上升至轉向架內部的空曠區(qū)域,由于氣流速度的差異,在前端的中心銷與制動夾鉗前方形成了低速渦流.此外,普通轉向架模型的轉向架1區(qū)域后端區(qū)域也出現(xiàn)了渦流,部分氣流上揚逆向流動,經(jīng)過轉向架內部,從轉向架前端區(qū)域穿出.轉向架2、轉向架3、轉向架4、轉向架5以及轉向架6的前端區(qū)域均出現(xiàn)與轉向架1區(qū)域相同的低速渦流,部分氣流會上升至轉向架中間區(qū)域,轉向架底部區(qū)域的部分氣流會上升至轉向架內部區(qū)域,并從轉向架后端穿出.與轉向架1不同的是,轉向架2~6區(qū)域整體的氣流速度降低,沒有出現(xiàn)氣流從轉向架前端區(qū)域穿出的現(xiàn)象.
由圖6(b)永磁直驅轉向架區(qū)域流線切片可見:與普通轉向架類似,永磁直驅轉向架模型中每個轉向架的底部氣流也逐漸減小,轉向架1區(qū)域的永磁直驅電機前端氣流出現(xiàn)上揚,由于速度差形成低速渦流,底部氣流部分上揚至轉向架內部區(qū)域,并在永磁直驅轉向架區(qū)域以及后方形成大小不一的渦流.但與普通轉向架模型不同的是,由于大體積的永磁直驅電機阻擋了氣流,底部上揚的氣流極少從轉向架前端區(qū)域穿出,大部分從轉向架后端區(qū)域穿出.轉向架2、轉向架3、轉向架4、轉向架5以及轉向架6氣流同轉向架1區(qū)域類似,不同的是氣流流速明顯降低.
2.2轉向架區(qū)域積雪分析
2.2.1轉向架區(qū)域雪相濃度分析
雪相運動具有較強的氣流跟隨性,轉向架區(qū)域存在的上揚氣流會把軌面上的雪相卷入轉向架內部區(qū)域,部分雪相會撞擊轉向架各個部件.此外,由于低速渦流的影響,進入轉向架內部區(qū)域的雪粒不易被吹出,最終,在重力的作用下部分雪粒在轉向架內部沉積.從圖7(a)雪相濃度切片可見:由于距離頭車最近,普通轉向架模型轉向架1區(qū)域的氣流速度較大,雪相主要分布在轉向架底部區(qū)域,少許雪相分布在轉向架后端區(qū)域,其中轉向架后端的齒輪箱及輪對后方分布較多.普通轉向架模型轉向架2區(qū)域的整體氣流速度減小,雪相更容易發(fā)生沉積,因此雪相濃度較高,雪相主要分布在轉向架的前端區(qū)域以及底部區(qū)域.普通轉向架模型轉向架2的電機與齒輪箱前方出現(xiàn)大量雪相,電機與齒輪箱后方的雪相濃度較前方少.但是由于轉向架后端空曠區(qū)域可進入的雪相較前端區(qū)域多,普通轉向架模型轉向架2后端區(qū)域制動夾鉗附近的雪相濃度明顯高于前端區(qū)域.由于部分雪相在前方附著,普通轉向架模型轉向架3、轉向架4、轉向架5、轉向架6區(qū)域的雪相濃度較轉向架2區(qū)域低,主要分布在轉向架前端區(qū)域以及底部區(qū)域,雪相分布規(guī)律與轉向架2類似.
從圖7(b)可見,永磁直驅轉向架模型轉向架1區(qū)域的雪相分布與普通轉向架模型類似,主要分布在轉向架的底部區(qū)域,但是在永磁直驅轉向架模型轉向架1后端區(qū)域基本沒有雪相分布.與普通轉向架模型相同的是,永磁直驅轉向架模型轉向架2區(qū)域的雪相濃度最高,主要分布在永磁直驅電機與輪對的前方.由于永磁直驅電機阻礙了氣流的運動,永磁直驅轉向架模型轉向架后端區(qū)域雪相分布明顯比普通轉向架模型少.與普通轉向架模型不同的是,由于永磁直驅電機阻礙了氣流,部分氣流通向制動夾鉗,轉向架2區(qū)域的制動夾鉗附近的雪相濃度明顯減少.轉向架3、轉向架4、轉向架5、轉向架6區(qū)域的雪相濃度均比轉向架2區(qū)域低,分布規(guī)律與轉向架2區(qū)域相似,即雪相主要分布在轉向架區(qū)域前端的永磁電機和輪對的前方.
2.2.2轉向架表面雪相堆積分析
轉向架表面雪相堆積如圖8所示.圖8(a)為普通轉向架模型中轉向架1\~6表面雪相堆積對比圖,普通轉向架模型轉向架1區(qū)域由于速度較大的氣流帶走了大部分雪相,只有極少積雪分布在轉向架后端區(qū)域的軸箱、電機、齒輪箱以及輪對表面.普通轉向架模型的轉向架2\~6表面積雪較多,大部分積雪分布在轉向架前中端區(qū)域的軸箱、電機、齒輪箱、構架、空氣彈簧、中心銷以及輪對表面,少部分積雪分布在轉向架后端區(qū)域的電機、齒輪箱、輪對以及軸箱表面.
圖8(b)為永磁直驅轉向架模型不同轉向架表面雪相堆積對比.同樣地從中可以看到永磁直驅轉向架模型轉向架1表面基本上沒有積雪分布,只有極少的積雪分布在轉向架后端區(qū)域的軸箱表面.永磁直驅轉向架模型轉向架2、轉向架3、轉向架4、轉向架5、轉向架6的表面積雪分布與普通轉向架模型相似,集中分布在轉向架的前中端區(qū)域的各個部件表面,其中尤以轉向架前端區(qū)域的電機表面分布較多.此外,永磁直驅轉向架模型與普通轉向架模型最大的不同是,永磁直驅轉向架由于沒有齒輪箱,所以永磁直驅轉向架沒有齒輪箱表面的積雪分布.但是由于永磁直驅電機本身的體積比普通電機大,所以永磁直驅轉向架模型的電機表面積雪比普通轉向架模型的積雪明顯更多.
2.2.3轉向架表面積雪定量分析
為了進一步明確永磁直驅轉向架模型表面的積雪規(guī)律,表1給出了普通轉向架模型各部件的積雪質量,表2給出了永磁直驅轉向架模型各部件積雪質量,可以看出:永磁直驅轉向架模型轉向架1各部件的積雪質量均低于普通轉向架模型轉向架1,其中永磁直驅轉向架模型轉向架1的制動夾鉗表面、枕梁表面、中心銷表面積雪質量遠低于普通轉向架模型轉向架1.此外,永磁直驅轉向架模型的制動夾鉗積雪質量均低于普通轉向架模型.除了永磁直驅轉向架模型轉向架1的積雪質量遠低于普通轉向架模型轉向架1,永磁直驅轉向架模型的轉向架2\~5的積雪質量均高于普通轉向架模型;對于轉向架6的積雪質量,永磁直驅轉向架模型與普通轉向架模型相差較小;永磁直驅轉向架模型中所有轉向架總的積雪質量比普通轉向架模型多23.176%
普通轉向架模型與永磁直驅轉向架模型的主要區(qū)別在于,普通轉向架模型采用的是傳統(tǒng)的牽引電機,而永磁直驅轉向架模型則配備了永磁直驅電機.除此之外,普通轉向架模型相較于永磁直驅轉向架模型,還包含了一個齒輪箱.為了深入研究兩種轉向架表面的積雪規(guī)律,對普通轉向架模型與永磁直驅轉向架模型的電機積雪質量進行對比分析,表3為電機表面積雪質量與轉向架表面積雪總質量之比.研究發(fā)現(xiàn)普通轉向架模型電機的積雪質量占總的轉向架積雪質量的比重較小,而永磁直驅轉向架模型的永磁直驅電機的積雪質量占總的轉向架積雪質量較高,其中最高占比是轉向架2,達到 57.037% .對于所有轉向架電機積雪質量占所有轉向架積雪質量,永磁直驅轉向架模型占比為 46.803% ,而普通轉向架模型只有 13.970%
上述仿真結果并未考慮電機溫度對積雪分布的影響.實際上,電機工作時的溫升會產(chǎn)生大量的熱量,導致電機表面溫度急劇升高[38.通常情況下,運行中的電機表面溫度可達到幾十攝氏度甚至超過一百攝氏度.而永磁直驅電機的轉矩密度高、轉速低,電機定子繞組銅耗大,鐵耗相對較小,且永磁電機一般采用全封閉結構,故永磁直驅電機溫升問題就更加突出,電機表面溫度更高[39-41].電機表面的積雪因溫升導致融化而大量減少,使得轉向架區(qū)域有大量積雪,而電機表面積雪很少的情況出現(xiàn),圖9為某動車轉向架區(qū)域積雪堆積圖.
因此,本文分別對比分析了普通轉向架模型與永磁直驅轉向架模型轉向架總的積雪質量與去除電機積雪后的積雪質量,如圖10所示.普通轉向架模型與永磁直驅轉向架模型中轉向架1總的積雪質量都是最少的,轉向架2總的積雪質量都是最多的;相比于普通轉向架模型,永磁直驅轉向架模型轉向架1基本沒有積雪;對于轉向架總的積雪質量,永磁直驅轉向架模型的轉向架2、轉向架3與轉向架4均比普通轉向架模型的對應轉向架要多,而永磁直驅轉向架模型的轉向架5與轉向架6與普通轉向架模型的轉向架5與轉向架6總的積雪質量基本相同;但是去除電機的積雪質量后,永磁直驅轉向架模型每個轉向架的積雪質量均比普通轉向架模型每個轉向架的積雪質量要少,從轉向架1到轉向架6,永磁直驅轉向架模型比普通轉向架模型分別少 95.68%.9.04% 、13.25%,16.77%,7.25%,41.45% ,對于去除電機積雪后所有轉向架總的積雪質量,永磁直驅轉向架模型比普通轉向架模型少 23.83%
圖11展示了永磁直驅轉向架模型與普通轉向架模型在不同情況下的積雪質量對比:包括電機表面積雪總質量、轉向架表面積雪總質量,以及去除電機積雪后轉向架表面積雪總質量,可以發(fā)現(xiàn)永磁直驅轉向架模型的永磁直驅電機的積雪質量遠高于普通轉向架模型的普通電機.雖然永磁直驅轉向架模型總的積雪質量高于普通轉向架模型,但去除電機表面的積雪后的永磁直驅轉向架模型的轉向架總的積雪質量會明顯少于普通轉向架模型.此外,在深入分析兩個模型的轉向架各部件積雪規(guī)律時,發(fā)現(xiàn)普通轉向架模型與永磁直驅轉向架模型在制動夾鉗表面積雪質量方面存在顯著差異,如圖12所示.
永磁直驅轉向架模型每個轉向架的制動夾鉗的積雪質量均低于普通轉向架模型.在永磁直驅轉向架模型中,大部分氣流運動受阻于永磁直驅電機,只有少部分氣流能夠運動至制動夾鉗附近;而在普通轉向架模型中,由于電機體積較小,其阻礙氣流的能力較弱,有更多的雪相撞擊在制動夾鉗表面.永磁直驅電機阻礙氣流從而保護制動夾鉗的作用在轉向架1區(qū)域表現(xiàn)明顯.永磁直驅轉向架模型轉向架1的制動夾鉗的積雪很少,遠少于普通轉向架模型的制動夾鉗的積雪質量,此外,轉向架2、轉向架3、轉向架4、轉向架6,永磁直驅轉向架模型制動夾鉗的積雪質量均遠少于普通轉向架模型,對于總的制動夾鉗的積雪質量,永磁直驅轉向架模型比普通轉向架模型少 78.368%
3結論
本文運用風雪兩相流數(shù)值模擬技術,深入研究了城際動車組轉向架區(qū)域的風雪流動特性.通過對比分析,揭示了普通列車轉向架區(qū)域與永磁直驅轉向架區(qū)域在風雪運動規(guī)律及積雪分布特性方面的差異.研究得出的主要結論如下:
1)由于永磁直驅轉向架的結構比普通轉向架的結構更為簡單,轉向架區(qū)域內的渦流較少,而普通轉向架區(qū)域內部的渦流較多,流場結構較為復雜,因而永磁直驅轉向架區(qū)域的流場結構復雜度低,氣流流動較為順暢.
2)由于永磁直驅電機結構對于風雪運動的影響,永磁直驅轉向架模型轉向架1的積雪質量遠低于普通轉向架模型;對于轉向架2~5的積雪,永磁直驅轉向架模型均比普通轉向架模型多,但是永磁直驅轉向架模型轉向架的積雪大量分布在永磁直驅電機上,去除電機上的積雪之后,永磁直驅轉向架模型每個轉向架的積雪均少于普通轉向架的積雪.
3)在永磁直驅轉向架模型中,制動夾鉗附近的流場相較于普通轉向架模型更為簡化,導致雪相濃度顯著降低.因此,永磁直驅轉向架模型的制動夾鉗積雪量遠低于普通轉向架模型,其制動夾鉗的總積雪質量比普通轉向架模型減少了 78.368%
由于永磁直驅轉向架的大部分積雪積聚在永磁直驅電機上,而永磁直驅電機產(chǎn)生的熱量可以融化積雪,所以永磁直驅轉向架區(qū)域的積雪會大量減少.此外,永磁直驅轉向架的制動夾鉗積雪明顯較少.因此,相較于使用普通轉向架的城際列車,采用永磁直驅轉向架的城際列車展現(xiàn)出更優(yōu)越的抗雪性能.為了進一步提升永磁直驅轉向架的抗雪能力,未來將探索設計更為精細的導流減雪裝置.
參考文獻
[1]WANGJB,ZHANGY,ZHANGJ,et al.A numerical investigation on the improvement of anti-snow performance of the bogies of a high-speed train[J].Proceedings of the Institution of Mechanical Engineers,PartF: Journal ofRail andRapid Transit, 2020,234(10): 1319-1334.
[2]TAO GQ,WEN ZF,ZHAO X,et al.Effects of wheel - rail contact modelling on wheel wear simulation[J].Wear,2016, 366:146-156.
[3]QUINNAD,HAYWARDM,BAKERCJ,et al.Afull-scale experimental and modelling study of ballast flight underhighspeed trains[J]. Proceedings of the Institution of Mechanical Engineers,PartF:JournalofRail and Rapid Transit,2010, 224(2):61-74.
[4]WANGJB,GAO GJ,ZHANG Y,et al. Anti-snow performance of snow shields designed for brake calipers of a high-speed train[J].Proceedings of the Institution of Mechanical Engineers, PartF:Journal of Rail and Rapid Transit,2019,233(2): 121-140.
[5]苗秀娟,何侃.高速列車轉向架區(qū)域積雪形成原因及防積雪研 究[J].中南大學學報(自然科學版),2018,49(3):756-763. MIAOXJ,HE K.Cause analysis of snow packing in high-speed train's bogie regions and anti-snow packing design[J]. Journal of Central South University(Science and Technology),2018, 49(3):756-763.(in Chinese)
[6]JI W G,SHON S,SEO S H,et al. Snow accretion on a model train:climate wind tunnel experiments[J]. Journal of Wind Engineering and Industrial Aerodynamics,2023,242:105572.
[7]KIM B,AHN J,KWON H. A study on a partially-open bogie fairing to improve anti-snow performance ofahigh-speed train[J].Journal ofMechanical Science and Technology,2023, 37(4):1859-1869.
[8]DU Z,YU M,LIUJ,etal. Analysis of snow distribution and displacement in the bogie region of ahigh-speed train[J].Fluid Dynamicsamp;Materials Processing,2024,20(7):103560.
[9]ZHANG Y,WANG J,JIANG C,et al. Investigation of ice and snow accumulations on the bogie areas of high-speed trains using ice wind tunnel experiments [J].Cold Regions Science and Technology,2022,199:103560.
[10]DU Z H,YU MG,LIUJL,et al.Analysis of snow distribution and displacement in the bogie region of a high-speed train[J]. Fluid Dynamicsamp; Materials Processing,2024,20(7):1687- 1701.
[11]WANGIB.LIU HY.ZHANGY.et al.Influence of the contraction section configuration and deflector layout density on the wind-snow flow characteristics insidethe ice snow wind tunnel forrailwayvehicles[J].EngineeringApplicationsof Computational Fluid Mechanics,2024,18(1).
[12]ZHAO C L,WANG TT,SHIF S,et al.Numerical study of snowaccumulation on bogies for long marshalling high-speed trains[J].Mechanics Based Design of Structures and Machines, 2024,52(11) :8685-8705.
[13]LAN H,CAI L,ZHANGJY,et al.Research on snow prevention in the bogie region based on active blowing method[J]. Proceedings of the Institution of Mechanical Engineers,Part C: Journal of Mechanical Engineering Science,2024,238(12): 5597-5609.
[14]韓運動,姚松,陳大偉,等.高速列車轉向架艙內流場實車測 試與數(shù)值模擬[J].交通運輸工程學報,2015,15(6):51-60. HANYD,YAO S,CHEN DW,et al.Real vehicle test and numerical simulation of flow field in high-speed train bogie cabin[J].Journal of Traffic and Transportation Engineering, 2015,15(6):51-60.(in Chinese)
[15]XIE F, ZHANG J,GAO G,et al. Study of snow accumulation on a high-speed train’s bogies based on the Discrete phase model [J].Journal of Applied Fluid Mechanics,2017,10(6): 1729- 1745.
[16]WANG JB,GAOGJ,LIUMY,et al. Numerical study of snow accumulation on the bogies of a high-speed train using URANS coupled with discretephase model [J].Journal of Wind Engineering and Industrial Aerodynamics,2018,183:295-314.
[17]WANG JB,ZHANG J, ZHANG Y,et al.Impact of bogie cavity shapes and operational environment on snow accumulating on the bogies of high-speed trains[J].Journal of Wind Engineering and Industrial Aerodynamics,2018,176:211-224.
[18]GAO G, ZHANG Y, ZHANG J,et al. Effect of bogie fairings on thesnowreduction of ahigh-speed train bogie undercrosswinds using a discrete phase method[J].Wind amp; Structures,2018, 27(4): 255-267.
[19]GAO GJ,ZHANGY,XIEF,et al.Numerical study on the anti-snow performance of deflectors in the bogie region of a highspeed train using the discrete phase model[J].Proceedings of the Institution of Mechanical Engineers,PartF: Journal of Rail and Rapid Transit,2019,233(2):141-159.
[20]LIUMY,WANGJB,ZHUHF,etal.Anumerical studyof snow accumulation on the bogies of high-speed trains based on coupling improved delayed detached eddy simulation and discrete phasemodel[J].Proceedings ofthe Institution ofMechanical Engineers,Part F:Journal of Rail and Rapid Transit,2019, 233(7):715-730.
[21]KWON H,KIM B,YEE K,etal. Study on relationship between weather conditionand windowglassdamagebyaccreted snow for high-speed trains[J]. Journal of the Korean Society for Railway, 2020,23(2):135-142.
[22]DING D,OUAHSINE A, XIAO W,et al.Numerical study of ballast-flight caused by dropping snow/ice blocks in high-speed railways using discontinuous deformation analysis (DDA)[J]. Transportation Geotechnics,2020,22:100314-100314.
[23]蔡路,張繼業(yè),李田.高速列車轉向架區(qū)域雪粒運動特性分析 [J].中國科學(技術科學),2019,49(12):1593-1602. CAIL,ZHANGJY,LIT.Analysisof the motioncharacteristics ofsnowparticlesinthe bogie region ofa high-speed train[J]. Scientia Sinica(Technologica),2019,49(12):1593-1602.(in Chinese)
[24]蔡路,李田,張繼業(yè).高速列車轉向架雪粒沉積特性數(shù)值研 究[J].浙江大學學報(工學版),2020,54(4):804-815. CAI L,LI T,ZHANG JY. Numerical study on deposition characteristics of snow particle on bogie of high-speed train[J]. Journal of Zhejiang University(Engineering Science),2020, 54(4):804-815.(in Chinese)
[25]KIM B,KWON H. Study on snow saltation efect of non-contact snowremoval device applicable to high-speed trains for antiicing[J].Journal of the Korean Society for Railway,2021, 24(12):1101-1109.
[26]BAE J,SHON S,KWON H,et al. Numerical investigation of snow accumulation on a high-speed train by snow saltation [J]. International Journal of Rail Transportation,2O23,11(4): 465-489.
[27]LAN H,CAI L, ZHANG J,et al. Research on movement and deposition of snow particles with diffrent shapes in the bogie region[J].Procedingsofthe InstitutionofMechanical Enginers, Part F:Journal of Rail and Rapid Transit,2O23,237(5): 669-679.
[28]WANG Y,WANG T T,JIANG C,et al. Numerical study on slipstream-induced snow drifting and accumulation in the bogie regionofahigh-speed trainpassingthe snowyballastbed[J]. Journal of Wind Engineering and Industrial Aerodynamics,2023, 232:105269.
[29]ZHAO FZ,CHEN DW,LIUJL,et al.A framework for simulating snow accumulation and ice accretion on high-speed trains[J].Proceedings of the Institution of Mechanical Engineers, PartF: Journal ofRail andRapid Transit,2O24,238(1):73-88.
[30]CAI L,LOU Z,LI T,et al.Numerical study of dry snow accretion characteristics on the bogie surfaces ofa high-speed train based on the snow deposition model[J]. International Journal of Rail Transportation,2022,10(3):393-411.
[31]GAO G J,ZHANG Y,MIAO X J,et al.Influence of bogie fairing configurations on the snow accretion around bogie regions of a high-speed train under crosswind conditions[J]. Mechanics Based Design of Structures and Machines,2023,51(10):5452- 5469.
[32]WANG JB,ZHANG J,XIE F,et al.A study of snow accumulating on the bogie and the effcts of deflectors on the deicing performance in the bogie region of a high-speed train[J]. Cold Regions Science and Technology,2018,148:121-130.
[33]LABORDE-BOUTETC,LARACHI F,DROMARD N,etal. CFD simulation of bubble column flows:investigations on turbulence models in RANS approach[J].Chemical Engineering Science,2009,64(21):4399-4413.
[34]謝菲,高廣軍,何侃,等.基于DPM模型的高速列車轉向架區(qū) 域風雪流數(shù)值模擬[J].鐵道科學與工程學報,2023,20(8): 2814-2823. XIEF,GAOGJ,HEK,etal.Numerical simulation of the flow and snowparticlesinthebogieareaofahigh-speed trainbased on DPM model[J].Journal of Railway Science and Engineering, 2023,20(8):2814-2823.(inChinese)
[35]王家斌,張,張潔,等.一位端轉向架位置對高速列車底部 風雪運動特性的影響[J].中南大學學報(自然科學版),2023, 54(1):352-364. WANGJB,ZHANGY,ZHANGJ,etal.Impact of thefirstbogie position on flow characteristics of wind and snow beneath highspeed train[J]. Journal of Central South University (Science and Technology),2023,54(1):352-364.
[36]王家斌,劉浩源,劉操,等.下斜導流防積雪結構對高寒高速 列車轉向架區(qū)域積雪的影響[J].鐵道學報,2023,45(9): 46-55. WANG JB,LIUHY,LIUC,et al.Impact of downwardinclined anti-snow deflectors on snow accumulation on bogies of alpinehigh-speed trains[J].Journal ofthe China Railway Society,2023,45(9):46-55.
[37]劉加利,張繼業(yè),張衛(wèi)華.真空管道高速列車氣動特性分析 [J].機械工程學報,2013,49(22):137-143. LIUJL,ZHANGJY,ZHANGWH.Analysis ofaerodynamic characteristicsof high-speed trainsin the evacuated tube[J]. JournalofMechanical Engineering,2013,49(22):137-143.(in Chinese)
[38]DONG H,MA H,WANG Z,et al.An online health monitoring framework for traction motorsinhigh-speed trainsusing temperature signals[J].IEEETransactionsonIndustrial Informatics,2022,19(2):1389-1400.
[39]王健,符敏利,陳致初,等.地鐵車輛用永磁直驅同步牽引電 動機冷卻結構設計[J].機車電傳動,2016(4):6-10. WANGJ,F(xiàn)UML,CHEN ZC,etal.Cooling structure design of direct-driven permanent magnet synchronous traction motor for metrovehicle[J].ElectricDriveforLocomotives,2O16(4): 6-10.(in Chinese)
[40]孫德強,吳楠.機車大功率直驅永磁牽引電機新型通風散熱 結構設計[J].鐵道機車與動車,2019(10):8-11. SUNDQ,WU N.Designofanewtypeventilationand heat dissipation structure for the high-power direct drive permanent magnet traction motors in locomotives[J].Railway Locomotive and MotorCar,2019(10):8-11.(inChinese)
[41]李會蘭,周立安,晏才松,等.某永磁直驅電機溫度場仿真分 析及其優(yōu)化[J].時代農(nóng)機,2020,47(3):102-105. LIHL,ZHOULA,YANCS,etal.Simulationanalysis and optimization oftemperature field ofapermanent magnetdirect driver[J]. TimesAgricultural Machinery,2020,47(3):102- 105.(in Chinese)