[摘要]"心房顫動是最常見的持續(xù)性心律失常,嚴(yán)重影響患者的生活質(zhì)量,且可增加腦卒中和心力衰竭的風(fēng)險(xiǎn)。氧化應(yīng)激是心房顫動發(fā)生的主要機(jī)制之一?;钚匝踝鳛檠趸瘧?yīng)激的產(chǎn)物,其過量積累可誘導(dǎo)細(xì)胞凋亡、纖維化及電傳導(dǎo)障礙,進(jìn)而引起電重構(gòu)和結(jié)構(gòu)重構(gòu),最終導(dǎo)致心房顫動的發(fā)生與發(fā)展。本文總結(jié)氧化應(yīng)激產(chǎn)物活性氧的生成與消除機(jī)制,闡述心房顫動相關(guān)活性氧分子信號通路,以期在識別心房顫動潛在治療靶點(diǎn)和制定新的治療策略方面取得進(jìn)展。
[關(guān)鍵詞]"心房顫動;氧化應(yīng)激;發(fā)病機(jī)制;信號通路
[中圖分類號]"R541.7""""""[文獻(xiàn)標(biāo)識碼]"A""""""[DOI]"10.3969/j.issn.1673-9701.2025.14.027
心房顫動(atrial"fibrillation,AF)是最常見的持續(xù)性心律失常,也是世界范圍內(nèi)的主要公共衛(wèi)生問題之一[1-2]。根據(jù)持續(xù)時(shí)間,AF可分為陣發(fā)性、復(fù)發(fā)性和永久性[3]。AF的主要病理生理學(xué)特點(diǎn)是心室率紊亂、心功能受損和心房附壁血栓形成。目前AF的主要發(fā)病機(jī)制包括氧化應(yīng)激、心房重構(gòu)、自主神經(jīng)功能紊亂和代謝異常[4]。氧化應(yīng)激作為AF發(fā)生的主要機(jī)制之一,直接引起胞內(nèi)DNA損傷、脂質(zhì)過氧化、蛋白質(zhì)氧化、細(xì)胞器損傷、鈣穩(wěn)態(tài)失調(diào)和細(xì)胞死亡。非手術(shù)治療方面,雖然抗心律失常藥(antiarrhythmic"drug,AAD)普遍用于治療有癥狀的AF患者并取得一定療效,但部分患者的反應(yīng)高度可變,且有發(fā)生其他心律失常和心臟外毒性的風(fēng)險(xiǎn);人們對AF的病理生理學(xué)機(jī)制認(rèn)識不足、未能針對其潛在機(jī)制進(jìn)行靶向治療限制AAD的療效[5-6]。本文總結(jié)氧化應(yīng)激產(chǎn)物活性氧(reactive"oxygen"species,ROS)的生成與消除機(jī)制,闡述AF相關(guān)ROS分子信號通路。
1""氧化應(yīng)激與AF
氧化應(yīng)激是指機(jī)體氧化和抗氧化系統(tǒng)之間的平衡被打破,導(dǎo)致氧化劑過多或抗氧化劑不足,引起細(xì)胞和組織損傷的過程。氧化應(yīng)激與AF之間存在密切聯(lián)系,但無法明確氧化應(yīng)激是AF的始動機(jī)制還是繼發(fā)反應(yīng)。ROS作為氧化應(yīng)激的代表產(chǎn)物,可直接參與激活多條級聯(lián)信號通路,導(dǎo)致宿主細(xì)胞損傷和死亡。ROS包括超氧陰離子、過氧化氫(hydrogen"peroxide,H2O2)、次氯酸、一氧化氮、過氧亞硝酸鹽陰離子和羥自由基,其通過激活多條信號通路引發(fā)心房肌細(xì)胞電生理變化和結(jié)構(gòu)重塑。內(nèi)源性ROS主要由煙酰胺腺嘌呤二核苷酸磷酸氧化酶(nicotinamide"adenine"dinucleotide"phosphate"oxidase,NOX)生成,也可來源于線粒體氧化呼吸鏈、黃嘌呤氧化酶、脂氧合酶等[7]。在心臟系統(tǒng)中,NOX和線粒體是心臟ROS的主要來源,NOX和線粒體來源的氧化應(yīng)激通過誘導(dǎo)心房肌細(xì)胞的電生理變化和心房重構(gòu),促進(jìn)陣發(fā)性AF的發(fā)生[8]。
2""ROS的產(chǎn)生與消除
2.1""NOX相關(guān)ROS的產(chǎn)生
NOX在巨噬細(xì)胞中被首次發(fā)現(xiàn),被稱為吞噬細(xì)胞NOX家族蛋白,其在宿主防御、生物合成途徑及細(xì)胞信號傳導(dǎo)中發(fā)揮重要作用[9-10]。NOX家族是調(diào)控ROS形成的主要來源,包括NOX1、NOX2、NOX3、NOX4、NOX5及雙氧化酶(dual"oxidase,DUOX)1、DUOX2共7種同工異構(gòu)體[11]。NOX的核心結(jié)構(gòu)相似,其細(xì)胞和組織分布及激活或調(diào)節(jié)系統(tǒng)的機(jī)制具有差異性[12]。氧化酶復(fù)合物的形成是NOX產(chǎn)生ROS的關(guān)鍵一環(huán)。非刺激條件下,兩個(gè)完整的膜蛋白gp91phox(即NOX2)和P22phox(異二聚體cyt"b558)不與細(xì)胞質(zhì)調(diào)節(jié)亞基p40phox、p47phox、p67phox和Ras相關(guān)C3肉毒素底物(Ras-related"C3"botulinum"toxin"substrate,Rac)1/2發(fā)生相互作用;受刺激后,p47phox經(jīng)歷快速磷酸化,進(jìn)而與p67phox發(fā)生相互作用,觸發(fā)胞質(zhì)亞基膜易位,并與cyt"b558發(fā)生相互作用,形成活性氧化酶復(fù)合物,進(jìn)而催化還原型煙酰胺腺嘌呤二核苷酸磷酸(nicotinamide"adenine"dinucleotide"phosphate,NADPH)依賴的氧分子反應(yīng),還原成超氧陰離子。NOX1~3和NOX5主要產(chǎn)生超氧陰離子,而NOX4、DUOX1和DUOX2則產(chǎn)生H2O2[13]。NOX1~4的活化依賴于催化亞基與p22phox亞基的結(jié)合,而NOX5和DUOX1、DUOX2的激活基于鈣依賴機(jī)制,并不需要p22phox亞基。
NOX1復(fù)合物由NOX1催化亞基(gp91phox同源物)、NADPH氧化酶組織者1亞基(NOXO1,p47phox同源物)、NADPH氧化酶激活劑1亞基(NOXA1,p67phox同源物)、p22phox亞基以及1個(gè)小鳥苷三磷酸酶(guanosine"triphosphatase,GTPase)Rac1亞基組成。體外研究表明,在NOX1和NOX3的組裝和激活過程中,p47phox和p67phox可有效替代NOXO1和NOXA1,表明NOX同工異構(gòu)體與其組裝“伙伴”之間的相互作用缺乏絕對的功能特異性。NOX2是膜結(jié)合亞基和胞質(zhì)亞基復(fù)合物。靜息狀態(tài)下,膜結(jié)合亞基gp91phox(亦稱NOX2)和p22phox構(gòu)成氧化酶的催化核心,亞基p47phox、p67phox和p40phox作為復(fù)合物保留在細(xì)胞質(zhì)中。在GTP酶參與下,一些細(xì)菌肽、生長因子和細(xì)胞因子可觸發(fā)上述胞質(zhì)亞基易位并在膜上與催化核心組裝并激活NOX2產(chǎn)生ROS[14]。NOX4與NOX2同源,被視作是一種組成型活性酶,其產(chǎn)生ROS依賴與p22phox的相互作用,其獨(dú)特之處在于不需要細(xì)胞質(zhì)因子激活。此外,NOX4跨膜結(jié)構(gòu)域5和6之間的胞外環(huán)(E環(huán))具有歧化酶活性,這可解釋NOX4產(chǎn)生過氧化物而非超氧化物的原因[15]。NOX5的N端結(jié)構(gòu)域包含4個(gè)Ca2+結(jié)合位點(diǎn),可通過額外的4個(gè)延伸因子EF-hand基序輔助其激活,Ca2+與4個(gè)延伸因子EF-hand基序結(jié)合誘導(dǎo)NOX5構(gòu)象發(fā)生變化,促進(jìn)酶的激活[16]。DUOX1和DUOX2與NOX5的關(guān)系更為密切,DUOX1和DUOX2分別需要成熟因子蛋白DUOXA1和DUOXA2才能從內(nèi)質(zhì)網(wǎng)轉(zhuǎn)移至高爾基體。
2.2""線粒體ROS的產(chǎn)生
線粒體ROS的產(chǎn)生與氧化呼吸產(chǎn)生ATP的過程密切相關(guān)[17]。線粒體氧化呼吸鏈?zhǔn)羌?xì)胞能量代謝的重要組成部分,主要通過電子傳遞鏈實(shí)現(xiàn)能量的高效轉(zhuǎn)化。該過程涉及多個(gè)復(fù)合物,包括復(fù)合物Ⅰ[還原型煙酰胺腺嘌呤二核苷酸(reduced"nicotinamide"adenine"dinucleotide,NADH):輔酶Q還原酶]、復(fù)合物Ⅱ(琥珀酸:輔酶Q還原酶)、復(fù)合物Ⅲ(輔酶Q:細(xì)胞色素C還原酶)和復(fù)合物Ⅳ(細(xì)胞色素C氧化酶)。電子從NADH和還原型黃素腺嘌呤二核苷酸中釋放,通過輔酶Q和細(xì)胞色素C等載體傳遞至氧分子,最終還原為水。在此過程中形成的跨膜電化學(xué)梯度驅(qū)動ATP合酶合成ATP,將化學(xué)能轉(zhuǎn)化為細(xì)胞可利用的能量形式。線粒體中ROS的生成也與心房重塑和AF病理過程密切相關(guān)。
線粒體ROS來源于氧化磷酸化過程中分子氧的單電子還原,主要發(fā)生在復(fù)合物Ⅰ和Ⅲ中。線粒體ROS的產(chǎn)生主要有2條途徑:①復(fù)合體Ⅰ:高NADH/NAD+比值導(dǎo)致黃素單核苷酸完全還原,增加電子與分子氧相互作用的時(shí)間;泛醌的減少引起反向電子傳遞,導(dǎo)致線粒體中生成較多的超氧陰離子。②復(fù)合物Ⅲ:在Q循環(huán)中,還原狀態(tài)下電子流的停頓使分子氧有更多的時(shí)間與還原的電子載體發(fā)生相互作用,進(jìn)而產(chǎn)生超氧陰離子[18-19]。
2.3""ROS的清除
心肌具有多種酶促和非酶促抗氧化機(jī)制,其負(fù)責(zé)消除ROS和恢復(fù)氧化還原平衡[20]。主要消除機(jī)制包括:①抗氧化酶系統(tǒng):超氧化物歧化酶將超氧陰離子轉(zhuǎn)化為H?O?,H?O?在過氧化氫酶和谷胱甘肽過氧化物酶作用下生成水,減少其對細(xì)胞的潛在危害[21]。""②小分子抗氧化劑:谷胱甘肽作為重要的細(xì)胞內(nèi)抗氧化劑,可直接與ROS反應(yīng),減少氧化損傷。維生素C和維生素E在細(xì)胞內(nèi)外分別通過捕捉自由基和中和脂質(zhì)過氧化物,起保護(hù)作用[22]。③線粒體抗氧化能力、ROS消除等在很大程度上依賴于三羧酸循環(huán)周轉(zhuǎn)率,線粒體對Ca2+的攝取增加可提高三羧酸循環(huán)周轉(zhuǎn)率,使線粒體基質(zhì)在增加負(fù)荷時(shí),保持足夠的抗氧化能力。④線粒體自噬:當(dāng)線粒體受到氧化壓力或損傷時(shí),細(xì)胞可通過線粒體自噬機(jī)制選擇性地降解受損線粒體。
3""氧化應(yīng)激相關(guān)通路與AF
3.1""NOX通路
NOX通路介導(dǎo)的氧化應(yīng)激通過心房電重構(gòu)、結(jié)構(gòu)重塑和炎癥反應(yīng)等病理機(jī)制在AF的發(fā)生發(fā)展及持續(xù)過程中發(fā)揮作用。NOX2和NOX4是AF產(chǎn)生ROS的主要來源。研究表明NOX2介導(dǎo)肥胖引起AF的氧化應(yīng)激和ROS產(chǎn)生導(dǎo)致離子通道重塑和心房纖維化,NOX2特異性抑制劑GSK2795039可減輕上述作用[23]。另有研究表明,在快速起搏犬心房肌細(xì)胞模型中,NOX2表達(dá)增加并通過一種涉及蛋白激酶Cε頻率依賴性激活的機(jī)制進(jìn)一步上調(diào)乙酰膽堿依賴性K+電流,從而促進(jìn)AF的電重構(gòu)[24]。Kv1.5是治療AF的潛在靶點(diǎn)之一。Lu等[25]發(fā)現(xiàn)醛固酮在AF大鼠模型中可上調(diào)心房Kv1.5蛋白水平,而螺內(nèi)酯可通過減少ROS生成抑制Kv1.5的表達(dá)。此外,E3泛素蛋白連接酶TRIM21通過誘導(dǎo)NOX2表達(dá),引起心肌氧化損傷、炎癥和心房重構(gòu)[26]。Yang等[27]發(fā)現(xiàn)在接受依魯替尼治療的腫瘤患者中AF發(fā)生率高達(dá)11%,伊魯替尼組ROS相關(guān)蛋白NOX2、NOX4、p22phox表達(dá)水平顯著升高。NOX衍生的ROS、超氧化物和H2O2可激活包括心房炎癥、纖維化、結(jié)構(gòu)和電重構(gòu)在內(nèi)的幾個(gè)過程,形成NOX活化促進(jìn)AF、AF促進(jìn)NOX活化的惡性循環(huán)。抑制NOX的特定亞型是打破NOX-AF惡性循環(huán)的一種新的治療策"""略[28]。與野生型鼠相比,NOX2過表達(dá)組經(jīng)食管心房爆裂刺激在評估AF易感性中略有增加,在AF持續(xù)時(shí)間、體表心電圖參數(shù)、左室質(zhì)量或功能沒有明顯改變的情況下,心房組織的高分辨率光學(xué)圖譜顯示不同基因型之間的動作電位持續(xù)時(shí)間和傳導(dǎo)速度沒有差異[29]。
3.2""MAPK信號通路
絲裂原活化蛋白激酶(mitogen-activated"protein"kinase,MAPK)是細(xì)胞內(nèi)一類重要的絲裂原激活的蛋白激酶,參與調(diào)控細(xì)胞的生長、分化、凋亡等。MAPK蛋白超家族包含3個(gè)中心通路的信號激酶:細(xì)胞外信號調(diào)節(jié)激酶(extracellular"signal-regulated"kinase,ERK)(主要是ERK1/2和ERK5)、p38和c-Jun氨基端激酶。這些效應(yīng)蛋白共享上游激酶的信號輸入,并通過磷酸化下游效應(yīng)蛋白調(diào)控細(xì)胞反應(yīng)[30]。研究發(fā)現(xiàn)通過對心房組織進(jìn)行RNA測序篩選出的MAPK信號通路相關(guān)信使RNA呈現(xiàn)差異性表達(dá)[31]。另有研究發(fā)現(xiàn)糖尿病AF易感性增加的機(jī)制與NOX活性引起的氧化應(yīng)激誘導(dǎo)MAPK信號通路的激活和基質(zhì)金屬蛋白酶-9的表達(dá)有關(guān)[32]。
3.3""核因子κB信號通路
核因子κB(nuclear"factor-κB,NF-κB)是一種轉(zhuǎn)錄因子,也是炎癥和其他生物學(xué)過程的重要上游調(diào)節(jié)因子,可調(diào)節(jié)許多炎癥細(xì)胞因子的轉(zhuǎn)錄,通常情況下這些細(xì)胞因子與AF的發(fā)生發(fā)展有關(guān)[33]。在AF患者的離體和體外心房組織中均觀察到NF-κB"p50的積累,這一結(jié)果有力證實(shí)NF-κB信號激活引起的氧化應(yīng)激反應(yīng)參與AF的發(fā)生過程[34]。研究發(fā)現(xiàn)AF患者比竇性心律者NF-κB活性更高,調(diào)節(jié)NF-κB和炎癥小體信號傳導(dǎo)的轉(zhuǎn)錄后和翻譯后機(jī)制在AF的發(fā)生發(fā)展中發(fā)揮關(guān)鍵作用[35]。
4""小結(jié)與展望
AF的發(fā)病機(jī)制極其復(fù)雜,涉及多種病理生理學(xué)過程,包括電生理異常、心房重構(gòu)、炎癥反應(yīng)和自主神經(jīng)系統(tǒng)調(diào)節(jié)失衡等。氧化應(yīng)激引起AF以心房電重構(gòu)和結(jié)構(gòu)重構(gòu)為基礎(chǔ),清除氧化應(yīng)激產(chǎn)物和干預(yù)相關(guān)氧化應(yīng)激信號通路可為AF提供潛在治療靶點(diǎn)。然而,由于AF發(fā)病機(jī)制的多樣性和異質(zhì)性及這些機(jī)制間的相互作用與具體調(diào)控網(wǎng)絡(luò)錯綜復(fù)雜,仍需深入的分子生物實(shí)驗(yàn)和臨床研究進(jìn)一步明確。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻(xiàn)]
[1] BENJAMIN"E"J,"LEVY"D,"VAZIRI"S"M,"et"al."Independent"risk"factors"for"atrial"fibrillation"in"a"population-based"cohort."The"Framingham"heart"study[J]."JAMA,"1994,"271(11):"840–844.
[2] OGUNSUA"A"A,"SHAIKH"A"Y,"AHMED"M,"et"al."Atrial"fibrillation"and"hypertension:"Mechanistic,"epidemiologic,"and"treatment"parallels[J]."Methodist"Debakey"Cardiovasc"J,"2015,"11(4):"228–234.
[3] JANUARY"C"T,"WANN"L"S,nbsp;ALPERT"J"S,"et"al."2014"AHA/ACC/HRS"guideline"for"the"management"of"patients"with"atrial"fibrillation:"A"report"of"the"American"College"of"Cardiology/American"Heart"Association"Task"Force"on"Practice"Guidelines"and"the"Heart"Rhythm"Society[J]."J"Am"Coll"Cardiol,"2014,"64(21):"e1–e76.
[4] HE"J,"LI"S,"DING"Y,"et"al."Research"progress"on"natural"products’"therapeutic"effects"on"atrial"fibrillation"by"regulating"ion"channels[J]."Cardiovasc"Ther,"2022,"2022:"4559809.
[5] ANDRADE"J"G,"WELLS"G"A,"DEYELL"M"W,"et"al."Cryoablation"or"drug"therapy"for"initial"treatment"of"atrial"fibrillation[J]."N"Engl"J"Med,"2021,"384(4):"305–315.
[6] MENON"A,"HONG"L,"SAVIO-GALIMBERTI"E,"et"al."Electrophysiologic"and"molecular"mechanisms"of"a"frameshift"NPPA"mutation"linked"with"familial"atrial"fibrillation[J]."J"Mol"Cell"Cardiol,"2019,"132:"24–35.
[7] CIPRIANO"A,"VIVIANO"M,"FEOLI"A,"et"al."NADPH"oxidases:"From"molecular"mechanisms"to"current"inhibitors[J]."J"Med"Chem,"2023,"66(17):"11632–11655.
[8] MAZAT"J"P,"DEVIN"A,"RANSAC"S."Modelling"mitochondrial"ROS"production"by"the"respiratory"chain[J]."Cell"Mol"Life"Sci,"2020,"77(3):"455–465.
[9] NAZARI"B,"JAQUET"V,"KRAUSE"K"H."NOX"family"NADPH"oxidases"in"mammals:"Evolutionary"conservation"and"isoform-defining"sequences[J]."Redox"Biol,"2023,"66:"102851.
[10] WANG"D,"LI"J,"LUO"G,"et"al."Nox4"as"a"novel"therapeutic"target"for"diabetic"vascular"complications[J]."Redox"Biol,"2023,"64:"102781.
[11] PECCHILLO"CIMMINO"T,"AMMENDOLA"R,"CATTA-"NEO"F,"et"al."NOX-dependent"ROS"generation"and"cell"metabolism[J]."Int"J"Mol"Sci,"2023,"24(3):"2086.
[12] VERMOT"A,"PETIT-H?RTLEIN"I,"SMITH"S"M"E,"""et"al."NADPH"oxidases"(NOX):"An"overview"from"discovery,"molecular"mechanisms"to"physiology"and"pathology[J]."Antioxidants"(Basel),"2021,"10(6):"890.
[13] BEGUM"R,"THOTA"S,"ABDULKADIR"A,"et"al."NADPH"oxidase"family"proteins:"Signaling"dynamics"to"disease"management[J]."Cell"Mol"Immunol,"2022,"19(6):"660–686.
[14] GRAUERS"WIKTORIN"H,"AYDIN"E,"HELLSTRAND"K,"et"al."NOX2-derived"reactive"oxygen"species"in"cancer[J]."Oxid"Med"Cell"Longev,"2020,"2020:"7095902.
[15] TAYLOR"J"P,"TSE"H"M."The"role"of"NADPH"oxidases"in"infectious"and"inflammatory"diseases[J]."Redox"Biol,"2021,"48:"102159.
[16] GARCíA"J"G,"ANSORENA"E,"IZAL"I,"et"al."Structure,"regulation,"and"physiological"functions"of"NADPH"oxidase"5"(NOX5)[J]."J"Physiol"Biochem,"2023,"79(2):"383–395.
[17] BERTERO"E,"MAACK"C."Calcium"signaling"and"reactive"oxygen"species"in"mitochondria[J]."Circ"Res,"2018,"122(10):"1460–1478.
[18] MASON"F"E,"PRONTO"J"R"D,"ALHUSSINI"K,"et"al."Cellular"and"mitochondrial"mechanisms"of"atrial"fibrillation[J]."Basic"Res"Cardiol,"2020,"115(6):"72.
[19] OKOYE"C"N,"KOREN"S"A,"WOJTOVICH"A"P."Mitochondrial"complex"Ⅰ"ROS"production"and"redox"signaling"in"hypoxia[J]."Redox"Biol,"2023,"67:"102926.
[20] ANTONOPOULOS"A"S,"GOLIOPOULOU"A,"OIKONO-"MOU"E,nbsp;et"al."Redox"state"in"atrial"fibrillation"pathogenesis"and"relevant"therapeutic"approaches[J]."Curr"Med"Chem,"2019,"26(5):"765–779.
[21] SU"L,"ZHANG"J,"GOMEZ"H,"et"al."Mitochondria"ROS"and"mitophagy"in"acute"kidney"injury[J]."Autophagy,"2023,"19(2):"401–414.
[22] AMINI"L,"CHEKINI"R,"NATEGHI"M"R,"et"al."The"effect"of"combined"vitamin"C"and"vitamin"E"supplementation"on"oxidative"stress"markers"in"women"with"endometriosis:"A"randomized,"triple-blind"placebo-controlled"clinical"trial[J]."Pain"Res"Manag,"2021,"2021:"5529741.
[23] SRIDHAR"A,"DESANTIAGO"J,"CHEN"H,"et"al."Modulation"of"NOX2"causes"obesity-mediated"atrial"fibrillation[J]."J"Clin"Invest,"2024,"134(18):"e175447.
[24] YOO"S,"PFENNIGER"A,"HOFFMAN"J,"et"al."Attenuation"of"oxidative"injury"with"targeted"expression"of"NADPH"oxidase"2"short"hairpin"RNA"prevents"onset"and"maintenance"of"electrical"remodeling"in"the"canine"atrium:"A"novel"gene"therapy"approach"to"atrial"fibrillation[J]."Circulation,"2020,"142(13):"1261–1278.
[25] LU"G,"LI"J,"ZHAI"Y,"et"al."Spironolactone"suppresses"aldosterone-induced"Kv1."5"expression"by"attenuating"mineralocorticoid"receptor-Nox1/2/4-mediated"ROS"generation"in"neonatal"rat"atrial"myocytes[J]."Biochem"Biophys"Res"Commun,"2019,"520(2):"379–384.
[26] LIU"X,"ZHANG"W,"LUO"J,"et"al."TRIM21"deficiency"protects"against"atrial"inflammation"and"remodeling"post"myocardial"infarction"by"attenuating"oxidative"stress[J]."Redox"Biol,"2023,"62:"102679.
[27] YANG"X,"AN"N,"ZHONG"C,"et"al."Enhanced"cardiomyocyte"reactive"oxygen"species"signaling"promotes"ibrutinib-"induced"atrial"fibrillation[J]."Redox"Biol,"2020,"30:"101432.
[28] YOUN"J"Y,"ZHANG"J,"ZHANG"Y,"et"al."Oxidative"stress"in"atrial"fibrillation:"An"emerging"role"of"NADPH"oxidase[J]."J"Mol"Cell"Cardiol,"2013,"62:"72–79.
[29] MIGHIU"A"S,"RECALDE"A,"ZIBERNA"K,"et"al."Inducibility,"but"not"stability,"of"atrial"fibrillation"is"increased"by"NOX2"overexpression"in"mice[J]."Cardiovasc"Res,"2021,"117(11):"2354–2364.
[30] ANERILLAS"C,"ALTéS"G,"GOROSPE"M."MAPKs"in"the"early"steps"of"senescence"implementation[J]."Front"Cell"Dev"Biol,"2023,"11:"1083401.
[31] XU"B,"XU"Y,"REN"W,"et"al."S-methyl-L-cysteine"targeting"MsrA"attenuates"Ang"Ⅱ-induced"oxidative"stress"and"atrial"remodeling"via"the"p38"MAPK"signaling"pathway[J]."Food"Funct,"2024,"15(18):"9165–9175.
[32] LIANG"X,"ZHANG"Q,"WANG"X,"et"al."Reactive"oxygen"species"mediated"oxidative"stress"links"diabetes"and"atrial"fibrillation[J]."Mol"Med"Rep,"2018,"17(4):"4933–4940.
[33] MENG"T,"WANG"J,"TANG"M,"et"al."Diabetes"mellitus"promotes"atrial"structural"remodeling"and"PARP-1/Ikkα/NF-κB"pathway"activation"in"mice[J]."Diabetes"Metab"Syndr"Obes"Targets"Ther,"2021,"14:"2189–2199.
[34] REN"X,"WANG"X,"YUAN"M,"et"al."Mechanisms"and"treatments"of"oxidative"stress"in"atrial"fibrillation[J]."Curr"Pharm"Des,"2018,"24(26):"3062–3071.
[35] MATSUMORI"A."Management"of"atrial"fibrillation"using"immunoglobulin"free"light"chains,"novel"biomarkers"of"inflammation[J]."Eur"Cardiol"Rev,"2022,"17:"e22.
(收稿日期:2024–12–16)
(修回日期:2025–02–15)