[摘要]"通過紅細(xì)胞輸注,紅細(xì)胞脫落細(xì)胞核和其他細(xì)胞器并在細(xì)胞質(zhì)中包裝高濃度血紅蛋白實現(xiàn)高效供氧。體外低溫存儲的紅細(xì)胞隨著保存時間延長,發(fā)生形態(tài)、生化與功能等改變,即“存儲損傷”。近年來隨著組學(xué)等技術(shù)的發(fā)展,關(guān)于紅細(xì)胞存儲損傷的機(jī)制、提高保存質(zhì)量的措施、損傷標(biāo)志物的發(fā)現(xiàn)及臨床后果一直是該領(lǐng)域研究熱點,本文結(jié)合國內(nèi)外紅細(xì)胞存儲損傷的研究現(xiàn)狀進(jìn)行綜述。
[關(guān)鍵詞]"紅細(xì)胞;存儲損傷;輸血;血液保存
[中圖分類號]"R457.1""""""[文獻(xiàn)標(biāo)識碼]"A""""""[DOI]"10.3969/j.issn.1673-9701.2025.14.023
輸血在改善機(jī)體組織供氧和凝血功能、挽救生命的過程中具有無法替代的地位和意義,成分輸血以儲存紅細(xì)胞(red"blood"cells,RBC)輸注為主。RBC和網(wǎng)織RBC逐漸失去細(xì)胞核和細(xì)胞器,通過在細(xì)胞質(zhì)中包裝高濃度血紅蛋白實現(xiàn)高效能量生產(chǎn),同時RBC失去線粒體使高濃度的血紅蛋白維持還原狀態(tài)。RBC在人體的壽命約120d,通過氧化磷酸化過程為組織細(xì)胞提供氧氣,直至累積損傷后被清除。RBC在血庫中儲存長達(dá)42d至維持質(zhì)量對治療各種急慢性疾病是必要的[1-3]。體外冷藏的RBC可失去其進(jìn)化適應(yīng)能力,產(chǎn)生存儲損傷,包括形態(tài)、生物化學(xué)、代謝及功能的一系列損傷,大量RBC輸注治療對患者的損害一部分來自于存儲損傷的累積。
1""RBC存儲損傷的影響因素
獻(xiàn)血者的個體差異是影響RBC質(zhì)量最主要的原因,包括獻(xiàn)血者的性別、年齡、生活方式和遺傳疾病影響。研究表明抽煙、酗酒、飲食等可改變RBC抗氧化、抗炎水平[4-5];高效液相色譜技術(shù)檢測發(fā)現(xiàn)糖化血紅蛋白含量較高的RBC氧化應(yīng)激增加,糖化血紅蛋白含量與存儲RBC的質(zhì)量密切相關(guān)[6]。遺傳病如鐮狀RBCs病、遺傳性血色病等患者RBC抗氧化能力降低,溶血率增加[7-8]。同時,獻(xiàn)血者性別對血紅蛋白濃度和氧化還原水平有影響,女性抗氧化能力及自由血紅蛋白含量顯著低于男性[9]。血液采集及成分制備過程同樣影響RBC存儲損傷,輻照、白細(xì)胞過濾及制備前保存方法會改變RBC代謝及氧化還原能力[10-11]。
RBC存儲損傷的根本原因分為兩類:①RBC脫離血液循環(huán)與血漿分離,保存在含添加液的血袋中;②暴露在氧氣下的體外存儲中,細(xì)胞氧化應(yīng)激增加且RBC失去在血液循環(huán)中進(jìn)化而來的對抗能力。RBC氧化損傷及代謝障礙是導(dǎo)致RBC存儲損傷的重要生理特征。氧化損傷包括血紅蛋白、脂質(zhì)結(jié)構(gòu)蛋白和晚期糖基化終末產(chǎn)物蛋白質(zhì)氧化損傷,代謝障礙導(dǎo)致乳酸過度累積、三磷酸腺苷(adenosine"triphosphate,ATP)及2,3–二磷酸甘油酸的耗竭[12]。
2""代謝組學(xué)在RBC存儲損傷研究中的應(yīng)用
糖酵解途徑是RBC產(chǎn)能的唯一途徑,磷酸戊糖途徑產(chǎn)生的還原型煙酰胺腺嘌呤二核苷酸磷酸(nicotinamide"adenine"dinucleotide"phosphate,NADPH)主要用來維持谷胱甘肽的還原狀態(tài)。RBC通過上述代謝途徑維持其形態(tài)、功能、胞內(nèi)鈣環(huán)境穩(wěn)定和膜脂質(zhì)更新。了解RBC代謝具有重要臨床意義,組學(xué)技術(shù)的引入為RBC損傷的研究帶來大量新的內(nèi)容。首先,代謝組學(xué)分析發(fā)現(xiàn)糖酵解、谷胱甘肽、嘌呤、硫代謝和羧酸鹽這些途徑與供體個體差異相關(guān),如性別、年齡、生活習(xí)慣等,導(dǎo)致貯存前就已存在差異[13]。研究發(fā)現(xiàn)獻(xiàn)血者糖化血紅蛋白含量與存儲損傷程度相關(guān)[6]。其次,代謝損傷與體外貯存時間存在明顯的正相關(guān)。最后,損傷程度與能量代謝也密不可分,4℃條件下代謝酶動力下降,溫度敏感離子泵的失效增加細(xì)胞為完成鉀離子和鈣離子主動運(yùn)輸對ATP的需要,進(jìn)而導(dǎo)致糖酵解速率減慢[14]。除溫度外,糖酵解速率減慢是多因素的:①在血袋密閉系統(tǒng)中,乳酸持續(xù)累積導(dǎo)致胞內(nèi)外酸化,pH敏感的酶動力降低,如磷酸果糖激酶、糖酵解限速酶和戊糖磷酸途徑等[15-16]。②隨著ATP和2,3–二磷酸甘油酸消耗,在儲存21d后活性氧(reactive"oxygen"species,ROS)累積增加,ROS攻擊血紅蛋白的功能殘基與糖酵解酶,氧化應(yīng)激導(dǎo)致功能酶和結(jié)構(gòu)蛋白不可逆氧化,如膜蛋白帶3蛋白(Band3)的斷裂失去與糖酵解酶結(jié)合的能力[17]。同時,Band3的斷裂使儲存的RBC在體內(nèi)不能像新鮮RBC一樣,通過激活戊糖磷酸途徑響應(yīng)氧化應(yīng)激[18]。代謝組學(xué)研究發(fā)現(xiàn),儲存第2周的RBC磷酸戊糖途徑激活,外源性補(bǔ)充的鞘氨醇1–磷酸(sphingosine-1-phosphate,S1P)抑制磷酸戊糖途徑激活糖酵解,最終加重RBC溶血。小鼠體內(nèi)S1P合成酶sphk1基因敲除緩解RBC存儲損傷并提高輸血質(zhì)量[19]。
在儲存的人類和小鼠RBC中發(fā)現(xiàn),次黃嘌呤的積累是RBC存儲損傷的生物標(biāo)志物和輸血后恢復(fù)的預(yù)測因子,該現(xiàn)象在其他靈長類動物和哺乳動物中也有所發(fā)現(xiàn)。高通量代謝組學(xué)技術(shù)的實施現(xiàn)在正在為新型存儲添加劑的數(shù)據(jù)驅(qū)動開發(fā)提供信息[20]。與存儲時間一致,血液儲存溶液的異質(zhì)性導(dǎo)致的代謝差異同樣是調(diào)節(jié)儲存損傷的關(guān)鍵參數(shù)[21]。
3""RBC保護(hù)液的補(bǔ)充劑及保存方法緩解RBC存儲損傷
多項研究嘗試通過向RBC保養(yǎng)液中添加化學(xué)物質(zhì)或改變保存方法以減少存儲病變[16-22]。為應(yīng)對儲存RBC環(huán)境的酸化,有研究通過加入低氯化物或無氯化物、重碳酸鹽等促進(jìn)堿化,從而有利于糖酵解和能量代謝減少RBC損傷[16-18]。儲存RBC抗氧化能力減弱,厭氧保存促進(jìn)糖酵解和戊糖磷酸途徑,并有助于維持谷胱甘肽內(nèi)穩(wěn)態(tài)緩解存儲損傷[19-22]。添加抗氧化劑,如茶多酚、維生素C、柚皮苷或姜黃素等可抑制ROS生成,促進(jìn)能量代謝,降低滲透脆性與溶血率[23-26]。乙醇可穩(wěn)定細(xì)胞膜,研究發(fā)現(xiàn)低濃度乙醇能減少小鼠RBC存儲病變,乙醇保存的RBC輸注減輕小鼠炎癥反應(yīng)[27]。Pulliam等[28]將保存14d的小鼠RBC洗滌后儲存7d后,RBC存儲損傷減少。同樣對犬全血洗滌同樣減少RBC儲存損傷[29]。一種新型緩沖高黏度存儲溶液EAS-1587通過促進(jìn)糖代謝和抑制氧化損傷減少存儲病變,并抑制小鼠輸注后炎癥反應(yīng)[30]。存儲RBC"miRNA失調(diào)是存儲損傷的生物標(biāo)志物,研究表明白細(xì)胞過濾可抑制miRNA失調(diào)減少存儲損傷[31]。儲存RBC時可產(chǎn)生大量含有正電荷或負(fù)電荷的損傷相關(guān)分子模式,研究者開發(fā)一種含?;撬岷瓦灌さ碾娮蛹徏{米纖維片,通過清除損傷相關(guān)分子模式保持細(xì)胞完整性,維持RBC形態(tài)減少存儲病變,延長RBC保存時間[32]。血袋增塑劑鄰苯二甲酸二(2-乙基己基)酯從聚氯乙烯基質(zhì)中浸出并結(jié)合細(xì)胞膜磷脂雙分子層,研究發(fā)現(xiàn)對苯二甲酸二(2-乙基己基)酯是一種適合于保存X射線輻照細(xì)胞應(yīng)力后RBC的增塑劑[33]。
4""存儲病變與臨床后果的聯(lián)系
一些不良事件可直接歸因于輸血,然而RBC存儲損傷是否影響臨床輸注結(jié)果仍存在諸多爭議。Lacroix等[34]一項隨機(jī)對照臨床研究發(fā)現(xiàn),輸注保存時間少于8d的新鮮RBC并不會降低重癥監(jiān)護(hù)病房的死亡率;Steiner等[35]發(fā)現(xiàn)心臟病手術(shù)后輸注短期或長期儲存的RBC,多器官障礙綜合征的發(fā)生沒有明顯區(qū)別。研究發(fā)現(xiàn)RBC存儲時間點的長短與清潔–污染手術(shù)后感染風(fēng)險的增加無關(guān)[36]。一項Meta分析顯示,與輸注儲存少于10d的RBC相比,患者接受儲存時間超過30d的RBC死亡風(fēng)險增加[37]。Hod等[38]在動物模型和健康志愿者中研究血管外溶血,特別發(fā)現(xiàn)輸注貯存末期的RBC導(dǎo)致游離鐵增加;隨后,在60名健康志愿者中依據(jù)RBC存儲時間調(diào)查輸血后恢復(fù)和血管外溶血標(biāo)志物儲存數(shù)周后的功能[39]。結(jié)果觀察到儲存時間帶來的顯著差異,保存時間較久的RBC輸注與輸血后RBC恢復(fù)減少、RBC壓積降低和血清鐵蛋白升高有關(guān)。同時該研究團(tuán)隊深入探究其背后原因,重點研究存儲過程中積累的小RBC在健康志愿者中輸血后恢復(fù)與小RBC比例呈明顯負(fù)相關(guān)[40]。通過人體脾臟的離體實驗完成,在小鼠模型中,存儲累積的小RBC通過積聚在脾臟中迅速清除并被巨噬細(xì)胞加工。研究表明儲存損傷對RBC的循環(huán)和潛在的輸血效率有明顯影響。
5""小結(jié)
供體之外儲存于血庫冰箱中的RBC可發(fā)生存儲損傷。盡管研究者持續(xù)關(guān)注這一問題,但仍有大量患者需要輸注儲存的RBC。另外,回顧性研究中并沒有明確儲存的RBC時間與輸血安全關(guān)系。因此,從技術(shù)、經(jīng)濟(jì)與后勤等多方面改進(jìn)RBC處理/存儲方法減少存儲病變?nèi)杂泻荛L的路要走。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻(xiàn)]
[1] AGARWAL"N,"MURPHY"J"G,"CAYTEN"C"G,"et"al."Blood"transfusion"increases"the"risk"of"infection"after"trauma[J]."Arch"Surg,"1993,"128(2):"171–176.
[2] WEINBERG"J"A,"MCGWIN"G,"GRIFFIN"R"L,"et"al."Age"of"transfused"blood:"An"independent"predictor"of"mortality"despite"universal"leukoreduction[J]."J"Trauma,"2008,"65(2):"279-282.
[3] KURIRI"F"A,"AHMED"A,"ALANAZI"F,"et"al."Red"blood"cell"alloimmunization"and"autoimmunization"in"bood"transfusion-dependent"sickle"cell"disease"and"beta-"thalassemia"patients"in"Al-Ahsa"region,"Saudi"Arabia[J]."Anemia,"2023,"2023:"3239960.
[4] BOEHM"R"E,"DO"NASCIMENTO"S"N,"COHEN"C"R,"et"al."Cigarette"smoking"and"antioxidant"defences"in"packed"red"blood"cells"prior"to"storage[J]."Blood"Transfus,"2020,"18(1):"40–48.
[5] D’ALESSANDRO"A,"FU"X,"KANIAS"T,"et"al."Donor"sex,"age"and"ethnicity"impact"stored"red"blood"cell"antioxidant"metabolism"through"mechanisms"in"part"explained"by"glucose"6-phosphate"dehydrogenase"levels"and"activity[J]."Haematologica,"2021,"106(5):"1290–1302.
[6] LI"H,"FANG"K,"PENG"H,"et"al."The"relationship"between"glycosylated"hemoglobin"level"and"red"blood"cell"storage"lesion"in"blood"donors[J]."Transfusion,"2022,"62(3):"663–674.
[7] OSEI-HWEDIEH"D"O,"KANIAS"T,"CROIX"C"S,"et"al."Sickle"cell"trait"increases"red"blood"cell"storage"hemolysis"and"post-transfusion"clearance"in"mice[J]."EBioMedicine,"2016,"11:"239–248.
[8] INFANTI"L,"LEITNER"G,"MOE"M,"et"al."Blood"donation"for"iron"removal"in"individuals"with"HFE"mutations:"study"of"efficacy"and"safety"and"short"review"on"hemochromatosis"and"blood"donation[J]."Front"Med"(Lausanne),"2024,"11:"1362941.
[9] TZOUNAKAS"V"L,"ANASTASIADI"A"T,"DROSSOS"P"V,"et"al."Sex-related"aspects"of"the"red"blood"cell"storage"lesion[J]."Blood"Transfus,"2021,"19(3):"224–236.
[10] DE"KORTE"D,"THIBAULT"L,"HANDKE"W,"et"al."Timing"of"gamma"irradiationnbsp;and"blood"donor"sex"influences"in"vitro"characteristics"of"red"blood"cells[J]."Transfusion,"2018,"58(4):"917–926.
[11] MIGLIO"A,"ROCCONI"F,"CREMONI"V,"et"al."Effect"of"leukoreduction"on"the"omics"phenotypes"of"canine"packed"red"blood"cells"during"refrigerated"storage[J]."J"Vet"Intern"Med,"2024,"38(3):"1498–1511.
[12] YOSHIDA"T,"PRUDENT"M,"D'ALESSANDRO"A."Red"blood"cell"storage"lesion:"Causes"and"potential"clinical"consequences[J]."Blood"Transfus,"2019,"17(1):"27–52.
[13] THOMAS"T,"CENDALI"F,"FU"X,"et"al."Fatty"acid"desaturase"activity"in"mature"red"blood"cells"and"implications"for"blood"storage"quality[J]."Transfusion,"2021,"61(6):"1867–1883.
[14] YURKOVICH"J"T,"ZIELINSKI"D"C,"YANG"L,"et"al."Quantitative"time-course"metabolomics"in"human"red"blood"cells"reveal"the"temperature"dependence"of"human"metabolic"networks[J]."J"Biol"Chem,"2017,"292(48):"19556–19564.
[15] GEVI"F,"D’ALESSANDRO"A,"RINALDUCCI"S,"et"al."Alterations"of"red"blood"cell"metabolome"during"cold"liquid"storage"of"erythrocyte"concentrates"in"CPD-SAGM[J]."J"Proteomics,"2012,"76:"168–180.
[16] D’ALESSANDRO"A,"REISZ"J"A,"CULP-HILL"R,"et"al."Metabolic"effect"of"alkaline"additives"and"guanosine/"gluconate"in"storage"solutions"for"red"blood"cells[J]."Transfusion,"2018,"58(8):"1992–2002.
[17] D’ALESSANDRO"A,"D’AMICI"G"M,"VAGLIO"S,"et"al."Time-course"investigation"of"SAGM-stored"leukocyte-"filtered"red"bood"cell"concentrates:"From"metabolism"to"proteomics[J]."Haematologica,"2012,"97(1):"107–115.
[18] ISSAIAN"A,"HAY"A,"DZIECIATKOWSKA"M,"et"al."The"interactome"of"the"N-terminus"of"band"3"regulates"red"blood"cell"metabolism"and"storage"quality[J]."Haematologica,"2021,"106(11):"2971–2985.
[19] HAY"A,"NEMKOV"T,"GAMBONI"F,"et"al."Sphingosine"1-phosphate"has"a"negative"effect"on"RBC"storage"quality[J]."Blood"Adv,"2023,"7(8):"1379–1393.
[20] NEMKOV"T,"YOSHIDA"T,"NIKULINA"M,"et"al."High-throughput"metabolomics"platform"for"the"rapid"data-driven"development"of"novel"additive"solutions"for"blood"storage[J]."Front"Physiol,"2022,"13:"833242.
[21] D’ALESSANDRO"A,"CULP-HILL"R,"REISZ"J"A,"et"al."Heterogeneity"of"blood"processing"and"storage"additives"in"different"centers"impacts"stored"red"blood"cell"metabolism"as"much"as"storage"time:"Lessons"from"REDS-Ⅲ-Omics"[J]."Transfusion,"2019,"59(1):"89–100.
[22] HAY"A,"DZIEWULSKA"K,"GAMBONI"F,"et"al."Hypoxic"storage"of"murine"red"blood"cells"improves"energy"metabolism"and"post-transfusionnbsp;recoveries[J]."Blood"Transfus,"2023,"21(1):"50–61.
[23] SHE"Y,"LIU"Q,"XIONG"X,"et"al."Erythrocyte"storage"lesion"improvements"mediated"by"naringin"screened"from"vegetable/fruit"Juice"using"cell"extract"and"HPLC-"MS[J]."J"Anal"Methods"Chem,"2022,"2022:"7556219.
[24] RAVIKUMAR"S,"HSIEH"C,"RAJASHEKHARAIAH"V."Prospects"of"curcumin"as"an"additive"in"storage"solutions:"A"study"on"erythrocytes[J]."Turk"J"Med"Sci,"2016,"46(3):"825–833.
[25] 楊麗麗,"李旭研,"孫明玥,"等."維生素C對存儲紅細(xì)胞的影響[J]."包頭醫(yī)學(xué)院學(xué)報,"2019,"35(10):"59–61.
[26] 張春霞,"劉晶晶,"王雷,"等."茶多酚對體外存儲紅細(xì)胞的影響[J]."包頭醫(yī)學(xué)院學(xué)報,"2019,"35(10):"65–67.
[27] ZINGG"S"W,"SCHUSTER"R,"JOSEPH"B,"et"al."Storage"with"ethanol"attenuates"the"red"blood"cell"storage"lesion[J]."Surgery,"2022,"172(6):"1829–1836.
[28] PULLIAM"K"E,"JOSEPH"B,"MAKLEY"A"T,"et"al."Washing"packed"red"blood"cells"decreases"red"blood"cell"storage"lesion"formation[J]."Surgery,"2021,"169(3):"666–670.
[29] COLL"A"C,"ROSS"M"K,"WILLIAMS"M"L,"et"al."Effect"of"washing"units"of"canine"red"blood"cells"on"storage"lesions[J]."J"Vet"Intern"Med,"2022,"36(1):"66–77.
[30] PULLIAM"K"E,"JOSEPH"B,"MAKLEY"A"T,"et"al."Improving"packed"red"blood"cell"storage"with"a"high-viscosity"buffered"storage"solution[J]."Surgery,"2022,"171(3):"833–842.
[31] MUKHERJEE"S,"DAS"P"G"S,"PRAKASH"S,"et"al."Leukoreduction"of"red"blood"cell"units"decreases"dysregulatory"micro"RNAs"during"routine"storage:"An"observational"study"with"In-silico"analysis[J]."Transfusion,"2023,"63(9):"1747–1757.
[32] PANDEY"S,"MAHATO"M,"SRINATH"P,"et"al."Intermittent"scavenging"of"storage"lesion"from"stored"red"blood"cells"by"electrospun"nanofibrous"sheets"enhances"their"quality"and"shelf-life[J]."Nat"Commun,"2022,"13(1):"7394.
[33] LARSSON"L,"OHLSSON"S,"DERVING"J,"et"al."DEHT"is"a"suitable"plasticizer"option"for"phthalate-free"storage"of"irradiated"red"blood"cells[J]."Vox"Sang,"2022,"117(2):"193–200.
[34] LACROIX"J,"HEBERT"P"C,"FERGUSSON"D"A,"et"al."Age"of"transfused"blood"in"critically"ill"adults[J]."N"Engl"J"Med,"2015,"372(15):"1410–1418.
[35] STEINER"M"E,"NESS"P"M,"ASSMANN"S"F,"et"al."Effects"of"red-cell"storage"duration"on"patients"undergoing"cardiac"surgery[J]."N"Engl"J"Med,"2015,"372(15):"1419–1429.
[36] XU"X,"ZHANG"Y,"GAN"J,"et"al."Association"between"storage"time"of"transfused"red"blood"cells"and"infection"after"clean-contaminated"surgery:"A"retrospective"cohort"study[J]."Ann"Surg,"2023,"280(2):"253–260.
[37] NGM"S"Y,"DAVID"M,"MIDDELBURG"Rnbsp;A,"et"al."Transfusion"of"packed"red"blood"cells"at"the"end"of"shelf"life"is"associated"with"increased"risk"of"mortality-A"pooled"patient"data"analysis"of"16"observational"trials[J]."Haematologica,"2018,"103(9):"1542–1548.
[38] HOD"E"A,"BRITTENHAM"G"M,"BILLOTE"G"B,"et"al."Transfusion"of"human"volunteers"with"older,"stored"red"blood"cells"produces"extravascular"hemolysis"and"circulating"non-transferrin-bound"iron[J]."Blood,"2011,"118(25):"6675–6682.
[39] RAPIDO"F,"BRITTENHAM"G"M,"BANDYOPADHYAY"S,"et"al."Prolonged"red"cell"storage"before"transfusion"increases"extravascular"hemolysis[J]."J"Clin"Invest,"2017,"127(1):"375–382.
[40] ROUSSEL"C,"DUSSIOT"M,"MARIN"M,"et"al."Spherocytic"shift"of"red"blood"cells"during"storage"provides"a"quantitative"whole"cell-based"marker"of"the"storage"lesion[J]."Transfusion,"2017,"57(4):"1007–1018.
(收稿日期:2024–12–15)
(修回日期:2025–04–15)