摘 要: 旨在研究低蛋白質(zhì)飼糧中添加單寧酸(TA)對大腸桿菌(ETEC)誘導(dǎo)的免疫應(yīng)激斷奶仔豬血液生化指標(biāo)、肌肉形態(tài)結(jié)構(gòu)、風(fēng)味氨基酸及肌纖維發(fā)育相關(guān)因子的影響。選取體重為6.75 kg±0.07 kg的杜×長×大三元健康斷奶仔豬21頭,隨機(jī)分為3組,分別為基礎(chǔ)飼糧組(CON組)、基礎(chǔ)飼糧+ETEC 組(EK組)和基礎(chǔ)飼糧+0.05% TA+ETEC 組(MTA組),每組7個(gè)重復(fù),每個(gè)重復(fù)1頭豬。在試驗(yàn)第29和31天給予EK組和MTA組斷奶仔豬灌服20 mL ETEC濃度為1×1012 CFU·mL-1的LB培養(yǎng)基,CON組灌服同體積滅活的LB培養(yǎng)基,第32天采集血液和背最長肌樣品用于檢測分析。結(jié)果表明:1)不同處理對斷奶仔豬的全血細(xì)胞數(shù)量和比例沒有顯著影響(Pgt;0.05)。2)在血清生化參數(shù)中,ETEC處理可顯著降低血清中高密度脂蛋白的含量,提高總膽汁酸含量,而日糧補(bǔ)充TA可逆轉(zhuǎn)這些指標(biāo)的水平,且MTA組的肌酐含量較其他兩組均顯著降低。3)ETEC處理可損傷背最長肌的形態(tài)結(jié)構(gòu),尤其是可顯著降低肌纖維平均直徑和面積,而飼糧中添加TA可有效維持其形態(tài)結(jié)構(gòu)的完整性。4)CON組和MTA組背最長肌MyoD和MSTN的mRNA相對表達(dá)量與EK組相比均顯著降低(Plt;0.05),EK組MyoG的mRNA相對表達(dá)量顯著高于CON組(Plt;0.05),而MTA組的MyHC Ⅱ b mRNA豐度顯著低于CON組和EK組(Plt;0.05)。5)ETEC處理可使背最長肌中賴氨酸、亮氨酸、蛋氨酸、必需氨基酸、甜味氨基酸和總氨基酸含量均顯著減少(Plt;0.05),但飼喂TA日糧可在一定程度上提高這些氨基酸的含量。綜上所述,低蛋白質(zhì)飼糧添加0.05% TA可通過維持?jǐn)嗄套胸i肌肉形態(tài)結(jié)構(gòu)的完整性,調(diào)控肌纖維相關(guān)基因表達(dá)和風(fēng)味氨基酸的含量來促進(jìn)免疫應(yīng)激斷奶仔豬的肌肉發(fā)育。
關(guān)鍵詞: 單寧酸;斷奶仔豬;應(yīng)激損傷;肌纖維;風(fēng)味氨基酸
中圖分類號:
S828.5"""" 文獻(xiàn)標(biāo)志碼:A"""" 文章編號: 0366-6964(2025)03-1290-12
收稿日期:2024-06-12
基金項(xiàng)目:國家自然科學(xué)基金(32172755;3210099);國家自然科學(xué)區(qū)域創(chuàng)新聯(lián)合基金重點(diǎn)支持項(xiàng)目(U23A20233);湖南省科技創(chuàng)新領(lǐng)軍人才項(xiàng)目(2023RC1054);湖南省重點(diǎn)研發(fā)項(xiàng)目(2022NK2023)
作者簡介:周文濤(1998-),男,湖南衡陽人,碩士生,主要從事動(dòng)物營養(yǎng)與飼料科學(xué)研究,E-mail:zhouwent213@163.com
*通信作者:何流琴,主要從事動(dòng)物生理學(xué)與動(dòng)物腸道健康調(diào)控研究,E-mail: heliuqin@hunnu.edu.cn;李鐵軍,主要從事功能性氨基酸調(diào)控仔豬應(yīng)激、生豬營養(yǎng)及其健康養(yǎng)殖研究,E-mail: tjli@isa.ac.cn
Effects of Tannic Acid on Muscle Morphology, Flavor Amino Acids, and Expression of
Muscle Fiber-related Genes in Immunostressed Weaned Piglets
ZHOU" Wentao "WANG" Chenyu "ZHOU" Hui "LIU" Hongbiao3, FENG" Shuhuan1,
FAN" Gaosheng1, LI" Tiejun2*, HE" Liuqin1,2*
(1.Laboratory of Animal Nutrition and Human Health, Hunan International Joint
Laboratory of Animal Intestinal Ecology and Health, Hunan Provincial Key
Laboratory of Animal Intestinal Function and Regulation, College of Life
Sciences, Hunan Normal University, Changsha 410081," China; 2.Hunan
Provincial Key Laboratory of Animal Physiology and Metabolic Process,
Institute of Subtropical Agriculture, Chinese Academy of Sciences,
Changsha 410125," China; 3.Zhangjiajie Jiurui Biology amp; Chemistry
Co., Ltd, Zhangjiajie 427099, "China)
Abstract:" The objective of this experiment was to investigate the impact of tannic acid (TA) supplementation in low protein diets on blood biochemical parameters, muscle morphology and structure, flavor amino acids, and factors associated with myofibril development in weaned piglets experiencing immune stress induced by Escherichia coli (ETEC). Twenty-one healthy weaned piglets (Duroc×Landrace×Yorkshire), weighing approximately 6.75±0.07 kg, were selected and randomly allocated into three groups: basal diet group (CON group), basal diet+ETEC group (EK group) and basal diet+0.05% TA+ETEC group (MTA group). Each group consisted of seven replications, with one pig per replication. Weaned piglets in the EK and MTA groups were orally administered 20 mL of LB medium containing an ETEC concentration of 1×1012 CFU·mL-1 on days 29 and 31 of the experiment, while the CON group received the same volume of inactivated LB medium. On day 32, blood samples and longissimus dorsi were collected for assay analysis. The results were showed as follows: 1) The various treatments did not yield any statistically significant impact on the quantity and proportion of whole blood cells in weaned piglets (Pgt;0.05). 2) Among the serum biochemical parameters, ETEC treatment significantly decreased the serum high-density lipoprotein (HDL) level and increased the total bile acid level, whereas TA treatment reversed these indices, and creatinine levels were significantly lower in the MTA group compared to both other groups. 3) ETEC treatment may induce alterations in the morphology and structure of the longissimus dorsi, particularly leading to a reduction in both average diameter and area of muscle fibers. However, supplementation of TA to a low protein diet effectively preserves the integrity of its morphology and structure. 4) The relative mRNA expression levels of MyoD and MSTN in the longissimus dorsi were significantly reduced in both the CON and MTA groups compared to the EK group (Plt;0.05). Additionally, the relative mRNA expression level of MyoG was significantly higher in the EK group than in the CON group (Plt;0.05), while there was a significant decrease in MyHC II b mRNA abundance observed in the MTA group compared to both the CON and EK groups (Plt;0.05). 5) The ETEC treatment significantly decreased the levels of lysine, leucine, methionine, essential amino acids, sweet amino acids, and total amino acids in longissimus dorsi (Plt;0.05). However, feeding TA diets partially restored the content of the amino acids mentioned above. In conclusion, the inclusion of 0.05% TA in low-protein diets can enhance muscle development in immunostressed weaned piglets by preserving muscle morphology and structure integrity, as well as modulating the expression of myofiber-related genes and flavor amino acid content.
Keywords: tannic acid; weaned piglets; stress injury; muscle fibers; flavor amino acids
*Corresponding authors: HE Liuqin,E-mail: heliuqin@hunnu.edu.cn;LI Tiejun,E-mail: tjli@isa.ac.cn
肌肉的結(jié)構(gòu)和性質(zhì)通常與肌纖維類型相關(guān),肌纖維是組成肌肉的基本單元[1-2]。根據(jù)肌纖維的收縮和代謝的特性,肌纖維類型可分為緩慢氧化型(MyHC Ⅰ)、快速氧化型(MyHC Ⅱa)、中間型(MyHC Ⅱx)和快速酵解型(MyHC Ⅱb)這四種亞型,在肌肉中不同亞型的肌纖維組成決定了肌肉的特性[3]。如MyHC Ⅰ型肌纖維中肌紅蛋白和線粒體的含量更高,使肉的外觀和風(fēng)味更好[4];MyHC Ⅰ型和MyHC Ⅱa 型肌纖維與肉的系水能力呈現(xiàn)正相關(guān),而MyHC Ⅱb 型肌纖維與肉的系水能力和嫩度呈現(xiàn)負(fù)相關(guān)[5]。有研究發(fā)現(xiàn),在仔豬生長過程中肌纖維類型可相互轉(zhuǎn)化,并遵循Ⅰ Ⅱa Ⅱx Ⅱb的轉(zhuǎn)化規(guī)律[6]。在仔豬生長階段極易受各種應(yīng)激因子的作用導(dǎo)致仔豬免疫應(yīng)激。免疫應(yīng)激會(huì)引起炎性細(xì)胞因子如白介素-6、白介素-1β和腫瘤壞死因子-α等顯著增加,且炎性細(xì)胞因子的增加可引起動(dòng)物肌纖維類型的轉(zhuǎn)化[7-8]。產(chǎn)腸毒素大腸桿菌(ETEC)作為誘發(fā)斷奶仔豬應(yīng)激的常見因子,其可引發(fā)仔豬斷奶早期腹瀉,損傷肌纖維的發(fā)育,從而降低豬肉品質(zhì)[9-11]。目前,以植物提取物及其衍生物作為畜禽飼料添加劑來預(yù)防和緩解畜禽應(yīng)激已成為動(dòng)物營養(yǎng)領(lǐng)域研究的熱點(diǎn)。單寧酸(TA)作為一種天然植物多酚物質(zhì),具有收斂、抗氧化、抑菌和抗炎等功能,在應(yīng)對斷奶仔豬應(yīng)激中具有良好的功效[12-13]。有研究表明,TA在家禽和斷奶仔豬的腸道中具有較強(qiáng)的收斂作用,能夠減緩腸道蠕動(dòng),降低腹瀉發(fā)生,從而減輕應(yīng)激反應(yīng)[14-15]。但是,尚未有關(guān)于TA對應(yīng)激狀態(tài)下斷奶仔豬肌纖維影響的相關(guān)報(bào)道。因此,本研究旨在初步探討低蛋白質(zhì)飼糧中添加TA對ETEC誘導(dǎo)的免疫應(yīng)激斷奶仔豬肌纖維的影響,為改善仔豬肌纖維發(fā)育提供理論依據(jù),同時(shí)為預(yù)防和緩解斷奶仔豬應(yīng)激提供新的策略。
1 材料與方法
1.1 試驗(yàn)設(shè)計(jì)
選取21頭體重相近(體重6.75±0.07 kg)的健康斷奶仔豬(杜洛克×長白×約克夏),隨機(jī)分為3組,每組7頭,單欄飼養(yǎng)。對照組(CON)和Escherichia coli K88 (ETEC)攻毒組(EK)飼喂基礎(chǔ)飼糧,單寧酸(TA)處理組(MTA)飼喂添加0.05% TA(TA的純度為95%,由張家界久瑞生物科技有限公司提供;0.05% TA濃度由前期試驗(yàn)所得出的最佳濃度)的基礎(chǔ)飼糧,單寧酸在飼料配置時(shí)經(jīng)逐級放大添加到基礎(chǔ)飼糧中。在預(yù)飼3 d后開始試驗(yàn),在試驗(yàn)第28天時(shí),CON組平均體重為14.11±0.5 kg,EK組體重為13.96±1.14 kg,MTA組體重為15.65±0.90 kg,P=0.401,無顯著差異。在試驗(yàn)第29天和第31天,給EK組和MTA組仔豬灌服20 mL ETEC濃度為1×1012 CFU·mL-1的LB培養(yǎng)基,CON組灌服20 mL滅活的LB培養(yǎng)基,在試驗(yàn)第32天屠宰采樣?;A(chǔ)飼糧參照NRC(2012)斷奶仔豬的營養(yǎng)需要進(jìn)行配置,其組成及營養(yǎng)水平見表1。
1.2 飼養(yǎng)管理
本研究使用的試驗(yàn)動(dòng)物獲得中國科學(xué)院亞熱帶農(nóng)業(yè)研究所動(dòng)物福利委員會(huì)的批準(zhǔn)(協(xié)議代碼20220056,2022年6月21日;中國長沙)。試驗(yàn)于中國科學(xué)院亞熱帶農(nóng)業(yè)生態(tài)研究所動(dòng)物實(shí)驗(yàn)基地完成。在試驗(yàn)期間,試驗(yàn)豬在漏縫地板式豬床上單欄飼養(yǎng),按照常規(guī)飼養(yǎng)管理,自由飲水,自由采食,每日飼喂3次。
1.3 樣品采集
試驗(yàn)結(jié)束時(shí),所有試驗(yàn)豬在頸靜脈采血后屠宰采樣。用乙二胺四乙酸二鉀抗凝(EDTA-K2)采血管采集的血液樣品用于血細(xì)胞分類計(jì)數(shù)檢測。用普通采血管采集的血液樣品,靜置1 h后,于4 ℃、3 000 r·min-1條件下離心10 min以分離血清,所得血清于-20 ℃保存以供后續(xù)檢測使用。仔豬宰殺后,采集仔豬左半部分的背最長肌樣本,一部分組織樣品放入液氮迅速冷凍后-80 ℃保存,用于熒光定量和水解氨基酸檢測;另一部分修理成約1 cm3的肌肉塊,于4%多聚甲醛液中固定。
1.4 測定指標(biāo)及方法
1.4.1 飼料營養(yǎng)成分檢測
飼料粗蛋白質(zhì)、粗脂肪、粗灰分、鈣和總磷的檢測方法分別參考GB/T 6432—1994、GB/T 6433—2006、GB/T 6438—2007、GB/T 6436—2018和GB/T 6437—2018;氨基酸依據(jù)GB/T 18246—2000用高效液相色譜(HPLC)測定。
1.4.2 血細(xì)胞分類計(jì)數(shù)
用EDTA-K2采血管采集的血液,在2 h內(nèi)用BC-5000VET全自動(dòng)血液細(xì)胞分析儀(深圳邁瑞生物醫(yī)療電子股份有限公司)測定血細(xì)胞分類計(jì)數(shù)指標(biāo)。
1.4.3 血清生化
采用全自動(dòng)生化分析儀Cobas c311(Roche,瑞士)檢測血清中肌酐(CREA)、葡萄糖(GLU)、甘油三酯(TG)、膽固醇(CHOL)、低密度脂蛋白-膽固醇(LDL)、高密度脂蛋白-膽固醇(HDL)、總膽汁酸(OBTA)和總膽紅素(BILT)的含量。
1.4.4 肌肉形態(tài)結(jié)構(gòu)
將4%多聚甲醛固定的背最長肌,按照HE染色方法,進(jìn)行脫水、石蠟包埋、切片和染色等處理[16]。使用正置熒光顯微鏡BX51(Olympus,日本)進(jìn)行觀察拍照,用軟件Image-Pro Plus 6.0(Media Cybernetics,美國)進(jìn)行分析,測量計(jì)算肌纖維的平均直徑和截面積。每個(gè)組選擇7張切片,每張切片選擇一個(gè)清晰的視野,統(tǒng)計(jì)視野中所有肌纖維的平均直徑和平均截面積。
1.4.5 肌纖維發(fā)育相關(guān)基因的實(shí)時(shí)熒光定量分析
采用實(shí)時(shí)熒光定量PCR法測定背最長肌中MyHC Ⅰ、MyHC Ⅱ a、MyHC Ⅱ b、MyHC Ⅱ x、MyoD、MyoG、MSTN和Myf5的mRNA相對表達(dá)量。擴(kuò)增引物序列見表2,由上海生物工程有限公司合成。
使用TRIzol試劑盒(TaKaRa,日本)從斷奶仔豬背最長肌中提取總RNA。提取出的總RNA采用超微量核酸分析儀(Biodrop,英國)檢測RNA的質(zhì)量和濃度。使用逆轉(zhuǎn)錄試劑盒(Thermo,美國)將RNA反轉(zhuǎn)錄合成cDNA鏈。用SYBR-Green實(shí)時(shí)PCR系統(tǒng)對每個(gè)樣本進(jìn)行3次評估,β-肌動(dòng)蛋白(β-actin)為內(nèi)參基因。其反應(yīng)程序?yàn)椋?5 ℃預(yù)變性3 min;95 ℃變性10 s,60 ℃延伸30 s,40個(gè)循環(huán)。各基因的mRNA相對表達(dá)量用2-△△Ct法計(jì)算。
1.4.6 肌肉氨基酸含量
使用全自動(dòng)氨基酸分析儀L-8800(Hitachi,日本),參照Liu等[17]的方法測定背最長肌中的氨基酸。并計(jì)算其中總氨基酸(TAA)、必需氨基酸(EAA)、鮮味氨基酸(UAA)和甜味氨基酸(SAA)含量,其中EAA包括Lys、Thr、Leu、Val、Ile、Phe和Met,UAA包括Glu和Asp,SAA包括Ala、Thr、Gly、Pro和Ser[18-19]。
1.5 數(shù)據(jù)分析與統(tǒng)計(jì)
試驗(yàn)數(shù)據(jù)采用Excel 2019初步整理后,采用 SPSS 22進(jìn)行單因素方差分析(one-way ANOVA),用Duncan氏法和LSD法進(jìn)行多重比較,以Plt;0.05作為顯著性判斷標(biāo)準(zhǔn),結(jié)果以“平均值±標(biāo)準(zhǔn)差”表示。
2 結(jié) 果
2.1 低蛋白質(zhì)飼糧中添加單寧酸對斷奶仔豬血細(xì)胞分類計(jì)數(shù)的影響
血細(xì)胞分類計(jì)數(shù)結(jié)果如表3所示,與對照組相比,ETEC處理以及在飼糧中添加TA后進(jìn)行ETEC處理均對斷奶仔豬血細(xì)胞分類計(jì)數(shù)指標(biāo)均無顯著影響(P>0.05)。
2.2 低蛋白質(zhì)飼糧中添加單寧酸對斷奶仔豬血清生化指標(biāo)的影響
如表4所示,相較于CON組和EK組,MTA組血清CREA的含量分別下降14.3%和20.2%(P<0.05)。與CON組相比,EK組血清中HDL-C水平降低23.1%(P<0.05),同時(shí)EK組血清中的TBA含量升高38.8%(P<0.05),而MTA組血清中HDL-C和TBA與CON組相比無顯著差異(P>0.05)。此外,血清生化中的GLU、TG、CHOL、LDL-C和TBIL含量三組間均無顯著差異(P>0.05)。
2.3 低蛋白質(zhì)飼糧中添加單寧酸對斷奶仔豬背最長肌組織形態(tài)結(jié)構(gòu)的影響
背最長肌的組織形態(tài)如圖 1所示,發(fā)現(xiàn)EK組的肌纖維連接疏松,而MTA的肌纖維連接更緊密。對肌纖維的平均直徑和橫截面積的測量結(jié)果如表5所示。相較于CON組,發(fā)現(xiàn)肌纖維的平均直徑和截面積在EK組分別降低5.3%和12.3%(Plt;0.05),而MTA組與CON組無顯著差異(P>0.05)。
2.4 低蛋白質(zhì)飼糧中添加單寧酸對斷奶仔豬背最長肌肌纖維相關(guān)基因mRNA表達(dá)量的影響
由表6可知,MyHC Ⅱ b在MTA組的表達(dá)量與CON組和EK組相比,分別降低了38.0%和36.7%(P<0.05);與CON組相比,EK組的MyoD、MyoG和MSTN基因的mRNA表達(dá)量分別提高了56.0%、52.0%和45.0%(Plt;0.05),而這些基因在MTA組的mRNA表達(dá)量與CON組無顯著差異(P>0.05)。
2.5 低蛋白質(zhì)飼糧中添加單寧酸對斷奶仔豬背最長肌氨基酸含量的影響
由表7可知,相較于CON組,Lys和Leu的含量在EK組分別降低6.7%和7.6%(P<0.05),在MTA組無顯著差異(P>0.05);EK組Met的含量最低,與CON組和MTA組相比,分別降低13.3%和12.2%(Plt;0.05);與CON組相比,Phe的含量在EK組和MTA組分別降低了19.6%和14.1%(Plt;0.05),Tyr的含量在EK組和MTA 組分別降低了21.4%和15.1%(Plt;0.05);EK組的Gly含量相較于CON組降低7.0%(P=0.067),而MTA組Gly的含量相較于EK組升高12.4%(P<0.05);相較于CON組,EK組的Ser、Arg、Val和Ile分別降低6.8% (P=0.098)、6.5%(P=0.071)、5.8%(P=0.059)和7.4%(P=0.064)。此外,與CON組相比,EAA、SAA和TAA的含量在EK組中分別降低8.8%、7.7%和8.8%(Plt;0.05)。
3 討 論
我國是生豬養(yǎng)殖的大國,但飼料資源匱乏,尤其是蛋白質(zhì)類原料嚴(yán)重依賴進(jìn)口[20]。同時(shí),飼料中蛋白質(zhì)含量過高不僅會(huì)降低飼料的利用率加重豬的代謝負(fù)擔(dān),而且剩余蛋白質(zhì)以氮素的形式隨糞便和尿液排出,加劇對環(huán)境的污染,造成蛋白質(zhì)資源的浪費(fèi)[21-22]。因此,在本試驗(yàn)中使用的是低蛋白質(zhì)飼糧配方,根據(jù)NRC(2012)標(biāo)準(zhǔn)和在滿足Lys、Thr、Met和Trp這四種限制性氨基酸需要的前提下進(jìn)行配比,飼糧中粗蛋白質(zhì)的實(shí)際水平為16.27%。本試驗(yàn)中,在正常生理狀態(tài)下添加TA,不僅可以提高斷奶仔豬的食欲,增加采食量,還能在一定程度上降低斷奶仔豬的腹瀉率。血液作為動(dòng)物生命的重要營養(yǎng)和信號分子運(yùn)輸媒介,具備快速調(diào)節(jié)動(dòng)物新陳代謝的功能,血液指標(biāo)的改變通??梢苑从硠?dòng)物機(jī)體的營養(yǎng)與健康狀況[23-24]。本研究中ETEC處理與在飼糧中添加TA對斷奶仔豬的白細(xì)胞、紅細(xì)胞和血小板等血細(xì)胞分類計(jì)數(shù)指標(biāo)沒有顯著影響,推測ETEC與TA劑量可能未能擾動(dòng)斷奶仔豬血細(xì)胞分類計(jì)數(shù)的變化。血清中的CREA通常是內(nèi)源性產(chǎn)生的,是肌肉中由肌酸代謝的產(chǎn)物,肌酸的合成主要依賴于Arg和Gly[25-26]。本研究中,TA降低了在ETEC處理后斷奶仔豬血清中CREA的含量,推測TA緩解了免疫應(yīng)激仔豬的肌肉損傷,從而使CREA的含量下降。同時(shí),由于仔豬肌肉中Arg和Gly的含量在ETEC處理后降低,其原因可能是機(jī)體為維持肌酸的正常含量,消耗了肌肉中的Arg和Gly。因此推測,TA可以緩解免疫應(yīng)激仔豬的肌肉損傷,從而促進(jìn)氨基酸在肌肉中沉積。HDL-C具有對抗動(dòng)脈粥樣硬化和炎癥的作用,可將多余的膽固醇、磷脂和甘油三酯等運(yùn)回肝,最終排出體外[27-28]。因此,血清中HDL-C可作為心血管疾病和脂質(zhì)累積的可靠指標(biāo)[29-30]。本研究表明,ETEC處理降低了斷奶仔豬血液中HDL-C的濃度,在添加TA后能夠有效抵抗ETEC帶來的影響,這一結(jié)果與Ren等[30]在仔雞飼糧中添加微囊TA的研究一致,表明TA能夠促進(jìn)斷奶仔豬的脂質(zhì)代謝,推測TA可能具有提高機(jī)體對動(dòng)脈粥樣硬化和炎癥的抵抗作用。膽汁酸是肝健康的重要指標(biāo)之一,濃度過高會(huì)導(dǎo)致肝硬化使肝細(xì)胞受損,并引起脂質(zhì)代謝紊亂以及膽汁排泄障礙,進(jìn)而減少腸道內(nèi)膽汁的含量,從而影響到消化吸收功能[31]。在本試驗(yàn)中,ETEC處理導(dǎo)致了斷奶仔豬體內(nèi)的TBA含量顯著升高,而在添加TA后TBA的含量降低,表明TA可以調(diào)節(jié)斷奶仔豬在異常狀態(tài)下的TBA濃度,并減少因ETEC引起的肝細(xì)胞損傷。
肌纖維是構(gòu)成肌肉的基本單位,其直徑與密度呈負(fù)相關(guān),并與肉品質(zhì)有關(guān)[32-33]。研究表明,在出欄商品豬中,肌纖維直徑和截面積越小、密度更大的豬肉品質(zhì)更好[34]。Yu等[35]以LPS構(gòu)建免疫應(yīng)激模型,發(fā)現(xiàn)免疫應(yīng)激仔豬肌肉質(zhì)量減少,同時(shí)肌纖維直徑和截面積減小,認(rèn)為其原因是腸道微生物區(qū)系組成與多樣性的變化和炎癥所導(dǎo)致。在本研究中,添加TA的斷奶仔豬背最長肌的肌纖維直徑比ETEC處理的更粗。推測這可能是由于ETEC處理誘導(dǎo)了仔豬的炎癥和腸道微生物的變化,從而影響了仔豬肌纖維的生長發(fā)育,導(dǎo)致肌纖維直徑和截面積減小,而TA緩解了仔豬的免疫應(yīng)激狀態(tài),減輕了炎癥,從而促使肌纖維的正常發(fā)育。肌纖維具有不同的類型,按照氧化能力從高到低可分為MyHC Ⅰ型、Ⅱ a型、Ⅱ x和Ⅱ b型肌纖維;不同肌纖維所含的肌紅蛋白的差異較大,其含量也從Ⅰ型到Ⅱ b型肌纖維逐漸降低,與之相應(yīng)地,肉色也隨之變差[36-37]。有研究發(fā)現(xiàn),單寧酸在動(dòng)物體內(nèi)的代謝產(chǎn)物沒食子酸可降低小鼠α肌動(dòng)蛋白和β肌球蛋白重鏈的表達(dá)[38]。與此相似,本研究觀察到單寧酸處理的仔豬肌肉中MyHC Ⅱ b型肌纖維表達(dá)量減少,這暗示了單寧酸可能通過其代謝產(chǎn)物沒食子酸對肌纖維轉(zhuǎn)化進(jìn)行調(diào)控。有研究表明,MyoD具有促進(jìn)其他類型細(xì)胞向成肌細(xì)胞轉(zhuǎn)化,以及推動(dòng)成肌細(xì)胞分化的能力;MyoG和Myf5基因均屬于MRFs家族,其中MyoG主要參與肌肉分化和成肌細(xì)胞的融合過程,而Myf5可以啟動(dòng)肌肉的形成;MSTN是對骨骼肌生長發(fā)育起負(fù)調(diào)控作用的因子,可以防止肌肉組織的過度生長,其上調(diào)可引發(fā)MyoD的過度表達(dá)[39-40]。本試驗(yàn)結(jié)果顯示,在ETEC處理后斷奶仔豬出現(xiàn)了背最長肌MyoD、 MyoG 和 MSTN 表達(dá)水平的提高,這表明ETEC處理后斷奶仔豬的肌纖維發(fā)育異常,可能處于分化融合與分解之間的矛盾狀態(tài),這可能也是導(dǎo)致肌纖維的直徑和截面積較小的原因,而TA的添加使得這些表達(dá)異常的基因恢復(fù)到正常的水平,表明TA可以減輕斷奶仔豬由ETEC處理所導(dǎo)致的肌纖維發(fā)育異常的問題。
Lys和Met分別是生豬養(yǎng)殖中第一和第二限制性氨基酸,可通過多種代謝途徑參與動(dòng)物生理功能調(diào)控[41-42],本研究發(fā)現(xiàn),飼糧中添加TA可以使ETEC處理后降低的Lys和Met水平恢復(fù)正常,表明TA可以加快體內(nèi)蛋白質(zhì)合成速度,提高產(chǎn)肉效率,促進(jìn)肌肉的生長發(fā)育。Val、Leu和Ile為支鏈氨基酸,可以參與機(jī)體內(nèi)蛋白質(zhì)和能量的代謝,支鏈氨基酸也可以通過促進(jìn)胰島素和生長激素釋放,促進(jìn)動(dòng)物的合成代謝和生長[43]。有研究表明,支鏈氨基酸可以作為合成代謝信號刺激肌肉中蛋白質(zhì)的合成代謝途徑,同時(shí)也可以反映蛋白質(zhì)攝入和蛋白質(zhì)合成與分解代謝之間的平衡關(guān)系[44-45]。在本試驗(yàn)中,TA可以恢復(fù)ETEC處理后支鏈氨基酸降低的趨勢,推測TA可以減輕ETEC處理的應(yīng)激損傷,從而促進(jìn)斷奶仔豬在異常狀態(tài)下肌肉中蛋白質(zhì)和能量代謝的正常運(yùn)行,促進(jìn)仔豬肌肉中蛋白質(zhì)的沉積以及仔豬的正常生長。Phe是重要的芳香族氨基酸,在體內(nèi)Phe主要轉(zhuǎn)化為Tyr,而Tyr是甲狀腺激素、去甲腎上腺素和腎上腺素的前體物質(zhì),在本試驗(yàn)中經(jīng)過ETEC處理后,肌肉中Phe和Tyr的含量均發(fā)生降低,表明ETEC處理對仔豬的生長產(chǎn)生不利影響。此外,肌肉品質(zhì)和風(fēng)味取決于肌肉中蛋白質(zhì)的氨基酸組成,EAA的含量決定了肌肉蛋白質(zhì)的品質(zhì),而UAA和SAA的含量與肉類風(fēng)味直接相關(guān)[46-47]。在本試驗(yàn)中,TA 處理可以使ETEC處理后背最長肌中減少的EAA、SAA和TAA的含量恢復(fù)。這表明ETEC處理會(huì)導(dǎo)致斷奶仔豬肌肉中蛋白質(zhì)沉積減少,并降低其營養(yǎng)價(jià)值和風(fēng)味,然而,在飼糧中添加TA可以預(yù)防和治療ETEC處理所引起的影響,增加肌肉中蛋白質(zhì)的沉積,提高肌肉品質(zhì)。
4 結(jié) 論
在低蛋白質(zhì)飼糧中添加0.05%TA可在一定程度上通過調(diào)節(jié)免疫應(yīng)激斷奶仔豬血清中的肌酐、總膽汁酸和高密度脂蛋白的含量來改善機(jī)體健康,并通過維持肌肉的形態(tài)、調(diào)控肌纖維相關(guān)基因表達(dá)和氨基酸組成來促進(jìn)免疫應(yīng)激斷奶仔豬的肌肉發(fā)育。然而,由于試驗(yàn)規(guī)模和觀察時(shí)間的局限性,結(jié)果僅能提供初步的參考。單寧酸改善免疫應(yīng)激的效果仍需在大規(guī)模豬群試驗(yàn)中進(jìn)一步驗(yàn)證,同時(shí)延長攻毒后的觀察時(shí)間,以獲取更全面的試驗(yàn)數(shù)據(jù),為未來實(shí)際應(yīng)用提供更可靠的依據(jù)。
參考文獻(xiàn)(References):
[1] LISTRAT A,LEBRET B,LOUVEAU I,et al.How muscle structure and composition influence meat and flesh quality[J].Sci World J,2016,2016:3182746.
[2] PICARD B,GAGAOUA M.Muscle fiber properties in cattle and their relationships with meat qualities:an overview[J].J Agric Food Chem,2020,68(22):6021-6039.
[3] GUNDERSEN K.Excitation-transcription coupling in skeletal muscle:the molecular pathways of exercise[J].Biol Rev,2011,86(3):564-600.
[4] XU M,CHEN X L,HUANG Z Q,et al.Grape seed proanthocyanidin extract promotes skeletal muscle fiber type transformation via AMPK signaling pathway[J].J Nutr Biochem,2020,84:108462.
[5] WEN W X,CHEN X L,HUANG Z Q,et al.Dietary lycopene supplementation improves meat quality,antioxidant capacity and skeletal muscle fiber type transformation in finishing pigs[J].Anim Nutr,2022,8:256-264.
[6] PETTE D,STARON R S.Transitions of muscle fiber phenotypic profiles[J].Histochem Cell Biol,2001,115(5):359-372.
[7] JIA A F,F(xiàn)ENG J H,ZHANG M H,et al.Effects of immunological challenge induced by lipopolysaccharide on skeletal muscle fiber type conversion of piglets[J].J Anim Sci,2015,93(11):5194-5203.
[8] ZHONG Y,DUAN Z Y,SU M L,et al.Inflammatory responses associated with hyposaline stress in gill epithelial cells of the spotted scat Scatophagus argus[J].Fish Shellfish Immunol,2021,114:142-151.
[9] 傅國群,陸 偉,紀(jì)鐵豐.豬應(yīng)激綜合癥的防治措施[J].吉林畜牧獸醫(yī),2019,40(1):20,22.
FU G Q,LU W,JI T F.Prevention and control measures of porcine stress syndrome[J].Jilin Animal Husbandry and Veterinary Medicine,2019,40(1):20,22.(in Chinese)
[10] 潘進(jìn)安,王海營,雷峰光.豬場應(yīng)激綜合癥的防控[J].畜牧獸醫(yī)科技信息,2019(6):110-111.
PAN J A,WANG H Y,LEI F G.Prevention and control of stress syndrome in pig farms[J].Chinese Journal of Animal Husbandry and Veterinary Medicine,2019(6):110-111.(in Chinese)
[11] DUBREUIL J D,ISAACSON R E,SCHIFFERLI D M.Animal enterotoxigenic Escherichia coli[J].EcoSal Plus,2016,7(1):10.1128/ecosalplus.ESP-0006-2016.
[12] 王思甜,徐朋濤,鄭麗云,等.單寧酸對感染豬流行性腹瀉病毒仔豬生長性能、腸道屏障功能和抗氧化能力的影響[J].動(dòng)物營養(yǎng)學(xué)報(bào),2023,35(7):4276-4286.
WANG S T,XU P T,ZHENG L Y,et al.Effects of tannic acid on growth performance,intestinal barrier function and antioxidant capacity of piglets infected with porcine epidemic diarrhea virus[J].Chinese Journal of Animal Nutrition,2023,35(7):4276-4286.(in Chinese)
[13] HUANG Q Q,LIU X L,ZHAO G Q,et al.Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production[J].Anim Nutr,2018,4(2):137-150.
[14] LIU H S,HU J X,MAHFUZ S,et al.Effects of hydrolysable tannins as zinc oxide substitutes on antioxidant status,immune function,intestinal morphology,and digestive enzyme activities in weaned piglets[J].Animals,2020,10(5):757.
[15] GIRARD M,THANNER S,PRADERVAND N,et al.Hydrolysable chestnut tannins for reduction of postweaning diarrhea:Efficacy on an experimental ETEC F4 model[J].PLoS One,2018,13(5):e0197878.
[16] 安家岐,何志強(qiáng),孫 迪,等.晉汾白豬背最長肌肌纖維類型和能量代謝特性分析[J].山西農(nóng)業(yè)科學(xué),2023,51(4):434-442.
AN J Q,HE Z Q,SUN D,et al.Analysis of fiber types and energy metabolism characteristics of longissimus Dorsi muscle of Jinfen white pigs[J].Journal of Shanxi Agricultural Sciences,2023,51(4):434-442.(in Chinese)
[17] LIU Y Y,LI F N,KONG X F,et al.Signaling pathways related to protein synthesis and amino acid concentration in pig skeletal muscles depend on the dietary protein level,genotype and developmental stages[J].PLoS One,2015,10(9):e0138277.
[18] 韓 麗,潘 杰,解培峰,等.低聚木糖對生長肥育豬血漿生化參數(shù)、肌肉氨基酸含量和肌纖維類型組成的影響[J].動(dòng)物營養(yǎng)學(xué)報(bào),2018,30(5):1880-1886.
HAN L,PAN J,XIE P F,et al.Effects of Xylo-oligosaccharide on plasma biochemical indices,amino acid contents and fiber type composition of muscle of growing-finishing pigs[J].Chinese Journal of Animal Nutrition,2018,30(5):1880-1886.(in Chinese)
[19] 陳怡穎,丁 奇,趙 靜,等.雞湯及雞肉酶解液中游離氨基酸及呈味特性的對比分析[J].食品科學(xué),2015,36(16):107-111.
CHEN Y Y,DING Q,ZHAO J,et al.Comparison of free amino acids and taste characteristics in chicken soup and chicken enzymatic hydrolysate[J].Food Science,2015,36(16):107-111.(in Chinese)
[20] 林萌萌,鄭愛華,劉 玉,等.豬低蛋白日糧應(yīng)用研究進(jìn)展[J].甘肅畜牧獸醫(yī),2023,53(6):18-20.
LIN M M,ZHEN A H,LIU Y,et al.Research progress on the application of low-protein diets in pigs[J].Gansu Animal Husbandry and Veterinary Medicine,2023,53(6):18-20.(in Chinese)
[21] 龐 怡,王華朗,韓垂旺,等.豬低蛋白氨基酸平衡日糧配制的關(guān)鍵技術(shù)[J].廣東飼料,2023,32(4):41-44.
PANG Y,WANG H L,HAN C W,et al.Key techniques of formulating low protein amino acid balanced diets for pigs[J].Guangdong Feed,2023,32(4):41-44.(in Chinese)
[22] 李夢婷,原雪峰,李 龍,等.低蛋白日糧在豬生產(chǎn)中的應(yīng)用研究進(jìn)展[J].豬業(yè)科學(xué),2023,40(12):82-84.
LI M T,YUAN X F,LI L,et al.Research progress on the application of low-protein diets in pig production[J].Swine Industry Science,2023,40(12):82-84.(in Chinese)
[23] 王 莉,劉麗秋,辛 華.靜脈采血法與末梢采血法為患者進(jìn)行血常規(guī)檢驗(yàn)的臨床準(zhǔn)確性分析[J].黑龍江醫(yī)藥科學(xué),2023,46(5):38-39.
WANG L,LIU L Q,XIN H.Clinical accuracy analysis of venous blood collection and capillary blood collection methods in routine blood tests[J].Heilongjiang Medicine and Pharmacy,2023,46(5):38-39.(in Chinese)
[24] CHEN C Y,YANG B,ZENG Z J,et al.Genetic dissection of blood lipid traits by integrating genome-wide association study and gene expression profiling in a porcine model[J].BMC Genomics,2013,14(1):848.
[25] 吳秋靜,謝 婧,史可云,等.血清肌酐/血清胱抑素對老年COPD合并肌少癥的預(yù)測價(jià)值分析[J].系統(tǒng)醫(yī)學(xué),2023,8(15):21-24.
WU Q J,XIE J,SHI K Y,et al.Analysis of the predictive value of serum creatinine/serum cystatin in combined sarcopenia in elderly with COPD[J].Systems Medicine,2023,8(15):21-24.(in Chinese)
[26] BATTINI R,LEUZZI V,CARDUCCI C,et al.Creatine depletion in a new case with AGAT deficiency:clinical and genetic study in a large pedigree[J].Mol Genet Metab,2002,77(4):326-331.
[27] 杜曉玲,徐 靜,王曉莉,等.載普羅布考重組高密度脂蛋白納米微粒的抗動(dòng)脈粥樣硬化效應(yīng)研究[J/OL].中國動(dòng)脈硬化雜志,1-10[2024-06-12].http://kns.cnki.net/kcms/detail/43.1262.R.20231204.1651.004.html.
DU X L,XU J,WANG X L,et al.The study of anti-atherosclerotic effect of probucol-loaded recombinant high density lipoprotein nanoparticles[J/OL].Chinese Journal of Arteriosclerosis, 1-10[2024-06-12].http://kns.cnki.net/kcms/detail/43.1262.R.20231204.1651.004.html.(in Chinese)
[28] 高承芳.兩種不同散養(yǎng)模式對河田雞生長性能、肉品質(zhì)及血清生化、免疫、抗氧化指標(biāo)的影響[J].黑龍江畜牧獸醫(yī),2023,(6):43-48.
GAO C F.Effects of two different free-range rearing modes on growth performance,meat quality and serum biochemical indicator,immune and antioxidant indices of Hetian-chickens[J].Heilongjiang Animal Science and Veterinary Medicine,2023,(6):43-48.(in Chinese)
[29] DURAN E K,ADAY A W,COOK N R,et al.Triglyceride-rich lipoprotein cholesterol,small dense LDL cholesterol,and incident cardiovascular disease[J].J Am Coll Cardiol,2020,75(17):2122-2135.
[30] REN X J,YUAN P,NIU J X,et al.Effects of dietary supplementation with microencapsulated Galla chinensis tannins on growth performance,antioxidant capacity,and lipid metabolism of young broiler chickens[J].Front Vet Sci,2023,10:1259142.
[31] 邱玉梅,廖利瓊,劉 洋,等.維生素D在妊娠期肝內(nèi)膽汁淤積癥患者血清和臍帶血的水平及其與總膽汁酸的相關(guān)性研究[J].新醫(yī)學(xué),2023,54(11):815-820.
QIU Y M,LIAO L Q,LIU Y,et al.Vitamin D levels in serum and umbilical cord blood and its correlation with total bile acids in patients with intrahepatic cholestasis of pregnancy[J].Journal of New Medicine,2023,54(11):815-820.(in Chinese)
[32] CHOI Y M,NAM K W,CHOE J H,et al.Growth,carcass,fiber type,and meat quality characteristics in Large White pigs with different live weights[J].Livest Sci,2013,155(1):123-129.
[33] 劉露露,宋 陽,蘇丁丁.豬肌纖維發(fā)育及其對肉品質(zhì)的影響[J].湖南畜牧獸醫(yī),2017(2):36-38.
LIU L L,SONG Y,SU D D.Muscle fiber development in pigs and its impact on meat quality[J].Hunan Journal of Animal Science amp; Veterinary Medicine,2017(2):36-38.(in Chinese)
[34] 姜 雪,文成華,婁安鋼.長白山野雜豬和商品豬骨骼肌組織學(xué)特性的比較研究[J].當(dāng)代畜禽養(yǎng)殖業(yè),2019(3):10-11.
JIANG X,WEN C H,LOU A G.Comparative study on the skeletal muscle histological characteristics of Changbai mountain wild pigs and commercial pigs[J].Modern Animal Husbandry,2019(3):10-11.(in Chinese)
[35] YU J Y,ZHENG C B,GUO Q P,et al.LPS-related muscle loss is associated with the alteration of Bacteroidetes abundance,systemic inflammation,and mitochondrial morphology in a weaned piglet model[J].Sci China Life Sci,2024,67(9):1970-1988.
[36] 楊培歌,馮躍進(jìn),郝 月,等.持續(xù)高溫應(yīng)激對肥育豬生產(chǎn)性能、胴體性狀、背最長肌營養(yǎng)物質(zhì)含量及肌纖維特性的影響[J].動(dòng)物營養(yǎng)學(xué)報(bào),2014,26(9):2503-2512.
YANG P G,F(xiàn)ENG Y J,HAO Y,et al.Effects of constant heat stress on performance,carcass traits,nutrition content and myofiber characteristics of longissimus Dorsi in finishing pigs[J].Chinese Journal of Animal Nutrition,2014,26(9):2503-2512.(in Chinese)
[37] 孫燕勇,付紹印,何小龍,等.肉用畜禽肌纖維發(fā)育特性[J].中國農(nóng)業(yè)大學(xué)學(xué)報(bào),2019,24(12):78-85.
SUN Y Y,F(xiàn)U S Y,HE X L,et al.Characteristics of the myofiber development of meat livestock and poultry[J].Journal of China Agricultural University,2019,24(12):78-85.(in Chinese)
[38] JIN L,SUN S M,RYU Y,et al.Gallic acid improves cardiac dysfunction and fibrosis in pressure overload-induced heart failure[J].Sci Rep,2018,8(1):9302.
[39] 楊 鵬,黃 濤,徐夢思.肌肉生長抑制素基因在重要經(jīng)濟(jì)動(dòng)物育種中的研究進(jìn)展[J].新疆農(nóng)墾科技,2023,46(5):61-64.
YANG P,HUANG T,XU M S.Research progress on myostatin gene in breeding of important economic animals[J].Xinjiang Farm Research of Science and Technology,2023,46(5):61-64.(in Chinese)
[40] 謝 菲,羅鈞秋,陳代文,等.低聚木糖對生長育肥豬生長性能、胴體性狀和肉品質(zhì)的影響[J].四川農(nóng)業(yè)大學(xué)學(xué)報(bào),2018,36(4):520-526.
XIE F,LUO J Q,CHEN D W,et al.Effects of dietary Xylo-oligosaccharide on growth performance,carcass characteristics and meat quality in growing-finishing pigs[J].Journal of Sichuan Agricultural University,2018,36(4):520-526.(in Chinese)
[41] ZHOU C L,LI J,TAN S L.Effect of L-lysine on the physicochemical properties of pork sausage[J].Food Sci Biotechnol,2014,23(3):775-780.
[42] 馮 艷,楊 琳,朱勇文,等.蛋氨酸調(diào)控動(dòng)物主要生理功能的機(jī)制[J].中國科學(xué):生命科學(xué),2019,49(3):228-237.
FENG Y,YANG L,ZHU Y W,et al.Methionine regulates the major physiological functions of animals[J].Scientia Sinica(Vitae),2019,49(3):228-237.(in Chinese)
[43] 王利劍,崔志杰,何流琴,等.斷奶仔豬血清氨基酸含量和生化參數(shù)對不同蛋白質(zhì)水平飼糧的動(dòng)態(tài)響應(yīng)[J].動(dòng)物營養(yǎng)學(xué)報(bào),2017,29(1):50-59.
WANG L J,CUI Z J,HE L Q,et al.Dynamic changes of serum amino acid content and biochemical parameters of weaned piglets in response to diet with different protein levels[J].Chinese Journal of Animal Nutrition,2017,29(1):50-59.(in Chinese)
[44] NEINAST M,MURASHIGE D,ARANY Z.Branched chain amino acids[J].Annu Rev Physiol,2019,81:139-164.
[45] BIFARI F,NISOLI E.Branched-chain amino acids differently modulate catabolic and anabolic states in mammals:a pharmacological point of view[J].Br J Pharmacol,2017,174(11):1366-1377.
[46] 田志梅,魯慧杰,鄧 盾,等.羅伊氏乳酸桿菌LR1對豬蛋白消化酶基因表達(dá)、肌肉抗氧化指標(biāo)及氨基酸組成的影響[J].中國畜牧獸醫(yī),2021,48(6):2045-2055.
TIAN Z M,LU H J,DENG D,et al.Effect of Lactobacillus reuteri 1 on the gene expression of protein digestion-related enzymes,antioxidant indexes and amino acids composition of muscle in pigs[J].China Animal Husbandry amp; Veterinary Medicine,2021,48(6):2045-2055.(in Chinese)
[47] 李富銀,杜光英,楊燕琴,等.白羽肉雞、茶花雞、茶花雞2號肌肉氨基酸含量比較分析[J].飼料研究,2023,46(9):103-108.
LI F Y,DU G Y,YANG Y Q,et al.Comparative analysis of amino acid content of muscle of White feather broiler,Chahua chicken and Chahua No.2 chicken[J].Feed Research,2023,46(9):103-108.(in Chinese)
(編輯 范子娟)