摘 要: 旨在明確卵泡抑素(follistatin,F(xiàn)ST)對(duì)豬卵巢顆粒細(xì)胞增殖、凋亡和激素分泌的影響,以期為探討FST在豬卵泡生長過程中發(fā)揮的作用提供科學(xué)依據(jù)。本研究以永生化豬卵巢顆粒細(xì)胞為試驗(yàn)材料,將細(xì)胞分為過表達(dá)對(duì)照組、過表達(dá)組、干擾對(duì)照組和干擾組共4個(gè)試驗(yàn)組,每個(gè)試驗(yàn)組設(shè)置3個(gè)重復(fù)孔,根據(jù)FST基因的mRNA序列構(gòu)建過表達(dá)質(zhì)粒和設(shè)計(jì)siRNA,通過將其轉(zhuǎn)染至顆粒細(xì)胞中,驗(yàn)證過表達(dá)及抑制效果。使用CCK-8和流式細(xì)胞法分析轉(zhuǎn)染24、48和72 h后顆粒細(xì)胞增殖及凋亡情況,ELISA法檢測細(xì)胞中雌二醇和孕酮含量變化,并進(jìn)一步利用RT-PCR和WB法分別檢測此過程中增殖、凋亡和激素合成相關(guān)基因的mRNA和蛋白表達(dá)水平。結(jié)果表明,構(gòu)建的過表達(dá)質(zhì)粒和siRNA可顯著改變細(xì)胞中FST的表達(dá)水平(Plt;0.01),且轉(zhuǎn)染至豬卵巢顆粒細(xì)胞后,F(xiàn)ST抑制細(xì)胞增殖,誘導(dǎo)細(xì)胞凋亡,并可顯著降低細(xì)胞中增殖凋亡相關(guān)基因FSHR、GDF9、BCL2、CDKN1B的mRNA(Plt;0.05)和蛋白表達(dá)水平(Plt;0.01)。而干擾FST后,卵巢顆粒細(xì)胞中雌二醇和孕酮的含量極顯著增加(Plt;0.01),且STAR、CYP11A1、CYP19A1、3β-HSD、17β-HSD等激素合成相關(guān)基因的mRNA和蛋白表達(dá)量同樣極顯著升高(Plt;0.01)。綜上所述,在豬卵巢顆粒細(xì)胞中,F(xiàn)ST基因表達(dá)水平的降低可有效促進(jìn)細(xì)胞的增殖及雌二醇和孕酮的分泌,這一作用發(fā)揮可能與上調(diào)增殖凋亡相關(guān)基因和激素合成限速酶的表達(dá)有關(guān)。
關(guān)鍵詞: FST;豬;顆粒細(xì)胞;增殖凋亡;雌二醇;孕酮
中圖分類號(hào):
S828.3"""" 文獻(xiàn)標(biāo)志碼:A"""" 文章編號(hào): 0366-6964(2025)03-1242-10
收稿日期:2024-09-24
基金項(xiàng)目:江西省農(nóng)業(yè)科學(xué)院基礎(chǔ)研究與人才培養(yǎng)項(xiàng)目(JXSNKYJCRC202217;JXSNKYJCRC202411);江西省自然科學(xué)基金項(xiàng)目(20202BAB205010)
作者簡介:劉晨龍(1988-),男,江西吉安人,副研究員,博士,主要從事畜禽遺傳育種研究, Tel:0791-82728433,E-mail: liuchenlong1204@163.com
*通信作者:周泉勇,主要從事生豬遺傳育種研究,E-mail:89629577@qq.com
Effect of FST on Proliferation, Apoptosis and Hormone Secretion of Porcine Ovarian Granulosa Cells
LIU" Chenlong "JI" Huayuan "LU" Dan3, WAN" Mingchun "HU" Yao "ZHOU" Quanyong1,2*
(1.Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science,
Nanchang 330200," China;" 2.Jiangxi Province Key Laboratory of Animal Green and Healthy
Breeding, Nanchang 330200," China; 3.Jiangxi Mucun Agriculture and Animal Husbandry
Technology Co., Ltd., Jiujiang 332438," China)
Abstract:" The purpose of this study was to clarify the effect of FST gene on proliferation, apoptosis, and hormone secretion of porcine ovarian granulosa cells, and provide scientific reference for investigating the role of FST gene in the development of pig follicles. In this study, immortalized porcine ovarian granulosa cells were used as experimental materials, the granulosa cells were divided into 4 groups with 3 replications per group that included overexpression negative control group, overexpression group, inhibition negative control group and inhibition group. The overexpression plasmid and siRNA of FST gene were designed and constructed according to the mRNA sequence, and transfected into porcine ovarian granulosa cells to verify the overexpression and inhibitory effects. The CCK-8 and flow cytometry were used to analyze granulosa cell proliferation and apoptosis after transfection for 24, 48 and 72 h, ELISA was used to detect estradiol and progesterone content in granulosa cell. Furthermore, RT-PCR and Western blot were used to detect mRNA and protein expression level of cell proliferation, apoptosis, and hormone synthesis related genes. The results showed that, the mRNA and protein expression level of FST gene were significantly changed by overexpression plasmid and siRNA (Plt;0.01); and FST gene could inhibit cell proliferation and induce cell apoptosis after transfecting overexpression plasmid and siRNA into porcine ovarian granulosa cells, and also significantly downregulated the mRNA (Plt;0.05) and protein (Plt;0.01) expression level of cell proliferation and apoptosis related genes FSHR, GDF9, BCL2 and CDKN1B. After interfering with FST expression, the estradiol and progesterone content in porcine ovarian granulosa cells were extremely significantly increased (Plt;0.01), and the mRNA and protein expression level of hormone synthesis related genes STAR, CYP11A1, CYP19A1, 3β-HSD, and 17β-HSD were also extremely significantly increased (Plt;0.01). In summary, in porcine ovarian granulosa cells, the decrease of FST gene expression level could accelerate cell proliferation, estradiol and progesterone secretion, and this function could be due to the upregulation of cell proliferation and apoptosis related genes and hormone synthesis rate limiting enzymes expression.
Keywords: FST; pig; granulosa cells; proliferation and apoptosis; estradiol; progesterone
*Corresponding author:ZHOU Quanyong, E-mail:89629577@qq.com
在母豬的繁殖過程中,卵泡發(fā)育是關(guān)鍵環(huán)節(jié)。卵泡的正常生長發(fā)育并最終排卵是母豬發(fā)情和受精的先決條件,且排卵數(shù)的多少直接影響著產(chǎn)仔數(shù)的高低。挖掘調(diào)控卵泡發(fā)育的關(guān)鍵因子,可為提高母豬總產(chǎn)仔數(shù)性能奠定研究基礎(chǔ),有著極為重要的意義。
顆粒細(xì)胞(granulosa cells,GC)是調(diào)控卵泡發(fā)育的關(guān)鍵細(xì)胞,其迅速增殖分化及分泌的類固醇激素直接影響著卵泡的發(fā)育[1-5]。卵泡抑素(follistatin,F(xiàn)ST)是卵泡顆粒細(xì)胞分泌的一種單鏈糖蛋白,可抑制促卵泡生成素的生物合成和分泌[6],還可通過卵巢旁分泌模式調(diào)控顆粒細(xì)胞的增殖凋亡[7]。研究顯示,F(xiàn)ST的表達(dá)伴隨著卵泡細(xì)胞的整個(gè)發(fā)育過程,并在卵泡發(fā)育過程中呈現(xiàn)一種動(dòng)態(tài)調(diào)節(jié)變化[8]。在小鼠中,特異性缺失顆粒細(xì)胞中FST會(huì)引起卵泡數(shù)量減少從而導(dǎo)致排卵和受精缺陷[9]。在水牛中,卵泡抑素可明顯提高卵母細(xì)胞的成熟度,促進(jìn)卵泡生長發(fā)育以及早期胚胎發(fā)育[10-11]。同時(shí),在牛卵丘-卵母細(xì)胞復(fù)合物的體外培養(yǎng)過程中,添加FST可顯著降低卵母細(xì)胞發(fā)育潛能[12]。這些結(jié)果提示,F(xiàn)ST可能是卵泡發(fā)育過程中的關(guān)鍵調(diào)節(jié)因子,且其表達(dá)量的變化與卵泡發(fā)育密切相關(guān)。在豬中,現(xiàn)已檢測發(fā)現(xiàn),伴隨著卵泡的生長發(fā)育過程,F(xiàn)ST基因表達(dá)水平顯著降低[13],且外源添加高濃度的FST會(huì)降低卵母細(xì)胞的成熟率[14]。團(tuán)隊(duì)前期研究同樣發(fā)現(xiàn),F(xiàn)ST在斷奶后5 d的修水杭豬和杜洛克豬卵巢組織中mRNA表達(dá)水平均顯著高于發(fā)情時(shí)期,且發(fā)情時(shí)期杜洛克豬卵巢組織中的mRNA表達(dá)量明顯高于修水杭豬[15]。顯然,在豬卵泡發(fā)育過程中,F(xiàn)ST的表達(dá)水平存在變化,且參與調(diào)控卵泡的生長發(fā)育成熟,但其具體功能及調(diào)節(jié)機(jī)制尚不清楚?;诖耍狙芯客ㄟ^設(shè)計(jì)FST基因的siRNA和構(gòu)建過表達(dá)質(zhì)粒,探討FST對(duì)豬顆粒細(xì)胞增殖、凋亡和類固醇激素生成的影響及其分子調(diào)控機(jī)制,以期為揭示FST在豬卵泡生長過程中發(fā)揮的功能提供重要數(shù)據(jù)。
1 材料與方法
1.1 試驗(yàn)材料
永生化豬卵巢顆粒細(xì)胞(ZNCO119)購自知恩生物科技有限公司,CCK8試劑盒(ABS50003)和細(xì)胞凋亡檢測試劑盒(AP101)來自上海愛必信科技有限公司,雌二醇(JEN-01)和孕酮(JEN-02)檢測試劑盒來自安徽巧伊生物科技有限公司,F(xiàn)ST抗體(DF4839)、CDKN1B抗體(25614-1-AP)、FSHR抗體(22665-1-AP)、GDF9抗體(A2739)、BCL2抗體(AF6139)等來自武漢三鷹生物技術(shù)有限公司。
1.2 siRNA合成和過表達(dá)質(zhì)粒構(gòu)建
從GenBank中調(diào)取豬FST基因mRNA序列(NM_001 003 662.1),分別設(shè)計(jì)3條siRNA,序列見表1。siRNA合成和過表達(dá)質(zhì)粒構(gòu)建委托通用生物股份有限公司進(jìn)行,其中構(gòu)建質(zhì)粒所用載體為pcDNA3.1(+),限制性內(nèi)切酶為Nhe I和Xho I。
1.3 細(xì)胞培養(yǎng)及轉(zhuǎn)染
復(fù)蘇豬卵巢顆粒細(xì)胞,將細(xì)胞培養(yǎng)在含1%雙抗和10% FBS的DMEM/F12完全培養(yǎng)基中,并以1×106個(gè)·孔-1分別將細(xì)胞接種到6孔板,待融合度至55%左右時(shí),參考Lipofectamine 2000說明書步驟分別進(jìn)行過表達(dá)質(zhì)粒和siRNA轉(zhuǎn)染。轉(zhuǎn)染過程中分別設(shè)置過表達(dá)對(duì)照組(OE-NC)、過表達(dá)組(OE)、干擾對(duì)照組(S1-NC)和干擾組(S3-440),每個(gè)組設(shè)置3個(gè)重復(fù)孔。質(zhì)粒轉(zhuǎn)染體系為每孔0.1 μg,siRNA轉(zhuǎn)染細(xì)胞的終濃度為100 nmol·L-1。
1.4 RT-PCR檢測基因mRNA表達(dá)水平
利用Trizol法提取細(xì)胞中的RNA,核酸測定儀檢測RNA質(zhì)量合格后進(jìn)行反轉(zhuǎn)錄,反轉(zhuǎn)錄程序按照全式金cDNA合成試劑盒說明書步驟進(jìn)行。利用Primer5.0設(shè)計(jì)引物,引物序列見表2。合成的引物試擴(kuò)增檢測合格后,進(jìn)行RT-PCR檢測,擴(kuò)增體系和擴(kuò)增程序參考周泉勇等[16]的方法進(jìn)行。擴(kuò)增結(jié)束后導(dǎo)出原始數(shù)據(jù)。
1.5 CCK-8檢測細(xì)胞增殖
于96孔板中接種細(xì)胞(1×104個(gè)·孔-1),每孔體積100 μL,試驗(yàn)分組及細(xì)胞轉(zhuǎn)染過程按方法“1.3”進(jìn)行,每組設(shè)置6個(gè)重復(fù)孔。在每組分別轉(zhuǎn)染培養(yǎng)24、48和72 h后,加入10 μL CCK-8試劑,隨后37 ℃下孵育2 h,在酶標(biāo)儀450 nm處測定吸光度值。
1.6 流式細(xì)胞法檢測細(xì)胞凋亡
按方法“1.3”進(jìn)行試驗(yàn)分組和轉(zhuǎn)染培養(yǎng)后,收集5×105個(gè)細(xì)胞,500 μL 1×BindingBuffer 重懸細(xì)胞,分別加入5 μL AnnexinV-FITC和10 μL PI混勻后室溫避光孵育5 min,然后用流式細(xì)胞儀上機(jī)檢測讀取數(shù)據(jù)。
1.7 Western blot檢測相關(guān)基因的蛋白表達(dá)
按方法“1.3”進(jìn)行試驗(yàn)分組和轉(zhuǎn)染培養(yǎng)后,每組細(xì)胞加入500 μL RIPA(含1 mmol·L-1 PMSF)冰上裂解細(xì)胞30 min,將樣品在4 ℃以12 000 r·min-1離心10 min,離心結(jié)束收集上清蛋白液。之后使用BCA蛋白濃度測定試劑盒檢測蛋白濃度,根據(jù)測定結(jié)果調(diào)整蛋白濃度并進(jìn)行變性處理。按每泳道約30 μg上樣量進(jìn)行SDS-PAGE電泳,冰浴條件下濕轉(zhuǎn)印至PVDF膜,隨后浸泡入封閉液中,室溫輕搖封閉2 h,與目標(biāo)抗體(1∶1 000稀釋)4 ℃冷藏室靜置過夜,在室溫條件下與羊抗兔IgG-HRP(1∶2 000稀釋)進(jìn)行1 h孵育,最后添加ECL顯色液進(jìn)行拍照。
1.8 ELISA檢測雌二醇和孕酮含量
按方法“1.3”進(jìn)行試驗(yàn)分組和轉(zhuǎn)染培養(yǎng)48 h后,收集細(xì)胞上清,分別按照雌二醇和孕酮試劑盒中說明書進(jìn)行激素含量檢測。
1.9 數(shù)據(jù)統(tǒng)計(jì)分析
所有數(shù)據(jù)均采用Excel 2023軟件匯總、統(tǒng)計(jì)和分析。其中,目的基因mRNA差異表達(dá)分析采用2-△△Ct法進(jìn)行,目的基因蛋白差異表達(dá)分析采用目的蛋白表達(dá)量/內(nèi)參蛋白表達(dá)量進(jìn)行。
2 結(jié) 果
2.1 轉(zhuǎn)染效果檢測分析
分別轉(zhuǎn)染過表達(dá)質(zhì)粒和siRNA至GC細(xì)胞,利用RT-PCR和WB檢測細(xì)胞中FST表達(dá)水平。結(jié)果顯示(圖1和圖2),轉(zhuǎn)染過表達(dá)質(zhì)粒后,GC細(xì)胞中FST基因mRNA和蛋白表達(dá)量極顯著升高(P<0.01),而轉(zhuǎn)染S2-199和S3-440后,GC細(xì)胞中FST基因mRNA和蛋白表達(dá)量極顯著降低(P<0.01)。結(jié)果表明,轉(zhuǎn)染過表達(dá)質(zhì)粒和S2-199、S3-440可有效改變豬GC細(xì)胞中FST的表達(dá)水平。
2.2 FST抑制GC細(xì)胞增殖
分別轉(zhuǎn)染過表達(dá)質(zhì)粒和siRNA至GC細(xì)胞,利用CCK-8檢測細(xì)胞增殖情況。結(jié)果顯示(圖3),轉(zhuǎn)染48和72 h后,過表達(dá)組GC細(xì)胞OD值顯著下"" 降(P<0.05),而siRNA組GC細(xì)胞OD值顯著上升(P<0.05)。結(jié)果表明,在豬GC細(xì)胞中,F(xiàn)ST基因的表達(dá)上升可抑制細(xì)胞增殖。
2.3 FST誘導(dǎo)GC細(xì)胞凋亡
分別轉(zhuǎn)染過表達(dá)質(zhì)粒和siRNA至GC細(xì)胞,利用流式細(xì)胞法檢測細(xì)胞凋亡情況。結(jié)果顯示(圖4),轉(zhuǎn)染72 h后,過表達(dá)組GC細(xì)胞的凋亡率極顯著升高(P<0.01),而siRNA組GC細(xì)胞的凋亡率極顯著降低(P<0.01)。結(jié)果表明,豬GC細(xì)胞中,F(xiàn)ST基因的表達(dá)上升可誘導(dǎo)細(xì)胞凋亡發(fā)生。
2.4 FST調(diào)控GC細(xì)胞中增殖凋亡基因表達(dá)水平變化
分別轉(zhuǎn)染過表達(dá)質(zhì)粒和siRNA至GC細(xì)胞,利用RT-PCR檢測增殖凋亡相關(guān)基因的表達(dá)。結(jié)果顯示(圖5),在過表達(dá)處理組中,F(xiàn)SHR、GDF9、BCL2和CDKN1B基因的mRNA表達(dá)量顯著降低(P<0.05),而在siRNA處理組中,F(xiàn)SHR、BCL2和CDKN1B基因的mRNA表達(dá)量顯著增加(P<0.05)。進(jìn)一步利用WB檢測mRNA差異表達(dá)基因?qū)?yīng)的蛋白表達(dá)水平。結(jié)果顯示(圖6),過表達(dá)組FSHR、GDF9、BCL2、CDKN1B基因的蛋白表達(dá)量極顯著降低(P<0.01),而siRNA組FSHR、GDF9、BCL2、CDKN1B基因的蛋白表達(dá)量極顯著升高(P<0.01)。結(jié)果表明,在豬GC細(xì)胞中,F(xiàn)ST表達(dá)上升可抑制FSHR、GDF9、BCL2"" 和CDKN1B基因的表達(dá)。
2.5 FST抑制GC細(xì)胞中雌二醇和孕激素分泌
分別轉(zhuǎn)染過表達(dá)質(zhì)粒和siRNA至GC細(xì)胞,利用ELISA檢測激素水平變化。結(jié)果顯示(圖7),過表達(dá)組雌二醇與孕酮的分泌水平極顯著降低(P<0.01),而siRNA組雌二醇與孕酮的分泌水平極顯著升高(P<0.01)。結(jié)果表明,在豬GC細(xì)胞中,F(xiàn)ST基因的表達(dá)上升可抑制雌二醇和孕酮的合成分泌。
2.6 FST調(diào)控GC細(xì)胞中激素合成相關(guān)基因表達(dá)水平變化
分別轉(zhuǎn)染過表達(dá)質(zhì)粒和siRNA至GC細(xì)胞,利用RT-PCR和WB檢測激素合成相關(guān)基因的表達(dá)。結(jié)果顯示(圖8),過表達(dá)組的STAR、CYP11A1、"" CYP19A1、3β-HSD和17β-HSD基因的mRNA和蛋白表達(dá)量均極顯著降低(P<0.01),而siRNA組的mRNA和蛋白表達(dá)量則極顯著升高(P<0.01)。結(jié)果表明,在豬GC細(xì)胞中,F(xiàn)ST表達(dá)上升可下調(diào)STAR、CYP11A1、CYP19A1、3β-HSD、17β-HSD基因的表達(dá)。
3 討 論
卵巢中顆粒細(xì)胞的迅速增殖可有效促進(jìn)卵泡的生長和發(fā)育,而顆粒細(xì)胞的凋亡發(fā)生,則會(huì)誘導(dǎo)卵泡閉鎖[17-19]。FST是促卵泡生成素的抑制劑,抑制其表達(dá)可顯著促進(jìn)卵巢卵泡顆粒細(xì)胞的增殖[20];此外,F(xiàn)ST亞型蛋白FST288的表達(dá)可導(dǎo)致小鼠胚胎期卵巢中顆粒細(xì)胞的增殖急劇下降,并顯著降低卵巢原始卵泡的百分比[21]。本試驗(yàn)通過CCK-8檢測同樣分析發(fā)現(xiàn),F(xiàn)ST可抑制豬卵巢顆粒細(xì)胞的增殖,與上述研究結(jié)果相吻合。為進(jìn)一步了解FST抑制顆粒細(xì)胞增殖的機(jī)制,本研究評(píng)估了FST基因表達(dá)量的變化對(duì)細(xì)胞增殖相關(guān)基因表達(dá)水平的影響。CDKN1B被稱為細(xì)胞周期抑制蛋白,是關(guān)鍵的細(xì)胞周期調(diào)節(jié)因子,其表達(dá)水平直接影響正常細(xì)胞周期的進(jìn)程[22-24]。本試驗(yàn)發(fā)現(xiàn),F(xiàn)ST基因過表達(dá)后,CDKN1B基因mRNA和蛋白的表達(dá)量均顯著下調(diào),表明FST基因可能通過抑制細(xì)胞周期蛋白的表達(dá)從而抑制豬顆粒細(xì)胞的增殖。BCL2是調(diào)控細(xì)胞凋亡過程的一個(gè)關(guān)鍵節(jié)點(diǎn)基因。BCL2的高水平表達(dá)可明顯抑制顆粒細(xì)胞的凋亡[25]。本試驗(yàn)中,過表達(dá)FST基因可誘導(dǎo)豬顆粒細(xì)胞凋亡的發(fā)生,且這一過程中,BCL2基因的表達(dá)水平發(fā)生極顯著下降。由此推測,F(xiàn)ST可經(jīng)由BCL2介導(dǎo)的信號(hào)通路誘導(dǎo)豬卵巢顆粒細(xì)胞凋亡發(fā)生,進(jìn)而影響卵泡的生長和發(fā)育。
顆粒細(xì)胞所分泌的雌二醇和孕酮是卵泡發(fā)育過程中的重要調(diào)節(jié)因子,其中雌二醇的作用在于促進(jìn)卵泡的發(fā)育,而孕酮?jiǎng)t起到抑制卵泡閉鎖的作用[26-29]。本研究結(jié)果表明,干擾FST基因表達(dá)可顯著提升豬顆粒細(xì)胞中雌二醇和孕酮的分泌,而過表達(dá)FST則抑制其分泌,這與他人在牛顆粒細(xì)胞中的研究結(jié)果相一致[30];提示FST可能通過參與調(diào)控卵巢顆粒細(xì)胞中雌激素與孕酮的合成來影響卵泡的生長發(fā)育。急性調(diào)節(jié)蛋白STAR和CYP11A1在顆粒細(xì)胞中被認(rèn)為是孕酮合成的主要限速酶[31-33]。而3β-HSD和17β-HSD在孕烯醇酮或脫氫表雄酮轉(zhuǎn)換為孕酮和雄烯二酮的過程中扮演著重要角色[34],且3β-HSD的表達(dá)量與卵泡液中孕酮的濃度呈正相關(guān)[35]。同時(shí),CYP19A1具有催化雄烯二酮和睪酮轉(zhuǎn)化為雌激素和雌酮的功能[36-37]。本研究發(fā)現(xiàn),豬顆粒細(xì)胞中FST表達(dá)量的變化會(huì)影響STAR、CYP11A1、CYP19A1、3β-HSD和17β-HSD等與雌激素和孕酮合成相關(guān)基因的表達(dá),且這種變化趨勢(shì)與細(xì)胞中雌二醇和孕酮含量的變化相一致。
顆粒細(xì)胞作為雌激素的靶細(xì)胞,其增殖和凋亡同時(shí)受雌激素水平的調(diào)控。雌激素水平的上升可有效刺激顆粒細(xì)胞的增殖,而雌激素的缺乏會(huì)導(dǎo)致顆粒細(xì)胞凋亡增加進(jìn)而發(fā)生卵泡閉鎖[27,30]。FSHR是促卵泡素(follicle stimulating hormone,F(xiàn)SH)特異性受體,是顆粒細(xì)胞的特異性標(biāo)記。FSH發(fā)揮作用需與顆粒細(xì)胞表面FSHR結(jié)合,從而促進(jìn)雌激素與孕酮的分泌及顆粒細(xì)胞的增殖[38]。GDF9是TGF-β超家族成員之一,參與調(diào)節(jié)顆粒細(xì)胞的增殖和凋亡,在與FSH共處理時(shí),能促進(jìn)FSH誘導(dǎo)的孕激素合成和STAR基因的表達(dá)上升[39-41]。本試驗(yàn)中,過表達(dá)FST后可顯著降低FSHR、GDF9的表達(dá)水平,提示FST可能通過抑制雌、孕激素合成通路中關(guān)鍵基因的表達(dá),從而影響豬顆粒細(xì)胞合成和分泌類固醇激素,并進(jìn)一步影響顆粒細(xì)胞的增殖和凋亡。
4 結(jié) 論
本研究結(jié)果表明,F(xiàn)ST基因可能通過影響細(xì)胞增殖凋亡基因CDKN1B、BCL2、FSHR和GDF9的表達(dá)來調(diào)控豬卵巢顆粒細(xì)胞的增殖凋亡;并可能通過改變激素合成相關(guān)基因STAR、CYP11A1、CYP19A1、3β-HSD和17β-HSD的表達(dá)來影響豬顆粒細(xì)胞雌二醇和孕酮的合成分泌。
參考文獻(xiàn)(References):
[1] GUPTA C,CHAPEKAR T,CHHABRA Y,et al.Differential response to sustained stimulation by hCG amp; LH on goat ovarian granulosa cells[J].Indian J Med Res,2012,135(3):331-340.
[2] MATSUDA F,INOUE N,MANABE N,et al.Follicular growth and atresia in mammalian ovaries:regulation by survival and death of granulosa cells[J].J Reprod Dev,2012,58(1):44-50.
[3] WANG L,CHEN Y R,WU S,et al.PIM2-mediated phosphorylation contributes to granulosa cell survival via resisting apoptosis during folliculogenesis[J].Clin Transl Med,2021,11(3):e359.
[4] ARCHILIA E C,BELLO C A P,BATALHA I M,et al.Effects of follicle-stimulating hormone,insulin-like growth factor 1,fibroblast growth factor 2,and fibroblast growth factor 9 on sirtuins expression and histone deacetylase activity in bovine granulosa cells[J].Theriogenology,2023,210:1-8.
[5] 宋浩然,馮肖藝,張培培,等.奶牛卵泡顆粒細(xì)胞在卵泡發(fā)育中的作用機(jī)制[J].畜牧獸醫(yī)學(xué)報(bào),2024,55(6):2313-2324.
SONG H R,F(xiàn)ENG X Y,ZHANG P P,et al.The mechanism of follicular granulosa cells in follicular development in dairy cows[J].Acta Veterinaria et Zootechnica Sinica,2024,55(6):2313-2324.(in Chinese)
[6] KIMURA F,BONOMI L M,SCHNEYER A L.Follistatin regulates germ cell nest breakdown and primordial follicle formation[J]. Endocrinology,2011,152(2):697-706.
[7] WOODRUFF T K,LYON R J,HANSEN S E,et al.Inhibin and activin locally regulate rat ovarian folliculogenesis[J]. Endocrinology,1990,127(6):3196-3205.
[8] PATEL O V,BETTEGOWDA A,IRELAND J J,et al.Functional genomics studies of oocyte competence:evidence that reduced transcript abundance for follistatin is associated with poor developmental competence of bovine oocytes[J].Reproduction, 2007,133(1):95-106.
[9] JORGEZ C J,KLYSIK M,JAMIN S P,et al.Granulosa cell-specific inactivation of follistatin causes female fertility defects[J].Mol Endocrinol,2004,18(4):953-967.
[10] LI D R,QIN G S,WEI Y M,et al.Immunisation against inhibin enhances follicular development,oocyte maturation and superovulatory response in water buffaloes[J].Reprod Fertil Dev,2011,23(6):788-797.
[11] WANG H X,CHEN W L,SHEN P L,et al.Follistatin (FST) is expressed in buffalo (Bubalus bubalis) ovarian follicles and promotes oocyte maturation and early embryonic development[J].Reprod Domest Anim,2023,58(12):1718-1731.
[12] SILVA C C,KNIGHT P G.Modulatory actions of activin-A and follistatin on the developmental competence of in vitro-matured bovine oocytes[J].Biol Reprod,1998,58(2):558-565.
[13] LI M D,DEPAOLO L V,F(xiàn)ORD J J.Expression of follistatin and inhibin/activin subunit genes in porcine follicles[J].Biol Reprod,1997,57(1):112-118.
[14] GUO Z,ISLAM M S,LIU D,et al.Differential effects of follistatin on porcine oocyte competence and cumulus cell gene expression in vitro[J].Reprod Domest Anim,2018,53(1):3-10.
[15] ZHOU Q Y,WAN M C,WEI Q P,et al.Expression,regulation,and functional characterization of FST gene in porcine granulosa cells[J].Anim Biotechnol,2016,27(4):295-302.
[16] 周泉勇,劉 敬,劉晨龍,等.DIRAS3誘導(dǎo)豬子宮內(nèi)膜上皮細(xì)胞自噬及對(duì)容受性相關(guān)基因表達(dá)的影響[J].江西農(nóng)業(yè)大學(xué)學(xué)報(bào),2023,45(1):169-178.
ZHOU Q Y,LIU J,LIU C L,et al.DIRAS3 induces autophagy in porcine endometrial epithelial cells and its effect on the expression of receptivity related genes[J].Acta Agriculturae Universitatis Jiangxiensis,2023,45(1):169-178.(in Chinese)
[17] 張 焱,張 華.哺乳動(dòng)物卵巢卵泡發(fā)育調(diào)控機(jī)制研究進(jìn)展[J].生理學(xué)報(bào),2020,72(1):63-74.
ZHANG Y,ZHANG H.Research advances in regulating mechanisms of mammalian ovarian folliculogenesis[J].Acta Physiologica Sinica,2020,72(1):63-74.(in Chinese)
[18] ZHANG X Y,YU T,GUO X Y,et al.Ufmylation regulates granulosa cell apoptosis via ER stress but not oxidative stress during goat follicular atresia[J].Theriogenology,2021,169:47-55.
[19] GAO Y Y,ZOU Y G,WU G J,et al.Oxidative stress and mitochondrial dysfunction of granulosa cells in polycystic ovarian syndrome[J].Front Med (Lausanne),2023,10:1193749.
[20] 凌英會(huì),朱 露,吳 昊,等.山羊FST慢病毒載體構(gòu)建及其對(duì)卵巢卵泡顆粒細(xì)胞增殖的影響[J].畜牧獸醫(yī)學(xué)報(bào),2019,50(9):1888-1896.
LING Y H,ZHU L,WU H,et al.Construction of goat FST lentivirus vectors and its effect on the proliferation of ovarian follicular granulosa cells[J].Acta Veterinaria et Zootechnica Sinica,2019,50(9):1888-1896.(in Chinese)
[21] WANG Z P,NIU W B,WANG Y J,et al.Follistatin288 regulates germ cell cyst breakdown and primordial follicle assembly in the mouse ovary[J].PLoS One,2015,10(6):e0129643.
[22] CAI H,XIANG Y B,QU S M,et al.Association of genetic polymorphisms in cell-cycle control genes and susceptibility to endometrial cancer among Chinese women[J].Am J Epidemiol,2011,173(11):1263-1271.
[23] WEI J,ZENG Y,YANG Q,et al.GAS5 suppresses cell proliferation,migration,and invasion via the miR-455-5p/CDKN1B axis in cutaneous squamous cell carcinoma[J].Crit Rev Eukaryot Gene Expr,2022,32(5):63-76.
[24] KIM H S,NOH Y K,MIN K W,et al.Low CDKN1B expression associated with reduced CD8+T lymphocytes predicts poor outcome in breast cancer in a machine learning analysis[J].J Pers Med,2023,14(1):30.
[25] 王雪峰,譚 峰,陳燕英,等.攜帶bcl-2基因慢病毒感染人原代卵巢顆粒細(xì)胞的凋亡[J].中國組織工程研究,2013,17(28):5209-5215.
WANG X F,TAN F,CHEN Y Y,et al.Apoptosis of human primary ovarian granulose cells infected with lentivirus carrying bcl-2 gene[J].Chinese Journal of Tissue Engineering Research,2013,17(28):5209-5215.(in Chinese)
[26] EMORI C,SUGIURA K.Role of oocyte-derived paracrine factors in follicular development[J].Anim Sci J,2014,85(6):627-633.
[27] HILKER R E,PAN B,ZHAN X S,et al.MicroRNA-21 enhances estradiol production by inhibiting WT1 expression in granulosa cells[J].J Mol Endocrinol,2021,68(1):11-22.
[28] BABAYEV E,XU M,SHEA L D,et al.Follicle isolation methods reveal plasticity of granulosa cell steroidogenic capacity during mouse in vitro follicle growth[J].Mol Hum Reprod,2022,28(10):gaac033.
[29] SHAO T,KE H N,LIU R,et al.Autophagy regulates differentiation of ovarian granulosa cells through degradation of WT1[J].Autophagy,2022,18(8):1864-1878.
[30] GLISTER C,TANNETTA D S,GROOME N P,et al.Interactions between follicle-stimulating hormone and growth factors in modulating secretion of steroids and inhibin-related peptides by nonluteinized bovine granulosa cells[J].Biol Reprod,2001,65(4): 1020-1028.
[31] JOHNSON A L,WOODS D C.Dynamics of avian ovarian follicle development:cellular mechanisms of granulosa cell differentiation[J].Gen Comp Endocrinol,2009,163(1-2):12-17.
[32] MOSA A,NEUNZIG J,GERBER A,et al.2β- and 16β-hydroxylase activity of CYP11A1 and direct stimulatory effect of estrogens on pregnenolone formation[J].J Steroid Biochem Mol Biol,2015,150:1-10.
[33] TUGAEVA K V,SLUCHANKO N N.Steroidogenic acute regulatory protein:Structure,functioning,and regulation[J]. Biochemistry (Mosc), 2019,84(Suppl 1):S233-S253.
[34] SGR "P,ANTINOZZI C,WASSON C W,et al.Sexual dimorphism in sex hormone metabolism in human skeletal muscle cells in response to different testosterone exposure[J].Biology (Basel),2024,13(10):796.
[35] DING Z Q,DUAN H W,GE W B,et al.Regulation of progesterone during follicular development by FSH and LH in sheep[J]. Anim Reprod,2022,19(2):e20220027.
[36] AN L P,MAEDA T,SAKAUE T,et al.Purification,molecular cloning and functional characterization of swine phosphatidylethanolamine-binding protein 4 from seminal plasma[J].Biochem Biophys Res Commun,2012,423(4):690-696.
[37] GHOSH D,EGBUTA C,KANYO J E,et al.Phosphorylation of human placental aromatase CYP19A1[J].Biochem J,2019, 476(21): 3313-3331.
[38] TANG X R,MA L Z,GUO S,et al.High doses of FSH induce autophagy in bovine ovarian granulosa cells via the AKT/mTOR pathway[J].Reprod Domest Anim,2021,56(2):324-332.
[39] CHEN H Y,LIU C,JIANG H,et al.Regulatory role of miRNA-375 in expression of BMP15/GDF9 receptors and its effect on proliferation and apoptosis of bovine cumulus cells[J].Cell Physiol Biochem,2017,41(2):439-450.
[40] TANAKA K,HAYASHI Y,TAKEHARA A,et al.Abnormal early folliculogenesis due to impeded pyruvate metabolism in mouse oocytes[J].Biol Reprod,2021,105(1):64-75.
[41] 楊 貞,江少如,陳小燕,等.經(jīng)后增殖方對(duì)控制性超促排卵大鼠卵巢GDF9分泌及顆粒細(xì)胞凋亡的影響[J].實(shí)用醫(yī)學(xué)雜志, 2024, 40(7):918-923.
YANG Z,JIANG S R,CHEN X Y,et al.Effect of Jinghou Zengzhi Granules on ovarian GDF9 secretion and granulosa cells apoptosis in controlled ovarian hyperstimulation rats[J].The Journal of Practical Medicine,2024,40(7):918-923.(in Chinese)
(編輯 郭云雁)