摘 要: 旨在了解長鏈非編碼RNA(lncRNA)調(diào)控骨骼肌發(fā)育和脂肪沉積的遺傳基礎(chǔ),以陸豐牛和雷瓊牛的半腱肌作為樣本進(jìn)行轉(zhuǎn)錄組分析,挖掘影響骨骼肌發(fā)育和脂肪沉積的關(guān)鍵lncRNA。本研究選用年齡為4個(gè)月齡,飼養(yǎng)狀況相同的雌性雷瓊牛和陸豐牛各4頭,提取半腱肌的RNA后進(jìn)行轉(zhuǎn)錄組測(cè)序,以Q<0.05為閾值篩選出差異基因,并進(jìn)行GO和KEGG富集分析、lncRNA-miRNA-mRNA調(diào)控網(wǎng)絡(luò)以及順式靶向調(diào)控網(wǎng)絡(luò)的構(gòu)建。最后通過RT-qPCR檢驗(yàn)差異基因的表達(dá)水平,驗(yàn)證測(cè)序結(jié)果的可靠性。結(jié)果顯示,以雷瓊牛作為對(duì)照組,差異表達(dá)的lncRNA有146個(gè),其中71個(gè)下調(diào),75個(gè)上調(diào),差異表達(dá)的mRNA有355個(gè),其中180個(gè)下調(diào),175個(gè)上調(diào),差異表達(dá)的miRNA有34個(gè),其中29個(gè)下調(diào),5個(gè)上調(diào)。對(duì)lncRNA進(jìn)行GO富集分析,結(jié)果顯示其主要富集在了鈣激活的鉀通道活性、肌動(dòng)球蛋白收縮環(huán)、蛋白激酶A調(diào)節(jié)亞基結(jié)合、肌球蛋白II復(fù)合物等,KEGG富集分析結(jié)果顯示,其主要富集在cGMP-PKG 信號(hào)通路、RNA轉(zhuǎn)運(yùn)、Gap連接、胰島素分泌等通路。根據(jù)lncRNA和mRNA的位置關(guān)系進(jìn)行順式靶向調(diào)控作用的預(yù)測(cè),篩選到了8個(gè)mRNA被7個(gè)lncRNA靶向調(diào)控,其中DKL1與肌肉發(fā)育相關(guān)。然后通過構(gòu)建ceRNA 調(diào)控網(wǎng)絡(luò),篩選出影響肌肉發(fā)育以及脂肪沉積的競(jìng)爭(zhēng)性調(diào)控子網(wǎng)絡(luò),其中篩選到與肌肉發(fā)育相關(guān)的基因有ELN和FBOX32,與脂肪沉積相關(guān)的基因有SLC27A6和FABP5。RT-qPCR結(jié)果顯示,9個(gè)差異表達(dá)基因的表達(dá)水平和轉(zhuǎn)錄組測(cè)序的表達(dá)趨勢(shì)一致,說明測(cè)序結(jié)果可靠。本研究發(fā)現(xiàn),雷瓊牛和陸豐牛半腱肌中差異表達(dá)的lncRNA、mRNA和 miRNA,并發(fā)現(xiàn)了一些差異lncRNA、mRNA和 miRNA可能存在的調(diào)控關(guān)系,對(duì)于揭示肌肉發(fā)育以及肌內(nèi)脂肪沉積的分子調(diào)控機(jī)制具有重要意義,也為提高華南黃牛的肉用性能提供理論基礎(chǔ)。
關(guān)鍵詞: 雷瓊牛;陸豐牛;半腱肌;lncRNA;RNA-Seq;肉質(zhì)
中圖分類號(hào):
S823.2"""" 文獻(xiàn)標(biāo)志碼:A"""" 文章編號(hào): 0366-6964(2025)03-1203-13
收稿日期:2024-10-10
基金項(xiàng)目:廣東省重點(diǎn)領(lǐng)域研發(fā)計(jì)劃(2022B0202110002)
作者簡(jiǎn)介:陳 瓊(2002-),女,河南許昌人,碩士,主要從事草食動(dòng)物的研究,E-mail:cq@stu.scau.edu.cn
*通信作者:孫寶麗,主要研究方向?yàn)閯?dòng)物健康養(yǎng)殖與安全生產(chǎn),營養(yǎng)與免疫,飼料資源開發(fā)利用,智慧養(yǎng)殖等,E-mail:baolisun@scau.edu.cn
lncRNA Expression Characteristics in Semitendinosus Muscle of Leiqiong Cattle and Lufeng
Cattle and Its ceRNA Network Analysis in Skeletal Muscle Development and Fat Deposition
CHEN" Qiong, MAO" Shuaixiang, WU" Longfei, YANG" Chuang, SUN" Baoli*
(College of Animal Science, South China Agricultural University, Guangzhou 510642, China)
Abstract:" The study aimed to understand the genetic basis of long non-coding RNA(lncRNA) regulating skeletal muscle development and fat deposition, the transcriptome analysis was performed on semitendinosus muscle of Lufeng and Leiqiong cattle to explore the lncRNAs that affect skeletal muscle development and fat deposition. In this study, 4 4-month-old female Leiqiong cattle and 4 4-month-old female Lufeng cattle with the same feeding condition were used to extract RNA from the semitendinosus muscle and then perform transcriptome sequencing to screen out differential genes with a threshold of Qlt;0.05, and to perform GO and KEGG enrichment analysis and construct lncRNA-miRNA-mRNA and homeopathic targeting regulatory network. Finally, the expression levels of the differential genes were examined by RT-qPCR to verify the reliability of the sequencing results. The results showed that, using Leiqiong cattle as the control group, there were 146 differentially expressed lncRNAs, of which 71 were down-regulated and 75 were up-regulated, 355 differentially expressed mRNAs, of which 180 were down-regulated and 175 were up-regulated, and 34 differentially expressed miRNAs, of which 29 were down-regulated and 5 were up-regulated. GO enrichment analysis of lncRNAs showed that they were mainly enriched in calcium-activated potassium channel activity, actomyosin contractile ring, protein kinase A regulatory subunit binding, myosin II complex, etc. KEGG enrichment analysis showed that they were mainly enriched in cGMP-PKG signaling pathway, RNA transport, Gap junction, insulin secretion and other pathways. The cis-targeted regulatory effects was predicted based on the positional relationship of lncRNAs and mRNAs, and 8 mRNAs were screened to be targeted and regulated by 7 lncRNAs, among which DKL1 was associated with muscle development. Then the competitive regulatory sub-networks affecting muscle development and fat deposition were screened by constructing ceRNA regulatory networks, in which ELN and FBOX32 were screened in relation to muscle development, and SLC27A6 and FABP5 were screened in relation to fat deposition. RT-qPCR results showed that the expression levels of the 9 differentially expressed genes were consistent with the expression trends of transcriptome sequencing, indicating that the sequencing results were reliable. In this study, differentially expressed lncRNAs, mRNAs and miRNAs were identified in the semitendinosus muscle of Leiqiong and Lufeng cattle, and the possible regulatory relationships of some differential lncRNAs, mRNAs and miRNAs were found, which are important for revealing the molecular regulatory mechanisms of muscle development and intramuscular fat deposition, and also provide a theoretical basis for improving meat quality of South China Yellow cattle.
Keywords: Leiqiong cattle; Lufeng cattle; semitendinosus muscle; lncRNA; RNA-Seq; meat quality
*Corresponding author:SUN Baoli, E-mail:baolisun@scau.edu.cn
中國已經(jīng)成為世界上最大的農(nóng)產(chǎn)品生產(chǎn)國和消費(fèi)國之一。隨著我國社會(huì)經(jīng)濟(jì)的快速發(fā)展和人民生活水平的提高,牛肉的消費(fèi)量大幅提升,但由于我國肉牛產(chǎn)業(yè)長期發(fā)展緩慢,導(dǎo)致生產(chǎn)和消費(fèi)之間的差距逐漸增大,牛肉產(chǎn)品長期處于供不應(yīng)求的狀態(tài),這使中國以牛肉消費(fèi)者的身份進(jìn)入國際市場(chǎng),并成為世界上最大的牛肉進(jìn)口國[1-2]。中國本土黃牛具有抗病、耐熱和適應(yīng)當(dāng)?shù)丨h(huán)境等遺傳優(yōu)勢(shì)[3],在我國的華南地區(qū)主要有雷瓊牛和陸豐牛為代表的黃牛品種[4],雷瓊牛主要產(chǎn)于廣東省雷州市,陸豐牛主要產(chǎn)于廣東省陸豐市,兩者都具有體型較小,耐熱性好,抗球蟲能力強(qiáng),耐粗飼等優(yōu)點(diǎn),經(jīng)過長期的馴化,這些牛已經(jīng)適應(yīng)了當(dāng)?shù)氐臐駸岘h(huán)境[5]。由于我國商品化牛肉起步較晚,地方肉牛品種的相關(guān)研究較少,本土黃牛肉用性能普遍較差。因此,本試驗(yàn)以雷瓊牛和陸豐牛為研究對(duì)象,采用轉(zhuǎn)錄組技術(shù)對(duì)雷瓊牛和陸豐牛的半腱肌進(jìn)行研究,以此來闡述骨骼肌生長發(fā)育的分子機(jī)制。
牛肉的肉質(zhì)性狀改良是畜牧業(yè)的一個(gè)重要研究方向,牛骨骼肌的發(fā)育直接影響牛肉的品質(zhì),研究肌肉生成過程中的調(diào)控因素對(duì)改善牛肉品質(zhì)具有重要意義。在肉牛生產(chǎn)中,動(dòng)物生長和肉質(zhì)具有重要的經(jīng)濟(jì)意義,肌肉的質(zhì)量可以通過肌肉纖維來反映,其直徑與嫩度呈負(fù)相關(guān)[6]。改變肌肉纖維生物活動(dòng)和遺傳選擇可能調(diào)節(jié)肉制品的質(zhì)量[7],骨骼肌生長發(fā)育與成肌細(xì)胞的增殖和分化密切相關(guān),在肌肉發(fā)育的分子調(diào)控過程中涉及多種信號(hào)通路的相互作用[8]以及非編碼基因的調(diào)控,長鏈非編碼RNA(lncRNA)是由RNA聚合酶Ⅱ/Ⅲ指導(dǎo)轉(zhuǎn)錄的一種長度大于200 bp的長鏈RNA,它廣泛存在于真核生物體內(nèi),不具有編碼功能蛋白的能力,以前因被稱為“垃圾核苷酸和轉(zhuǎn)錄噪音”而被忽視[9-10]。lncRNA的作用機(jī)制包括促進(jìn)或抑制轉(zhuǎn)錄,以及基因表達(dá)在轉(zhuǎn)錄后水平的調(diào)控[11],前者常見的例子為順式調(diào)控作用(cis),順式調(diào)控通常認(rèn)為是lncRNA位于同鏈mRNA的上游,可以通過誘導(dǎo)染色體重構(gòu)以及組蛋白修飾,或直接與轉(zhuǎn)錄元件結(jié)合,從而影響與其鄰近的蛋白編碼基因[12-14],后者常見的例子為miRNA的分子海綿作用,其中l(wèi)ncRNA通過阻止miRNA與其靶mRNA的相互作用來充當(dāng)競(jìng)爭(zhēng)性內(nèi)源RNA(ceRNA)[15]。
研究發(fā)現(xiàn),lncRNA在骨骼肌發(fā)育過程中扮演著關(guān)鍵的角色,例如lincMD1通過與miR-133和miR-135競(jìng)爭(zhēng)控制人和小鼠成肌細(xì)胞的分化,MAML1和MEF2C是激活肌肉細(xì)胞分化相關(guān)基因表達(dá)的重要轉(zhuǎn)錄因子,它們分別是miR-133和miR-135的靶基因[16-17]。高表達(dá)的YAP1基因是Hippo通路的下游基因,可以參與細(xì)胞增殖、凋亡和遷移,在骨骼肌中YAP1可以促進(jìn)成肌細(xì)胞和衛(wèi)星細(xì)胞的增殖[18-20]。miR-29a過表達(dá)會(huì)抑制原代骨骼肌細(xì)胞的增殖[21]。lncRNA CCTN-IT1通過競(jìng)爭(zhēng)性結(jié)合細(xì)胞中的miR-29a,降低miR-29a的游離濃度,從而解除其對(duì)YAP1的抑制作用[22]。
目前雖然有很多關(guān)于lncRNA調(diào)控肌肉的機(jī)制探究,但這些研究主要基于人類[23]和小鼠[24]等,其它動(dòng)物與肌肉發(fā)育相關(guān)的機(jī)制還存在較大的探索空間。在我國對(duì)于牛lncRNA調(diào)控肌肉發(fā)育的研究主要集中在北方地區(qū)的黃牛品種,而對(duì)于南方黃牛品種的相關(guān)研究較少。本研究主要利用轉(zhuǎn)錄組技術(shù)對(duì)雷瓊牛和陸豐牛的半腱肌進(jìn)行研究,構(gòu)建ceRNA競(jìng)爭(zhēng)性調(diào)控網(wǎng)絡(luò),篩選出可能導(dǎo)致肉質(zhì)性狀差異的功能基因,以期為華南黃牛肌肉發(fā)育的分子機(jī)制研究提供參考,為提高華南黃牛的肉用性能提供理論基礎(chǔ)。
1 材料與方法
1.1 試驗(yàn)動(dòng)物及樣本采集
本研究中選擇4月齡體重相近,雌性,飼養(yǎng)管理?xiàng)l件一致的雷瓊牛和陸豐牛各4頭。試驗(yàn)選取的8頭牛均來自廣東省梅州市保種廠,將其按照GB/T 19477—2018《畜禽屠宰操作規(guī)程 ?!分械牟僮髁鞒踢M(jìn)行屠宰,割取每頭牛左半胴體的半腱肌組織樣品放入凍存管中,之后迅速置于液氮中冷凍,樣品長期保存于-80 ℃冰箱內(nèi)。
1.2 RNA提取、cDNA文庫的制備與測(cè)序
根據(jù)制造商的說明使用Trizol(賽默飛世爾,上海,中國)試劑從樣品中提取總RNA,用Epicencen Ribo-ZeroTMrRNA Removal Kit(epicenter,美國)去除總RNA中的核糖體RNA,1%瓊脂糖凝膠電泳檢測(cè)RNA降解情況,確定無任何基因組DNA污染。RNA的總量及其完整性使用Agilent 2100生物分析儀和RNA 6000 Nano LabChip Kit(Agilent,Santa Clara,美國)測(cè)定,質(zhì)檢符合測(cè)試要求的樣品送至派森諾生物科技股份有限公司(上海),使用Illumina HiSeq 2500平臺(tái)進(jìn)行測(cè)序。每個(gè)樣品取1 μL總RNA用于文庫的構(gòu)建,根據(jù)NEB Next Ultuar Directional RNA library Prep Kit for Illumina(NEB,Ispawich,美國)說明書進(jìn)行150 bp雙末端測(cè)序。
Small RNA 測(cè)序需要單獨(dú)建庫,總RNA、質(zhì)控和lncRNA、mRNA一致,Small RNA建庫根據(jù)TruSeq Small RNA Sample Preparation Kits提供的方法進(jìn)行,添加接頭和索引序列后,使用PCR技術(shù)擴(kuò)增DNA片段,按照15%瓊脂糖凝膠分離片段,獲得目標(biāo)產(chǎn)物,質(zhì)檢合格的樣品,使用深度測(cè)序技術(shù),基于Illumina測(cè)序平臺(tái),對(duì)這些文庫進(jìn)行雙末端測(cè)序。
1.3 原始測(cè)序數(shù)據(jù)的質(zhì)量評(píng)估及轉(zhuǎn)錄本的組裝
使用Cutadapt對(duì)原始序列數(shù)據(jù)進(jìn)行質(zhì)量檢測(cè),去除接頭和低質(zhì)量讀數(shù)。過濾后的有效數(shù)據(jù)使用HiSAT2與Bos taurus參考基因組進(jìn)行比對(duì)。在獲得比較文件bam文件后,使用String Tie軟件對(duì)每個(gè)樣本中轉(zhuǎn)錄本的表達(dá)水平進(jìn)行統(tǒng)計(jì)并將其標(biāo)準(zhǔn)化為FPKM,與基因組上的讀數(shù)進(jìn)行比較。
1.4 lncRNA的篩選
過濾轉(zhuǎn)錄本組裝結(jié)果中有大量低表達(dá)的單外顯子轉(zhuǎn)錄本,選擇外顯子個(gè)數(shù)≥2,長度≥200 bp的轉(zhuǎn)錄本。通過Cuffcompare軟件篩選與數(shù)據(jù)庫注釋外顯子區(qū)域有重疊的轉(zhuǎn)錄本,將數(shù)據(jù)庫中與本次拼接轉(zhuǎn)錄本外顯子區(qū)域有重疊的lncRNA作為數(shù)據(jù)庫注釋lncRNA進(jìn)行后續(xù)的分析。使用PLEK、CNCI和Pfamscan三種軟件均判定為沒有編碼能力的轉(zhuǎn)錄本是高可信度的lncRNA。統(tǒng)計(jì)每個(gè)樣品中的lncRNA表達(dá)水平,然后采用FPKM對(duì)表達(dá)量進(jìn)行均一化。
1.5 差異表達(dá)分析以及富集分析
使用R語言DEseq軟件包對(duì)兩組基因表達(dá)量進(jìn)行差異表達(dá)分析,篩選出符合差異倍數(shù)log2 Fold Change>1,顯著性P<0.05的基因作為差異表達(dá)基因。
使用top GO進(jìn)行基因本體論富集分析,通過超幾何分布法對(duì)顯著富集的GO term進(jìn)行分析(顯著富集的標(biāo)準(zhǔn)為P<0.05),使用Cluster Profiler軟件進(jìn)行KEGG通路富集分析(顯著富集的標(biāo)準(zhǔn)為P<0.05),根據(jù)GO和KEGG富集分析結(jié)果及生物學(xué)意義,選擇目標(biāo)基因進(jìn)行后續(xù)研究。
1.6 lncRNA-miRNA-mRNA ceRNA 網(wǎng)絡(luò)構(gòu)建
使用miRanda和TargetScan對(duì)miRNA的靶基因進(jìn)行預(yù)測(cè),以斯皮爾曼相關(guān)系數(shù)大于0.8,P<0.05作為條件篩選,結(jié)果使用Cystoscape軟件(v3.9.1)進(jìn)行可視化處理。
1.7 lncRNAs的順式靶基因預(yù)測(cè)
lncRNA的順式靶基因調(diào)控取決于其附近的蛋白編碼基因,通常認(rèn)為位于其上、下游100 kb是其靶基因。
1.8 通過實(shí)時(shí)熒光定量PCR進(jìn)行RNA-Seq 驗(yàn)證
根據(jù)測(cè)序結(jié)果,lncRNA、miRNA和mRNA各取3個(gè)進(jìn)行表達(dá)量驗(yàn)證,以GAPDH作為lncRNA和mRNA的內(nèi)參,以U6作為miRNA的內(nèi)參,使用TaKaRa反轉(zhuǎn)錄試劑盒進(jìn)行反轉(zhuǎn)錄,采用2×Ultra SYBR Green qPCR Mix熒光定量試劑盒進(jìn)行基因表達(dá)量的檢測(cè)。RT-qPCR循環(huán)參數(shù)如下:95 ℃預(yù)變性10 min, 95 ℃循環(huán)40次, 每次5 s,60 ℃循環(huán) 20 s,每個(gè)試驗(yàn)采用3個(gè)生物學(xué)重復(fù)。采用 2-ΔΔCt 方法分析靶基因的相對(duì)表達(dá)。引物序列如表1所示。
2 結(jié) 果
2.1 RNA-Seq測(cè)序數(shù)據(jù)的質(zhì)量檢測(cè)
從肌肉組織RNA構(gòu)建了8個(gè)獨(dú)立的cDNA文庫,測(cè)序概況見表2。8個(gè)測(cè)序文庫共產(chǎn)生了919 511 356個(gè)原始數(shù)據(jù),經(jīng)過質(zhì)控后,留下了807 478 174個(gè)有效數(shù)據(jù),每個(gè)樣本的堿基識(shí)別準(zhǔn)確率在99.9%以上的堿基數(shù)量占總數(shù)的95.07%~95.51%,有效數(shù)據(jù)與參考基因組進(jìn)行了比對(duì),超過 96.84% 的數(shù)據(jù)被準(zhǔn)確比對(duì),匹配率高。其中約 2.73%~3.07% 的有效數(shù)據(jù)有多個(gè)匹配位置,96.93%~97.27% 具有單個(gè)匹配位置。以上數(shù)據(jù)說明測(cè)序結(jié)果質(zhì)量高,完全滿足后續(xù)分析。
2.2 lncRNA差異表達(dá)分析
通過DEseq分析篩選文庫中的DEGs,發(fā)現(xiàn)在雷瓊牛和陸豐牛半腱肌樣本中共測(cè)得3 909個(gè)lncRNA,與雷瓊牛組lncRNA相比,共有146條差異表達(dá)lncRNA,結(jié)果見圖1a,其中上調(diào)表達(dá)的 lncRNA有75個(gè),下調(diào)表達(dá)的lncRNA有71個(gè),如圖1b所示上調(diào)的lncRNA占總差異表達(dá)lncRNA總數(shù)的51.4%,下調(diào)的lncRNA占總差異lncRNA的48.6%。如圖1c所示聚類結(jié)果分析顯示差異基因的表達(dá)模式呈樣品分離狀態(tài)。
2.3 mRNA差異表達(dá)分析
為篩選影響肌肉品質(zhì)的關(guān)鍵基因,比較了雷瓊牛和陸豐牛半腱肌mRNA的表達(dá)情況,如圖2a火山圖結(jié)果顯示在兩個(gè)組中鑒定到了17 505個(gè)mRNA,其中差異表達(dá)mRNA的共有355個(gè),上調(diào)表達(dá)的mRNA有175個(gè),下調(diào)表達(dá)的mRNA有180個(gè),上調(diào)的mRNA占總差異表達(dá)的49.3%,下調(diào)的mRNA占總差異mRNA的50.7%。
2.4 miRNA差異表達(dá)分析
為了篩選影響肌肉品質(zhì)的潛在miRNA,本試驗(yàn)對(duì)雷瓊牛和陸豐牛的miRNA的轉(zhuǎn)錄本表達(dá)情況進(jìn)行了研究,如圖2b火山圖結(jié)果顯示在兩個(gè)組中鑒定到了627個(gè)miRNA,其中差異表達(dá)的miRNA有34個(gè),上調(diào)表達(dá)的miRNA有5個(gè),下調(diào)表達(dá)的miRNA有29個(gè),上調(diào)的miRNA占總差異表達(dá)的14.7%,下調(diào)的miRNA占總差異miRNA的85.3%。
2.5 差異表達(dá)lncRNA功能富集分析
為了更好的了解半腱肌中差異表達(dá)lncRNA的生物學(xué)功能,以順式調(diào)控關(guān)系預(yù)測(cè)了潛在靶點(diǎn)。在差異表達(dá)的lncRNA的上、下游尋找100 kb的蛋白質(zhì)編碼基因,對(duì)差異表達(dá)的123個(gè)lncRNA的靶基因進(jìn)行GO功能富集分析,發(fā)現(xiàn)差異表達(dá)的lncRNA的靶基因被富集到2 413個(gè)GO條目。對(duì)富集結(jié)果進(jìn)行差異顯著性富集分析,發(fā)現(xiàn)共有468個(gè)GO條目(P<0.05)被顯著富集,其中有351個(gè)GO條目為生物過程、42個(gè)為細(xì)胞組成、75個(gè)為分子功能。顯著性排序前20的條目如圖3a所示,主要包括鈣激活的鉀通道活性、肌動(dòng)球蛋白收縮環(huán)、蛋白激酶A調(diào)節(jié)亞基結(jié)合、肌球蛋白II復(fù)合物、平滑肌松弛、平滑肌收縮負(fù)調(diào)控、細(xì)胞過程正調(diào)控等,其中富集的主要基因?yàn)镵CNMA1、KCNQ1、LARGE1和MYH9。
對(duì)差異表達(dá)的123個(gè)lncRNA的靶基因進(jìn)行KEGG富集分析,共富集到了103個(gè)通路,其中有9個(gè)顯著富集的KEGG通路(P<0.05),KEGG富集分析排名前20的通路如3b圖所示,其中包括cGMP-PKG信號(hào)通路、RNA轉(zhuǎn)運(yùn)、Gap連接、胰島素分泌等。
2.6 lncRNA-miRNA-mRNA網(wǎng)絡(luò)以及順式靶向調(diào)控的構(gòu)建
為探究lncRNA通過海綿miRNA調(diào)節(jié)mRNA的機(jī)制,本研究根據(jù)差異表達(dá)的lncRNA、miRNA和mRNA的序列,分析其結(jié)合位點(diǎn)。最終根據(jù)“高表達(dá)lncRNA-低表達(dá)miRNA-高表達(dá)mRNA”(圖4a)和“低表達(dá)lncRNA-高表達(dá)miRNA-低表達(dá)mRNA”(圖4b)這兩種調(diào)控軸構(gòu)建ceRNA調(diào)控網(wǎng)絡(luò),兩個(gè)網(wǎng)絡(luò)中共包含99個(gè)lncRNA,126個(gè)差異表達(dá)mRNA和34個(gè)差異表達(dá)miRNA。
對(duì)預(yù)測(cè)到的順式靶向調(diào)控lncRNA與半腱肌樣本差異mRNA取交集,以預(yù)測(cè)可能受到lncRNA順式靶向的基因,預(yù)測(cè)到的順式靶向調(diào)控關(guān)系如圖4c所示,共篩選出8個(gè)差異表達(dá)mRNA,其中7個(gè)lncRNA通過順式靶向調(diào)控作用參與基因的調(diào)控。
2.7 目標(biāo)基因子網(wǎng)絡(luò)的構(gòu)建
經(jīng)過對(duì)ceRAN 網(wǎng)絡(luò)中的mRNA進(jìn)行GO和KEGG功能富集分析發(fā)現(xiàn),ELN和FBOX32主要與骨骼肌發(fā)育相關(guān),SLC27A6和FABP5主要和脂肪沉積有關(guān),主要影響肉品質(zhì)。39個(gè)lncRNA和2個(gè)miRNA調(diào)控ELN形成子網(wǎng)絡(luò)(圖5a),28個(gè)lncRNA和miR-411c-3p參與FBOX32的表達(dá)調(diào)控(圖5b),SLC27A6的表達(dá)受到37個(gè)lncRNA和1個(gè)miR的調(diào)控(圖5c),29個(gè)lncRNA調(diào)控miR-410,從而影響靶基因FABP5(圖5d)。
2.8 RT-qPCR驗(yàn)證RNA-Seq數(shù)據(jù)
為了驗(yàn)證RNA-Seq結(jié)果,對(duì)9個(gè)差異表達(dá)的lncRNA、miRNA和mRNA進(jìn)行RT-qPCR驗(yàn)證分析(圖6)。結(jié)果表明兩者的表達(dá)水平存在差異,但趨勢(shì)一致,說明測(cè)序結(jié)果可信。
3 討 論
作為一種新型的調(diào)節(jié)RNA,lncRNA是一種長度大于200 bp的ncRNA,也是ncRNA中的重要組成部分[25]。lncRNA主要通過調(diào)節(jié)轉(zhuǎn)錄和轉(zhuǎn)錄后過程在肌肉發(fā)育中發(fā)揮重要作用[26]。lncRNA在骨骼肌發(fā)育調(diào)節(jié)網(wǎng)絡(luò)中也發(fā)揮著重要的作用,其發(fā)揮作用主要通過順式[27]、反式和競(jìng)爭(zhēng)性內(nèi)源RNA來影響骨骼肌的增殖和分化。lncRNA還可通過修飾蛋白質(zhì)來影響肌肉的發(fā)育和萎縮[28]。
本研究結(jié)果發(fā)現(xiàn),雷瓊牛和陸豐牛半腱肌順式調(diào)控作用中有123個(gè)差異表達(dá)的lncRNA,通過GO富集分析發(fā)現(xiàn),KCNMA1、MYH9和LARGE1富集到與肌肉發(fā)育和萎縮相關(guān)的GO條目。KCNMA1基因編碼BK通道蛋白在骨骼肌中的表達(dá)[29],有研究表明,對(duì)KCNMA1基因進(jìn)行敲除后骨骼肌功能下降,骨骼肌纖維面積也下降[30],也有研究表明KCNMA1對(duì)糖尿病患者的肌肉生成至關(guān)重要[31]。目前,對(duì)于KCNMA1的研究主要是控制平滑肌張力和神經(jīng)元興奮性[32],最近的研究表明在肥胖癥中,KCNMA1有較高的表達(dá)水平[33-34]。此外,下調(diào)lncRNA肌肉樣1-反義RNA 1(lncRNA MBNL1-AS1,在小鼠骨骼肌細(xì)胞中過表達(dá))的表達(dá)可能通過上調(diào)KCNMA1的表達(dá)來促進(jìn)骨骼肌細(xì)胞的增殖和抑制細(xì)胞凋亡[35]。以上研究結(jié)果表明,KCNMA1可能成為肌肉發(fā)育性狀的候選基因。MYH9基因編碼Ⅱ類非肌肉肌球蛋白的重鏈[36],與肌動(dòng)蛋白相互作用并參與各種生物過程[37],在細(xì)胞黏附、遷移和分裂中起重要作用[38]。先前的研究結(jié)果表明,MYH9在骨骼肌的發(fā)育分化、維持平滑肌張力[39]以及足細(xì)胞骨架結(jié)構(gòu)和機(jī)械功能方面也發(fā)揮著重要的作用[40]。近期有研究表明,MYH9可以通過激活Wnt/β-連環(huán)蛋白信號(hào)傳導(dǎo)來促進(jìn)骨肉瘤和B細(xì)胞淋巴瘤的發(fā)生[41-42]。LARGE1是一種雙功能糖基轉(zhuǎn)移酶[43],其在維持適當(dāng)肌肉功能方面起著關(guān)鍵作用[44]。在骨骼肌分化和再生過程中,LARGE1在α-肌營養(yǎng)不良聚糖(α-DG)上合成并延伸基質(zhì)聚糖[45]。LARGE1基因突變會(huì)導(dǎo)致先天性肌肉萎縮癥[46]。以上研究結(jié)果表明,LARE1可能是骨骼肌生成調(diào)控過程中的關(guān)鍵候選基因?;贙EGG富集分析,其中被顯著富集的通路中與肌肉生成和發(fā)育相關(guān)的有Autophagy-animal。自噬是通過溶酶體分解細(xì)胞內(nèi)成分的過程,在維持和調(diào)節(jié)細(xì)胞穩(wěn)態(tài)方面起著重要作用[47]。許多研究表明,自噬在肌肉生長、萎縮、肥大、再生和運(yùn)動(dòng)過程中都發(fā)揮作用[48],自噬還可能起到清除受損蛋白質(zhì)和細(xì)胞器然后使肌纖維再生的作用[49],自噬溶酶體系統(tǒng)正逐漸成為在分解代謝條件下控制肌肉質(zhì)量的關(guān)鍵系統(tǒng)[48]。
在雷瓊牛和陸豐牛半腱肌差異表達(dá)的mRNA中,進(jìn)一步預(yù)測(cè)到了可受差異lncRNA順式調(diào)控的基因有8個(gè),其中與肌肉發(fā)育相關(guān)的基因是DLK1。DLK1是一種編碼蛋白的印記基因,其表達(dá)量增加與動(dòng)物模型中的肌肉肥大有關(guān)[50]。有相關(guān)研究表明,DLK1促進(jìn)肌肉細(xì)胞增殖、遷移、分化、多核融合和肌肉肥大[51],DLK1可能通過抑制Nothch信號(hào)通路來促進(jìn)肌肉的生長和發(fā)育[52]。也有相關(guān)研究表明,DLK1基因可能影響細(xì)胞中脂肪酸含量和脂質(zhì)代謝[53],所以DLK1可能是影響肉品質(zhì)以及骨骼肌生成過程的關(guān)鍵候選基因。本研究中發(fā)現(xiàn)的KCNMA1、MYH9、LARGE1以及DLK1基因位點(diǎn)分別位于MSTRG.15011.20、MSTRG.18394.2、MSTRG.18362.43以及MSTRG.11537.18的轉(zhuǎn)錄位點(diǎn)附近,這些lncRNA可能在肌肉的生長發(fā)育以及肉品質(zhì)的調(diào)控過程中發(fā)揮重要作用。
lncRNA還可以作為ceRNA或miRNA分子海綿,通過miRNA反應(yīng)元件與miRNA競(jìng)爭(zhēng),抑制miRNA的功能和活性,從而在轉(zhuǎn)錄后水平調(diào)節(jié)miRNA靶基因的表達(dá)[54]。通過構(gòu)建ceRNA調(diào)控網(wǎng)絡(luò),對(duì)調(diào)控網(wǎng)絡(luò)中的mRNA進(jìn)行富集分析后得到4個(gè)與肌肉發(fā)育和肉品質(zhì)相關(guān)的基因,其中ELN和FBOX32與肌肉發(fā)育相關(guān),SLC27A6和FABP5與脂肪沉積有關(guān)。miR-29c和miR-29b都可以誘導(dǎo)肌肉萎縮[55-56],lncRNA通過競(jìng)爭(zhēng)性結(jié)合miR-29c和miR-29b從而對(duì)ELN起到調(diào)控作用。FBOX32基因調(diào)節(jié)肌肉萎縮[57],lncRNA通過競(jìng)爭(zhēng)性結(jié)合miR-411c-3p,從而起到對(duì)FBOX32的調(diào)控作用。SLC27A6是溶質(zhì)載體家族的一員,參與長鏈脂肪酸跨質(zhì)膜的易位[58],
FABP5是脂肪酸結(jié)合蛋白,F(xiàn)ABP4參與牛的脂肪堆積[59],并且決定綿羊肉的嫩度,F(xiàn)ABP5和FABP4的作用相似。子網(wǎng)絡(luò)中的lncRNA分別通過競(jìng)爭(zhēng)性結(jié)合miR-2339和miR-410來調(diào)控SLC27A6和FABP5的表達(dá),SLC27A6和FABP5主要通過影響脂肪的合成和轉(zhuǎn)運(yùn)過程來影響肉的嫩度以及風(fēng)味。本研究主要通過順式靶向調(diào)控作用和構(gòu)建競(jìng)爭(zhēng)性調(diào)控網(wǎng)絡(luò)作用篩選出了對(duì)肌肉生成以及脂肪沉積相關(guān)的lncRNA和子網(wǎng)絡(luò)的構(gòu)建,表明了MSTRG.15011.20、MSTRG.18394.2、MSTRG.18362.43及MSTRG.11537.18等與肌肉的生成以及脂肪的沉積有關(guān)。
4 結(jié) 論
本試驗(yàn)以雷瓊牛和陸豐牛的半腱肌為研究對(duì)象,通過RNA測(cè)序技術(shù)鑒定了半腱肌中的lncRNA、mRNA和miRNA,進(jìn)行差異表達(dá)分析后得到了146個(gè)差異表達(dá)的lncRNA,355個(gè)差異表達(dá)的mRNA和34個(gè)差異表達(dá)的miRNA。為探究肌肉發(fā)育以及脂肪沉積的規(guī)律,進(jìn)一步對(duì)他們進(jìn)行了靶基因預(yù)測(cè)和靶向關(guān)系的分析,構(gòu)建了順式靶向調(diào)控作用和競(jìng)爭(zhēng)性調(diào)控網(wǎng)絡(luò),最終構(gòu)建了一個(gè)包含8個(gè)mRNA、7個(gè)lncRNA的順式靶向調(diào)控網(wǎng)絡(luò)和4個(gè)競(jìng)爭(zhēng)性調(diào)控子網(wǎng)絡(luò)。該結(jié)果為提高華南黃牛的肉用性能提供了理論基礎(chǔ),未來可對(duì)差異表達(dá)基因進(jìn)行功能驗(yàn)證,進(jìn)一步探索肌肉發(fā)育以及肌內(nèi)脂肪沉積的分子機(jī)制。
參考文獻(xiàn)(References):
[1] 馬曉萍,王明利.典型國家肉牛生產(chǎn)經(jīng)濟(jì)效率比較及對(duì)中國的啟示[J].西北農(nóng)林科技大學(xué)學(xué)報(bào):社會(huì)科學(xué)版,2023,23(1):138-152.
MA X P,WANG M L.Comparison of economic efficiency of beef cattle production in typical countries and its enlightenment to China[J].Journal of Northwest Aamp;F University:Social Science Edition,2023,23(1):138-152.(in Chinese)
[2] 吳東霖.基于多組學(xué)研究同期發(fā)情和全棉籽通過消化道微生物和脂質(zhì)代謝影響放牧西門塔爾母牛繁殖機(jī)能的機(jī)制[D].呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué),2024.
WU D L.Mechanistic study on the influence of estrus synchronization and whole cottonseed on reproductive functions in grazing Simmental cows through digestive tract microbiota and lipid metabolism based on multi-omics analysis[D].Hohhot:Inner Mongolia Agricultural University,2024.(in Chinese)
[3] 蔡 保,郭 憲.中國黃牛全基因組測(cè)序研究進(jìn)展[J].中國畜禽種業(yè),2024,20(10):17-30.
CAI B,GUO X.Research progress on whole genome sequencing of Chinese cattle[J].The Chinese Livestock and Poultry Breeding,2024,20(10):17-30.(in Chinese)
[4] LIU Y Q,XU L Y,YANG L,et al.Discovery of genomic characteristics and selection signatures in southern Chinese local cattle[J].Front Genet,2020,11:533052.
[5] LIU Y Q,ZHAO G Y,LIN X J,et al.Genomic inbreeding and runs of homozygosity analysis of indigenous cattle populations in southern China[J].PLoS One,2022,17(8):e0271718.
[6] 楊 闖,吳龍飛,柳廣斌,等.雷瓊牛與陸豐牛背最長肌lncRNA表達(dá)特點(diǎn)及其相關(guān)ceRNA網(wǎng)絡(luò)分析[J].畜牧獸醫(yī)學(xué)報(bào),2023,54(5):1951-1963.
YANG C,WU L F,LIU G B,et al.Expression profile and bioinformatics analysis of lncRNA and its associated ceRNA networks in Longissimus dorsi from Lufeng cattle and Leiqiong cattle[J].Acta Veterinaria et Zootechnica Sinica,2023,54(5):1951-1963.(in Chinese)
[7] MATARNEH S K,SILVA S L,GERRARD D E.New insights in muscle biology that alter meat quality[J].Annu Rev Anim Biosci,2021,9:355-377.
[8] ZHAO X Y,ZHU R S,WANG Y P,et al.Differentiation proliferative capacity of skeletal muscle satellite cells from Dapulian and Landrace pigs[J].Ital J Anim Sci,2020,19(1):574-585.
[9] LEE J,KANG H.Role of microRNAs and long non-coding RNAs in sarcopenia[J].Cells,2022,11(2):187.
[10] ZHANG H,WANG Y Y,LIU X M,et al.Progress of long noncoding RNAs in anti-tumor resistance[J].Pathol Res Pract,2020,216(11):153215.
[11] REESE M,DHAYAT S A.Small extracellular vesicle non-coding RNAs in pancreatic cancer:molecular mechanisms and clinical implications[J].J Hematol Oncol,2021,14(1):141.
[12] NTINI E,MARSICO A.Functional impacts of non-coding RNA processing on enhancer activity and target gene expression[J].J Mol Cell Biol,2019,11(10):868-879.
[13] GIL N,ULITSKY I.Regulation of gene expression by cis-acting long non-coding RNAs[J].Nat Rev Genet,2020,21(2):102-117.
[14] ZHOU H Y,SIMION V,PIERCE J B,et al.LncRNA-MAP3K4 regulates vascular inflammation through the p38 MAPK signaling pathway and cis-modulation of MAP3K4[J].FASEB J,2021,35(1):e21133.
[15] STATELLO L,GUO C J,CHEN L L,et al.Gene regulation by long non-coding RNAs and its biological functions[J].Nat Rev Mol Cell Biol,2021,22(2):96-118.
[16] 馬宇澤,郭保生,蔣 青.骨骼來源外泌體全身性調(diào)節(jié)作用的研究進(jìn)展[J].徐州醫(yī)科大學(xué)學(xué)報(bào),2023,43(5):379-384.
MA Y Z,GUO B S,JIANG Q.Research progress on the systemic regulatory effects of bone-derived exosomes[J].Journal of Xuzhou Medical University,2023,43(5):379-384.(in Chinese)
[17] 宋昀靜,田彥梅,孟 科,等.不同性別灘羊背最長肌中肌肉發(fā)育相關(guān)LncRNA的篩選及分析[J].華北農(nóng)學(xué)報(bào),2024,39(1):219-227.
SONG Y J,TIAN Y M,MENG K,et al.Screening and analysis of LncRNA related to muscle development in longissimus dorsi muscle of different sex Tan sheep[J].Acta Agriculturae Boreali-Sinica,2024,39(1):219-227.(in Chinese)
[18] HE M L,ZHANG W B,WANG S,et al.MicroRNA-181a regulates the proliferation and differentiation of Hu Sheep skeletal muscle satellite cells and targets the YAP1 gene[J].Genes (Basel),2022,13(3):520.
[19] WATT K I,JUDSON R,MEDLOW P,et al.Yap is a novel regulator of C2C12 myogenesis[J].Biochem Biophys Res Commun,2010,393(4):619-624.
[20] HE M L,ZHANG W B,WANG S,et al.Effects of YAP1 on proliferation and differentiation of Hu sheep skeletal muscle satellite cells in vitro[J].Anim Biotechnol,2023,34(7):2691-2700.
[21] ZHU Y,MA J F,PAN H M,et al.MiR-29a family as a key regulator of skeletal muscle dysplasia in a porcine model of intrauterine growth retardation[J].Biomolecules,2022,12(9):1193.
[22] WU T Y,WANG S H,WANG L H,et al.Long noncoding RNA (lncRNA) CTTN-IT1 elevates skeletal muscle satellite cell proliferation and differentiation by acting as ceRNA for YAP1 through absorbing miR-29a in Hu sheep[J].Front Genet,2020,11:843.
[23] 張 迪,劉 靜,劉蘭英,等.長鏈非編碼RNA在肌少-骨質(zhì)疏松癥中調(diào)控作用的展望[J].中國骨質(zhì)疏松雜志,2023,29(10):1555-1560.
ZHANG D,LIU J,LIU L Y,et al.Perspectives of the regulatory role of long-non-coding RNAs in osteosarcopenia[J].Chinese Journal of Osteoporosis,2023,29(10):1555-1560.(in Chinese)
[24] 杜夢(mèng)夢(mèng).長鏈非編碼RNA SYISL促進(jìn)肌肉萎縮的分子機(jī)制研究[D].武漢:華中農(nóng)業(yè)大學(xué),2023.
DU M M.Molecular mechanism of long non-coding RNA SYISL promoting muscle atrophy[D].Wuhan:Huazhong Agricultural University,2023.(in Chinese)
[25] SHI H M,HE Y,LI X Z,et al.Regulation of non-coding RNA in the growth and development of skeletal muscle in domestic chickens[J].Genes (Basel),2022,13(6):1033.
[26] LIU J,ZHOU Y,HU X,et al.Transcriptome analysis reveals the profile of long non-coding RNAs during chicken muscle development[J].Front Physiol,2021,12:660370.
[27] MA M T,CAI B L,JIANG L,et al.lncRNA-Six1 is a target of miR-1611 that Functions as a ceRNA to regulate Six1 protein expression and fiber type switching in chicken myogenesis[J].Cells,2018,7(12):243.
[28] LI R Y,LI B J,JIANG A W,et al.Exploring the lncRNAs related to skeletal muscle fiber types and meat quality traits in pigs[J].Genes (Basel),2020,11(8):883.
[29] CO EK F A,TOKG N O,et al.Expression pattern of BK channels on various oxidative stress conditions in skeletal muscle[J].Middle East J Sci,2022,8(1):46-55.
[30] HE C Y,LI X Y,WANG M L,et al.Deletion of BK channels decreased skeletal and cardiac muscle function but increased smooth muscle contraction in rats[J].Biochem Biophys Res Commun,2021,570:8-14.
[31] GAO S Y,LIU Y P,WEN R,et al.Kcnma1 is involved in mitochondrial homeostasis in diabetes-related skeletal muscle atrophy[J].FASEB J,2023,37(4):e22866.
[32] REN X F,GUAN Z,ZHAO X R,et al.Systematic selection signature analysis of Chinese gamecocks based on genomic and transcriptomic data[J].Int J Mol Sci,2023,24(6):5868.
[33] ZHOU Y C,ZHAO Y Y,ZHA L F,et al.KCNMA1 promotes obesity-related hypertension:integrated analysis based on genome-wide association studies[J].Genes Dis,2023,10(1):58-61.
[34] JIAO H,ARNER P,HOFFSTEDT J,et al.Genome wide association study identifies KCNMA1 contributing to human obesity[J].BMC Med Genomics,2011,4:51.
[35] LI X F,WANG Z Q,LI L Y,et al.Retraction note:downregulation of the long noncoding RNA MBNL1-AS1 protects sevoflurane-pretreated mice against ischemia-reperfusion injury by targeting KCNMA1[J].Exp Mol Med,2021,53(11):1819.
[36] PECCI A,MA X F,SAVOIA A,et al.MYH9:structure,functions and role of non-muscle myosin IIA in human disease[J].Gene,2018,664:152-167.
[37] AN Q M,DONG Y,CAO Y,et al.Myh9 plays an essential role in the survival and maintenance of hematopoietic stem/progenitor cells[J].Cells,2022,11(12):1865.
[38] WANG B,QI X L,LIU J,et al.MYH9 promotes growth and metastasis via activation of MAPK/AKT signaling in colorectal cancer[J].J Cancer,2019,10(4):874-884.
[39] VICENTE-MANZANARES M,MA X F,ADELSTEIN R S,et al.Non-muscle myosin II takes centre stage in cell adhesion and migration[J].Nat Rev Mol Cell Biol,2009,10(11):778-790.
[40] CONTI M A,ADELSTEIN R S.Nonmuscle myosin II moves in new directions[J].J Cell Sci,2008,121:11-18.
[41] ZHANG H W,LIU S Y,TANG L,et al.Long non-coding RNA (LncRNA) MRPL23-AS1 promotes tumor progression and carcinogenesis in osteosarcoma by activating Wnt/β-catenin signaling via inhibiting microRNA miR-30b and upregulating myosin heavy chain 9 (MYH9)[J].Bioengineered,2021,12(1):162-171.
[42] HU S F,REN S,CAI Y Q,et al.Glycoprotein PTGDS promotes tumorigenesis of diffuse large B-cell lymphoma by MYH9-mediated regulation of Wnt-β-catenin-STAT3 signaling[J].Cell Death Differ,2022,29(3):642-656.
[43] INAMORI K I,YOSHIDA-MORIGUCHI T,HARA Y,et al.Dystroglycan function requires xylosyl- and glucuronyltransferase activities of LARGE[J].Science,2012,335(6064):93-96.
[44] KATZ M,DISKIN R.Structural basis for matriglycan synthesis by the LARGE1 dual glycosyltransferase[J].PLoS One,2022,17(12):e0278713.
[45] WALIMBE A S,OKUMA H,JOSEPH S,et al.POMK regulates dystroglycan function via LARGE1-mediated elongation of matriglycan[J].Elife,2020,9:e61388.
[46] RIBEIRO JR A F,SOUZA L S,ALMEIDA C F,et al.Muscle satellite cells and impaired late stage regeneration in different murine models for muscular dystrophies[J].Sci Rep,2019,9(1):11842.
[47] ICHIMIYA T,YAMAKAWA T,HIRANO T,et al.Autophagy and autophagy-related diseases:a review[J].Int J Mol Sci,2020,21(23):8974.
[48] XIA Q H,HUANG X B,HUANG J R,et al.The role of autophagy in skeletal muscle diseases[J].Front Physiol,2021,12:638983.
[49] LEE D E,BAREJA A,BARTLETT D B,et al.Autophagy as a therapeutic target to enhance aged muscle regeneration[J].Cells,2019,8(2):183.
[50] WADDELL J N,ZHANG P J,WEN Y F,et al.Dlk1 is necessary for proper skeletal muscle development and regeneration[J].PLoS One,2010,5(11):e15055.
[51] FU Y,HAO X,SHANG P,et al.Functional identification of porcine DLK1 during muscle development[J].Animals (Basel),2022,12(12):1523.
[52] FALIX F A,ARONSON D C,LAMERS W H,et al.Possible roles of DLK1 in the Notch pathway during development and disease[J].Biochim Biophys Acta,2012,1822(6):988-995.
[53] WANG M Y,JIANG P,YU X,et al.Analysis of the bovine DLK1 gene polymorphism and its relation to lipid metabolism in Chinese Simmental[J].Animals (Basel),2020,10(6):923.
[54] HE H,WANG Y W,YE P,et al.Long noncoding RNA ZFPM2-AS1 acts as a miRNA sponge and promotes cell invasion through regulation of miR-139/GDF10 in hepatocellular carcinoma[J].J Exp Clin Cancer Res,2020,39(1):159.
[55] XIE K R,XIONG H R,XIAO W,et al.Downregulation of miR-29c promotes muscle wasting by modulating the activity of leukemia inhibitory factor in lung cancer cachexia[J].Cancer Cell Int,2021,21(1):627.
[56] LIU Q,CHEN L Y,LIANG X C,et al.Exercise attenuates angiotensinⅡ-induced muscle atrophy by targeting PPARγ/miR-29b[J].J Sport Health Sci,2022,11(6):696-707.
[57] BABAEE M,CHAMANI E,AHMADI R,et al.The expression levels of miRNAs- 27a and 23a in the peripheral blood mononuclear cells (PBMCs) and their correlation with FOXO1 and some inflammatory and anti-inflammatory cytokines in the patients with coronary artery disease (CAD)[J].Life Sci,2020,256:117898.
[58] LI B J,QIAO L Y,AN L X,et al.Transcriptome analysis of adipose tissues from two fat-tailed sheep breeds reveals key genes involved in fat deposition[J].BMC Genomics,2018,19(1):338.
[59] AVIL S C,POLVILLO O,PEA F,et al.Associations between DGAT1,F(xiàn)ABP4,LEP,RORC,and SCD1 gene polymorphisms and fat deposition in Spanish commercial beef[J].J Anim Sci,2013,91(10):4571-4577.
(編輯 郭云雁)