摘 要: 旨在鑒定豬CYP3A29基因核心啟動子及相應的轉錄調控因子,分析轉錄因子對CYP3A29啟動子活性的調控。本研究以3頭健康的大白母豬(30 kg)為試驗材料,利用PCR和Western blot檢測CYP3A29基因在豬各組織(心、肝、脾、肺、腎、小腸、肌肉)中的表達分布;構建不同片段長度的CYP3A29基因啟動子雙熒光素酶報告載體,轉染293T和AML12細胞系,檢測熒光素酶活性,確定CYP3A29基因的核心啟動子區(qū)域;利用Animal TFDB網站分析CYP3A29核心啟動子區(qū)域可能存在的轉錄調控因子,針對核心啟動子區(qū)域構建分段缺失雙熒光素酶報告載體,檢測熒光素酶活性大小,確定轉錄因子結合位點;構建轉錄因子結合突變位點的雙熒光素酶報告載體和轉錄因子shRNA載體,探討轉錄因子對CYP3A29核心啟動子的調控作用。結果顯示,CYP3A29基因在豬肝臟中表達量最高;CYP3A29啟動子4個不同檢測區(qū)域 (-2 026~+62 bp、-1 526~+62 bp、-1 026~+62 bp和-528~+62 bp)中-528~+62 bp活性最高,為CYP3A29核心啟動子區(qū);CYP3A29啟動子-528~-448 bp區(qū)域負向調控核心啟動子活性,且含有潛在的轉錄因子RUNX1結合位點;突變RUNX1結合位點可顯著降低-528~+62 bp啟動子的熒光素酶活性,而干擾RUNX1基因則顯著升高-528~+62 bp野生型啟動子的熒光素酶活性,但對-528~+62 bp突變型啟動子的熒光素酶活性無顯著影響,提示RUNX1轉錄因子可負向調控CYP3A29基因核心啟動子活性。本研究結果為進一步解析豬CYP3A29基因的轉錄調控機制奠定了基礎。
關鍵詞: 豬;CYP3A29;核心啟動子;RUNX1;轉錄調控
中圖分類號:
S828.2"""" 文獻標志碼:A"""" 文章編號: 0366-6964(2025)03-1147-12
收稿日期:2024-10-11
基金項目:國家自然科學基金(31872338);江蘇省種業(yè)振興“揭榜掛帥”項目(JBGS[2021]103)
作者簡介:王 紅(2000-),女,安徽宿州人,碩士生,主要從事豬分子遺傳育種研究,E-mail:2749363442@qq.com
*通信作者:方曉敏,主要從事豬分子遺傳育種研究,E-mail:fxmw2000@163.com;李惠俠,主要從事畜禽遺傳育種研究,E-mail:lihuixia@njau.edu.cn
Identification and Transcriptional Regulation Analysis of the Core Promoter of Porcine
CYP3A29 Gene
WANG" Hong "ZHAO" Weimin3, CHENG" Jinhua3, LI" Huixia2*, FANG" Xiaomin1*
(1.Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences,
Nanjing 210014," China; 2.College of Animal Science and Technology, Nanjing
Agricultural University, Nanjing 210095," China; 3.Institute of Animal Science,
Jiangsu Academy of Agricultural Sciences, Nanjing 210014," China)
Abstract:" The aim of this study was to identify the core promoter activity of porcine CYP3A29 gene and the corresponding transcriptional regulatory factors, and to analyze the regulation of CYP3A29 promoter activity by transcription factors. Three healthy Yorkshire sows (30 kg) were used as experimental materials to detect the expression and distribution of CYP3A29 gene in pig tissues (heart, liver, spleen, lung, kidney, small intestine and muscle) by PCR and Western blot. The dual luciferase reporter vectors of CYP3A29 gene promoter with different fragment lengths were constructed by PCR amplification and were transfected into 293T and AML12 cell lines. The core promoter region of CYP3A29 gene was determined by detecting luciferase activity. The animal TFDB website was used to analyze the possible transcription factor binding sites in the core promoter region of CYP3A29 gene and segmented deletion dual-luciferase reporter vectors of the core promoter region were constructed. The binding site region of the transcription factor was further determined by detecting the luciferase activity. The dual-luciferase reporter vectors with transcription factor binding mutation sites and shRNA vector for transcription factor were constructed, which were used to explore the role of transcription factors in the regulation of the CYP3A29 core promoter. The results showed that the expression of CYP3A29 gene was the highest in pig liver. The -528- +62 bp region of CYP3A29 promoter had the highest activity among the 4 different regions (-2 026-+62 bp, -1 526-+62 bp, -1 026- +62 bp and -528- +62 bp), and was considered to be the core promoter region. The -528- -448 bp region of CYP3A29 promoter negatively regulated the core promoter activity and contained a potential transcription factor binding site of RUNX1. The mutant RUNX1 binding site significantly reduced the luciferase activity of the -528- +62 bp promoter, while the interference of the RUNX1 gene significantly increased the luciferase activity of the -528- +62 bp wild-type promoter, but had no significant effect on the luciferase activity of the -528- +62 bp mutant promoter, indicating that RUNX1 negatively regulated the core promoter activity of the CYP3A29 gene. The results of this study laid a foundation for further analysis of the transcriptional regulation mechanism of CYP3A29 gene.
Keywords: porcine; CYP3A29; core promoter; RUNX1; transcription regulation
*Corresponding authors:FANG Xiaomin, E-mail:fxmw2000@163.com; LI Huixia, E-mail:lihuixia@njau.edu.cn
細胞色素P450(cytochrome P450 proteins,CYP450)是一類血紅蛋白偶聯(lián)單加氧酶超家族,在外源性化合物和內源性物質的代謝中起著極其重要的作用,是生物體內重要的藥物代謝酶[1-2]。CYP450主要包括CYP1、CYP2和CPY3三個亞家族,它們代謝了大約80%的臨床使用藥物[3]。在CYP450家族中,CYP3A4是肝腸系統(tǒng)中的主要亞型,由于其廣泛的底物特異性,CYP3A4負責50% 藥物的初級代謝[4-6],是最重要的藥物代謝酶之一。豬CYP3A29作為CYP3亞家族主要成員,占CYP450總蛋白的30%,其酶活性的微小變化可能會導致藥物療效和安全性的顯著變化[7]。研究表明,豬CYP3A29酶的性質與人CYP3A4相似,被認為是人CYP3A4的同工酶。因而,研究豬CYP3A29基因的轉錄調控有利于推動豬作為藥物代謝評估的重要動物模型[8-11]。
作為一種重要的藥物代謝酶,CYP3A29也參與其它細胞生理活動。有研究表明,在干擾素IFN-α與IFN-γ介導的抗病毒反應中,CYP3A29的表達顯著升高[12-13];CYP3A29還參與LPS介導的肝細胞炎癥反應[14]。本團隊的前期研究發(fā)現(xiàn),支原體誘導的豬體炎癥反應中CYP3A29基因表達也顯著增加,并受PXR因子調控[15-16]。此外CYP3A29的同工酶,人CYP3A4也參與免疫與炎癥反應[17-20]。以上研究均表明CYP3A29基因在病毒感染及炎癥過程中發(fā)揮著重要作用。
本研究通過對豬CYP3A29基因啟動子活性和轉錄因子調控進行分析,鑒定CYP3A29基因的核心啟動子,解析RUNX1因子對其的轉錄調控作用,結果為豬藥物代謝研究奠定基礎,同時也為臨床合理用藥提供理論指導。
1 材料與方法
1.1 試驗動物及主要試劑
試驗用大白豬源自江蘇省揚州市峰豪生態(tài)農業(yè)科技有限公司,選擇體重約30 kg的健康母豬3頭,屠宰后分別采取心、肝、脾、肺、腎、小腸、肌肉組織于液氮中保存?zhèn)溆谩?/p>
試驗用細胞及主要試劑:293T細胞、AML12細胞由本實驗室保存,Trans5a感受態(tài)菌株購自北京擎科生物科技有限公司;PCR擴增酶、T4連接酶、Nhe I和Hind III限制性內切酶購自TaKaRa公司;BsaⅠ內切酶購自NEB 公司;RNA提取試劑盒、cDNA反轉錄試劑盒、定量PCR試劑盒和DNA純化回收試劑盒購自諾唯贊生物科技股份有限公司;Western及IP細胞裂解液購自上海碧云天生物技術股份有限公司;雙熒光素酶報告基因檢測試劑盒、地塞米松和ITS胰島素、轉鐵蛋白和硒溶液購自翌圣生物科技(上海)股份有限公司;Lipofectamine2000購自Thermo Fisher公司;胎牛血清購于Biological Industries (BI)公司;無內霉毒素質粒試劑盒購于天根生化科技(北京)有限公司;DMEM培養(yǎng)基、DMEM/F12培養(yǎng)基、青鏈霉素和胰酶購自武漢博士德生物工程有限公司;CYP3A29抗體購自Proteintech公司(貨號:18227-1-AP);RUNX1抗體購自上海碧云天生物技術股份有限公司(貨號: AF7923);引物合成與DNA測序由南京擎科生物科技股份有限公司完成。
1.2 豬CYP3A29基因啟動子擴增及其熒光素酶報告載體構建
參照NCBI數(shù)據(jù)庫豬CYP3A29基因序列(登錄號: NM_214423.1),對CYP3A29起始密碼子上游約2 000 bp進行分段擴增,擴增片段分別為CYP3A29基因啟動子區(qū)-2 026~+62 bp、-1 526~+62 bp、-1 026~+62 bp和-528~+62 bp。
根據(jù)CYP3A29基因啟動子分段活性檢測結果及轉錄因子結合位點分布,進一步分段擴增CYP3A29核心啟動子活性區(qū)域(-528~+62 bp),擴增片段分別為-528~+62 bp、-448~+62 bp、-289~+62 bp和-96~+62 bp,具體引物序列見表1。其中,PGL-CYP3A29-promoter-R為PCR擴增反向引物。所有引物均由南京擎科生物科技股份有限公司合成。
PCR擴增體系如下:Primer STAR Max PreMix 25 μL,上、下游引物各1.25 μL,模板1 μL以及ddH2O 21.5 μL。反應程序:95 ℃ 1 min; 95 ℃ 10 s,60 ℃ 5 s,72 ℃ 30 s,30個循環(huán)。PCR產物經1%瓊脂糖凝膠電泳鑒定后,目的條帶純化回收。
上述分段擴增的啟動子片段回收后進行NheI和Hind III雙酶切,同時雙酶切PGL4.10質粒。將回收的啟動子擴增片段與雙酶切的PGL4.10質粒進行連接,然后轉化至感受態(tài)細胞DH5α,菌液PCR鑒定,將陽性克隆送至南京擎科生物科技股份有限公司測序,序列鑒別正確后提取無內毒素質粒。
1.3 細胞培養(yǎng)與轉染
293T細胞完全培養(yǎng)基為10%胎牛血清和1%青鏈霉素的DMEM培養(yǎng)基,AML12完全培養(yǎng)基為10%胎牛血清、1%青鏈霉素、1% ITS和40 ng·mL-1地塞米松的DMEM/F12培養(yǎng)基。細胞置于37 ℃、5% CO2中培養(yǎng),細胞密度達到90%時進行消化與傳代。
轉染前1 d鋪板,細胞密度為70%~80%時,按照Lipofectamine 3000說明書方法進行轉染。用EP管中的opti-MEM稀釋質粒和P3000TM充分混勻;另一個EP管中用opti-MEM稀釋Lipofectamine 3000,然后兩EP管充分混勻后室溫孵育15 min,滴加入細胞中繼續(xù)培養(yǎng)24 h。
1.4 啟動子生物學信息分析
Animal TFDB[21]網站預測豬CYP3A29基因啟動子(-528~+62 bp)區(qū)域的轉錄因子結合位點。
1.5 RUNX1基因shRNA設計及干擾載體構建
BLOCK-iTTM RNAi Designer(https://rnaidesigner.thermofisher.com/rnaiexpress/sort.do)網站設計轉錄因子RUNX1的shRNA,根據(jù)rank值選取評分最高的shRNA序列:GCAGAACTGAGAAATGCTACC。根據(jù)shRNA序列設計合成shRNA互補引物。
將RUNX1(ShRUNX1-F、ShRUNX1-R)和陰性對照(shNC-F、shNC-R)的shRNA互補引物(表2)進行退火(95 ℃ 5 min,72 ℃ 10 min,25 ℃ 1 min);BsaⅠ酶切pGL3-U6-sgRNA-PGK-Puromycin質粒后,與上述處理的shRNA互補引物分別進行連接,然后轉化感受態(tài)細胞DH5α和后續(xù)菌液PCR鑒定,將陽性克隆送至南京擎科生物科技股份有限公司測序,測序正確后提取無內毒素質粒。
1.6 Western blot
PBS清洗細胞2次,加入細胞裂解液,4 ℃放置30 min,用細胞刮刮取裂解物,4 ℃ 12 000 r·min-1 離心5 min 取上清即為總蛋白。蛋白加入5×loading buffer變性后進行SDS-PAGE電泳。結束后將蛋白轉印至PVDF膜,5%脫脂牛奶室溫封閉1 h,加入一抗4 ℃孵育過夜,次日TBST 清洗3次后加入二抗,室溫孵育1.5 h,然后TBST 清洗3次。將ECL發(fā)光液滴在PVDF膜后孵育1~3 min,置于化學發(fā)光儀中進行拍照。
1.7 數(shù)據(jù)分析
數(shù)據(jù)均以“平均值±標準誤差(SE)”表示。使用SPSS軟件進行單因素方差分析,不同字母代表差異顯著,Plt;0.05。
2 結 果
2.1 CYP3A29基因的組織表達分布
對試驗豬心、肝、脾、肺、腎、小腸、肌肉組織中CYP3A29基因的表達進行檢測,結果顯示,在核酸水平上,豬CYP3A29基因的mRNA在肝臟、小腸中呈現(xiàn)較高的表達水平,電泳條帶明顯(圖1A);而蛋白水平上,CYP3A29在豬肝臟中表達最高(圖1B)。
2.2 CYP3A29基因分段啟動子熒光素酶報告載體的構建
PCR擴增豬CYP3A29基因起始密碼子上游4個不同長度的啟動子區(qū)域片段(-2 026~+62 bp、-1 526~+62 bp、-1 026~+62 bp和-528~"" +62 bp)(圖2A),大小依次為2 088、1 588、1 088和590 bp,分別連接到pGL4.10熒光素酶報告載體;雙酶切上述4個載體后電泳檢測,結果均切出4.2 kb的pGL4.10骨架載體和相應2 088、1 588、1 088和590 bp的擴增片段(圖2B),表明載體構建成功。
2.3 CYP3A29基因核心啟動子的鑒定
將構建成功的CYP3A29基因啟動子真核表達載體pGL4.10-CYP3A29(-2 026~+62 bp)、pGL4.10-CYP3A29(-1 526~+62 bp)、pGL4.10-CYP3A29(-1 026~+62 bp)和pGL4.10-CYP3A29(-528~+62 bp)上述4個質粒分別轉染至293T細胞和AML12細胞,pRL-TK 質粒作為內參,培養(yǎng)24 h后檢測熒光素酶活性,并利用綠色熒光表達載體pEGFP-C1測試轉染效率。結果顯示,兩種細胞系的轉染效率均較高(圖3A);在兩種細胞系中,-528~+62 bp區(qū)域活性均最高,而-2 026~+62 bp活性均最低(圖3B-C)。
2.4 CYP3A29基因核心啟動子的分段活性分析
為進一步分析CYP3A29基因核心啟動子的轉錄調控,利用Animal TFDB網站預測CYP3A29基因核心啟動子-528~+62 bp區(qū)域的轉錄因子及其結合位點。根據(jù)轉錄因子結合位點分布情況,在非轉錄因子結合位點位置進一步對核心啟動子區(qū)域進行分段缺失,分別擴增-448~+62 bp、-289~+62 bp和-96~+62 bp片段,大小分別為510、351和158 bp(圖4A)。用上述擴增片段構建熒光素酶報告載體并進行雙酶切驗證,結果均切出4.2 kb的pGL4.10骨架載體和相應510、351和158 bp的擴增片段(圖4B)。將pGL4.10-CYP3A29(-528~+62 bp)、pGL4.10-CYP3A29(-448~+62 bp)、pGL4.10-CYP3A29(-289~+62 bp)和pGL4.10-CYP3A29(-96~+62 bp)質粒轉染至AML12細胞,24 h后檢測熒光素酶活性。結果顯示,刪除-528~-448 bp片段后,CYP3A29基因上游-448~+62 bp區(qū)域啟動子活性升高,
并且在上述檢測的4個不同區(qū)域啟動子中顯示出最高活性,而其它3個區(qū)域的啟動子活性差異不顯著(圖4C)。
2.5 CYP3A29核心啟動子的轉錄因子表達檢測
對CYP3A29基因啟動子-528~-448 bp區(qū)域進行分析,發(fā)現(xiàn)該區(qū)域存在Spi1、Spib和RUNX1三個轉錄因子結合位點。檢測3個轉錄因子在AML12細胞中的表達,同時利用小鼠組織檢測引物的可靠性,結果顯示Spi1在AML12細胞表達很低(圖5A),Spib幾乎檢測不到,而RUNX1表達水平較強(圖5B)。
2.6 RUNX1位點突變對CYP3A29核心啟動子活性的影響
為了驗證RUNX1是否參與CYP3A29核心啟動子的活性調控,試驗定點突變轉錄因子RUNX1結合位點(圖6A),使-528~-448 bp區(qū)域RUNX1結合位點GTGGTT序列變?yōu)锳GCAAG(圖6B),并構建了含有RUNX1突變型的pGL4.10-CYP3A29(-528~+62 bp)(RUNX1 Mut)熒光素酶報告載體。將RUNX1 野生型報告載體pGL4.10-CYP3A29(-528~+62 bp)(RUNX1 WT)和RUNX1 突變型報告載體pGL4.10-CYP3A29(-528~+62 bp)(RUNX1 Mut)轉染至AML12細胞,檢測相對熒光素酶活性。結果顯示-528~+62 bp(RUNX1 Mut)啟動子活性顯著高于-528~+62 bp(RUNX1 WT)(圖6C)。
2.7 RUNX1干擾對CYP3A29基因核心啟動子活性的影響
將sh-NC和sh-RUNX1載體分別轉染至AML12細胞,通過定量PCR和Western blot檢測干擾效率。定量PCR結果顯示,RUNX1干擾使RUNX1的mRNA水平顯著低于陰性對照(圖7A);Western blot結果顯示RUNX1干擾降低了其蛋白表達水平(圖7B)。將sh-NC和sh-RUNX1載體分別與pGL4.10-CYP3A29(-528~+62 bp)(RUNX1 WT)轉染AML12細胞,結果顯示降低RUNX1表達顯著提高了pGL4.10-CYP3A29(-528~+62 bp)(RUNX1 WT)啟動子活性(圖7C);將sh-NC和sh-RUNX1載體分別與pGL4.10-CYP3A29(-528~+62 bp)(RUNX1 Mut)轉染AML12細胞,結果顯示降低RUNX1表達對pGL4.10-CYP3A29(-528~+62 bp)(RUNX1 Mut)啟動子活性無顯著影響(圖7D)。
3 討 論
啟動子是啟動基因表達的重要調控元件,位于啟動子上的順式作用元件可以與相應的轉錄因子結合,增強或抑制啟動子活性,實現(xiàn)對基因表達的調控[22-24]。研究表明大多數(shù)基因的啟動子一般位于其轉錄起始上游2 000 bp左右[25-26],因此本研究克隆了豬CYP3A29基因起始密碼子上游約2 000 bp序列來探究其轉錄調控機制。
由于CYP3A29的組織表達譜顯示其蛋白在肝臟中的表達水平最高,我們選擇小鼠AML12肝細胞系來研究CYP3A29啟動子轉錄調控機制。同時293T細胞作為模式細胞,廣泛應用于基因啟動子的轉錄活性研究[27-30]以及互作蛋白研究[31-34],因此也同時用293T細胞來驗證CYP3A29的核心啟動子區(qū)域。啟動子分段缺失是研究啟動子功能常用的方法,本試驗首先以500 bp左右為間隔對CYP3A29基因啟動子進行分段缺失構建熒光素酶報告載體,以快速鑒定核心啟動子。結果顯示CYP3A29基因-528~+62 bp區(qū)域在AML12和293T細胞中均顯示出最高的轉錄活性,推測-528~+62 bp是CYP3A29基因的核心啟動子區(qū)。
為了進一步分析CYP3A29基因的核心啟動子區(qū)轉錄調控,根據(jù)Animal TFDB預測結果對其核心啟動子進行了精細缺失,結果顯示刪除-528~-448 bp片段,-448~+62 bp啟動子活性升高,并在4個不同長度的啟動子中顯示最高活性,表明-528~-448 bp 區(qū)域對CYP3A29基因核心啟動子的活性具有抑制作用。推測-528~-448 bp區(qū)域中可能存在抑制CYP3A29基因的核心啟動子活性的轉錄因子;進一步的分析發(fā)現(xiàn)CYP3A29基因-528~-448 bp區(qū)域存在3個轉錄因子,分別為Spi1、Spib和RUNX1。為了探究這3個轉錄因子與CYP3A29基因表達調控的關系,試驗首先檢測了Spi1、Spib和RUNX1轉錄因子在細胞中的表達情況,確定其發(fā)揮生物學功能的可能性,并以小鼠的組織為對照,驗證引物的可靠性。結果顯示,Spi1、Spib、RUNX1三個因子中,只有RUNX1在AML12細胞中具有較好的表達。RUNX1轉錄因子廣泛的分布于生物體內,參與生物體內造血、癌癥及炎癥反應[35-37]。已有研究表明,RUNX1蛋白的抑制結構域(RD)參與多種基因的轉錄抑制調控[38-40],是一種重要的轉錄抑制因子。結合本試驗研究結果,推測RUNX1轉錄因子可能參與CYP3A29核心啟動子的轉錄調控。
鑒于以上推測,試驗進一步對CYP3A29基因核心啟動子區(qū)RUNX1轉錄因子結合位點進行突變,并檢測CYP3A29啟動子活性。結果發(fā)現(xiàn)RUNX1結合位點突變型CYP3A29核心啟動子活性顯著高于野生型,預示位點突變影響RUNX1轉錄因子對CYP3A29啟動子活性的抑制作用。同時,為了驗證RUNX1轉錄因子對CYP3A29表達調控的抑制作用,本研究又對RUNX1進行抑制表達,檢測其對CYP3A29核心啟動子活性的影響。結果顯示,干擾RUNX1表達顯著提升了野生型CYP3A29啟動子活性,而對RUNX1突變型啟動子活性無顯著影響,該結果進一步證實了RUNX1轉錄因子通過與CYP3A29核心啟動子相應位點的結合,抑制CYP3A29啟動子活性,實現(xiàn)其對CYP3A29基因的轉錄調控。
4 結 論
本研究鑒定了豬CYP3A29基因的核心啟動子區(qū)位于轉錄起始上游-528~+62 bp,核心啟動子的-528~-448 bp區(qū)域對CYP3A29核心啟動子轉錄具有重要作用。鑒定了-528~-448 bp區(qū)域存在轉錄因子RUNX1,其通過RUNX1結合位點對CYP3A29基因核心啟動子的活性起到抑制作用。研究結果為深入探討豬CYP3A29基因的表達調控機制及生物學功能奠定了基礎。
參考文獻(References):
[1] ZHANG L Y,XU X Q,BADAWY S,et al.A review:effects of macrolides on CYP450 enzymes[J].Curr Drug Metab,2020,21(12):928-937.
[2] LIN S Q,WEI J C,YANG B T.Bioremediation of organic pollutants by white rot fungal cytochrome P450:the role and mechanism of CYP450 in biodegradation[J].Chemosphere,2022,301:134776.
[3] LOOS N H C,BEIJNEN J H,SCHINKEL A H.The mechanism-based inactivation of CYP3A4 by ritonavir:what mechanism?[J].Int J Mol Sci,2022,23(17):9866.
[4] LOLODI O,WANG Y M,WRIGHT W C,et al.Differential regulation of CYP3A4 and CYP3A5 and its implication in drug discovery[J].Curr Drug Metab,2017,18(12):1095-1105.
[5] ZANGER U M,SCHWAB M.Cytochrome P450 enzymes in drug metabolism:regulation of gene expression,enzyme activities,and impact of genetic variation[J].Pharmacol Ther,2013,138(1):103-141.
[6] WOODLAND C,HUANG T T,GRYZ E,et al.Expression,activity and regulation of CYP3A in human and rodent brain[J].Drug Metab Rev,2008,40(1):149-168.
[7] ACHOUR B,BARBER J,ROSTAMI-HODJEGAN A.Cytochrome P450 Pig liver pie:determination of individual cytochrome P450 isoform contents in microsomes from two pig livers using liquid chromatography in conjunction with mass spectrometry[J].Drug Metab Dispos,2011,39(11):2130-2134.
[8] HE Y C,ZHOU X Q,LI X W,et al.Relationship between CYP3A29 and pregnane X receptor in landrace pigs:pig CYP3A29 has a similar mechanism of regulation to human CYP3A4[J].Comp Biochem Physiol Part C Toxicol Pharmacol,2018,214:9-16.
[9] YAO M,DAI M H,LIU Z Y,et al.Comparison of the substrate kinetics of pig CYP3A29 with pig liver microsomes and human CYP3A4[J].Biosci Rep,2011,31(3):211-220.
[10] SOUCEK P,ZUBER R,ANZENBACHEROV E,et al.Minipig cytochrome P450 3A,2A and 2C enzymes have similar properties to human analogs[J].BMC Pharmacol,2001,1(1):11.
[11] ANZENBACHEROV E,BARANOV J,ZUBER R,et al.Model systems based on experimental animals for studies on drug metabolism in man:(mini)pig cytochromes P450 3A29 and 2E1[J].Basic Clin Pharmacol Toxicol,2005,96(3):244-245.
[12] LI X W,JIN X Q,ZHOU X L,et al.Pregnane X receptor is required for IFN-α-mediated CYP3A29 expression in pigs[J].Biochem Biophys Res Commun,2014,445(2):469-474.
[13] LI X W,HU X Z,JIN X E,et al.IFN-γ regulates cytochrome 3A29 through pregnane X receptor in pigs[J].Xenobiotica,2015,45(5):373-379.
[14] PASZTI-GERE E,MATIS G,F(xiàn)ARKAS O,et al.The effects of intestinal LPS exposure on inflammatory responses in a porcine enterohepatic co-culture system[J].Inflammation,2014,37(1):247-260.
[15] YANG X Y,XING F,WANG L,et al.Effect of pregnane X receptor on CYP3A29 expression in porcine alveolar macrophages during Mycoplasma hyopneumoniae infection[J].Animals (Basel),2021,11(2):349.
[16] 方曉敏,趙為民,付言峰,等.豬支原體肺炎發(fā)生的品種敏感差異及分子基礎[J].中國農業(yè)科學,2015,48(14):2839-2847.
FANG X M,ZHAO W M,F(xiàn)U Y F,et al.Difference in susceptibility to mycoplasma pneumonia among various pig breeds and its molecular genetic basis[J].Scientia Agricultura Sinica,2015,48(14):2839-2847.(in Chinese)
[17] JOVER R,BORT R,G MEZ-LECH N M J,et al.Down-regulation of human CYP3A4 by the inflammatory signal interleukin 6:molecular mechanism and transcription factors involved[J].FASEB J,2002,16(13):1799-1801.
[18] LE CARPENTIER E C,CANET E,MASSON D,et al.Impact of inflammation on midazolam metabolism in severe COVID-19 patients[J].Clin Pharmacol Ther,2022,112(5):1033-1039.
[19] KASARLA S S,GARIKAPATI V,KUMAR Y,et al.Interplay of vitamin D and CYP3A4 polymorphisms in endocrine disorders and cancer[J].Endocrinol Metab (Seoul),2022,37(3):392-407.
[20] HUA R,QIAO G J,CHEN G S,et al.Single-cell RNA-sequencing analysis of colonic lamina propria immune cells reveals the key immune cell-related genes of ulcerative colitis[J].J Inflamm Res,2023,16:5171-5188.
[21] SHEN W K,CHEN S Y,GAN Z Q,et al.AnimalTFDB 4.0:a comprehensive animal transcription factor database updated with variation and expression annotations[J].Nucleic Acids Res,2023,51(D1):D39-D45.
[22] PAN Z Y,YAO Y L,YIN H W,et al.Pig genome functional annotation enhances the biological interpretation of complex traits and human disease[J].Nat Commun,2021,12(1):5848.
[23] ZHAO Y X,HOU Y,XU Y Y,et al.A compendium and comparative epigenomics analysis of cis-regulatory elements in the pig genome[J].Nat Commun,2021,12(1):2217.
[24] LI J J,XIANG Y,ZHANG L,et al.Enhancer-promoter interaction maps provide insights into skeletal muscle-related traits in pig genome[J].BMC Biol,2022,20(1):136.
[25] QIN W P,PAN J P,QIN Y W,et al.Identification of functional glucocorticoid response elements in the mouse FoxO1 promoter[J].Biochem Biophys Res Commun,2014,450(2):979-983.
[26] ZHANG Y,ZHU F,TENG J,et al.Effects of salinity stress on methylation of the liver genome and complement gene in large yellow croaker (Larimichthys crocea)[J].Fish Shellfish Immunol,2022,129:207-220.
[27] ZHU M J,LV J H,WANG W,et al.CMPK2 is a host restriction factor that inhibits infection of multiple coronaviruses in a cell-intrinsic manner[J].PLoS Biol,2023,21(3):e3002039.
[28] WEI F X,GU Y,HE L Z,et al.HSD17B6 delays type 2 diabetes development via inhibiting SREBP activation[J].Metabolism,2023,145:155631.
[29] ZHU H F,ZHANG R Z,YI L,et al.UNC93B1 attenuates the cGAS-STING signaling pathway by targeting STING for autophagy-lysosome degradation[J].J Med Virol,2022,94(9):4490-4501.
[30] YANG M L,CAI W S,LIN Z H,et al.Intermittent hypoxia promotes TAM-induced glycolysis in laryngeal cancer cells via regulation of HK1 expression through activation of ZBTB10[J].Int J Mol Sci,2023,24(19):14808.
[31] CHENG M Y,KANYEMA M M,SUN Y,et al.African swine fever virus L83L negatively regulates the cGAS-STING-mediated IFN-I pathway by recruiting tollip to promote STING autophagic degradation[J].J Virol,2023,97(2):e01923-22.
[32] GUO X,ZHANG Z Y,LIN C H,et al.A/(H1N1) pdm09 NS1 promotes viral replication by enhancing autophagy through hijacking the IAV negative regulatory factor LRPPRC[J].Autophagy,2023,19(5):1533-1550.
[33] WU Y K,CHEN W J,MIAO H L,et al.SIRT7 promotes the proliferation and migration of anaplastic thyroid cancer cells by regulating the desuccinylation of KIF23[J].BMC Cancer,2024,24(1):210.
[34] ZHANG G H,LI D Y,TU C F,et al.Loss-of-function missense variant of AKAP4 induced male infertility through reduced interaction with QRICH2 during sperm flagella development[J].Hum Mol Genet,2021,31(2):219-231.
[35] CHEN Y Z,HE Y Y,LIU S B.RUNX1-regulated signaling pathways in ovarian cancer[J].Biomedicines,2023,11(9):2357.
[36] TANG X J,ZHONG L C,TIAN X,et al.RUNX1 promotes mitophagy and alleviates pulmonary inflammation during acute lung injury[J].Sig Transduct Target Ther,2023,8(1):288.
[37] ARIFFIN N S.RUNX1 as a novel molecular target for breast cancer[J].Clin Breast Cancer,2022,22(6):499-506.
[38] HONG D L,F(xiàn)RITZ A J,GORDON J A,et al.RUNX1-dependent mechanisms in biological control and dysregulation in cancer[J].J Cell Physiol,2019,234(6):8597-8609.
[39] REED-INDERBITZIN E,MORENO-MIRALLES I,VANDEN-EYNDEN S K,et al.RUNX1 associates with histone deacetylases and SUV39H1 to repress transcription[J].Oncogene,2006,25(42):5777-5786.
[40] TELFER J C,HEDBLOM E E,ANDERSON M K,et al.Localization of the domains in runx transcription factors required for the repression of CD4 in thymocytes[J].J Immunol,2004,172(7):4359-4370.
(編輯 郭云雁)