摘 要: 旨在檢測豫農(nóng)黑豬全基因組拷貝數(shù)變異(copy number variations,CNVs),鑒定豫農(nóng)黑豬生長相關(guān)性狀候選基因。本研究收集了豫農(nóng)黑豬2~5世代種群的生長相關(guān)性狀數(shù)據(jù)(包括體長、體高、胸圍、管圍、腿臀圍、背膘厚和眼肌深度),共807頭豬(母豬738頭,公豬69頭),體重范圍為95~105 kg。隨后采集該試驗(yàn)群體耳組織樣本利用中芯一號(hào)50K SNP芯片進(jìn)行基因分型,并使用PennCNV軟件對基因型數(shù)據(jù)進(jìn)行CNV檢測,通過重疊CNV融合法構(gòu)建拷貝數(shù)變異區(qū)域(copy number variable regions, CNVRs)圖譜。而后使用Plink軟件對生長相關(guān)性狀進(jìn)行CNV的全基因組關(guān)聯(lián)分析(genome-wide association study, GWAS)。結(jié)果,在18條常染色體上共鑒定到1 432個(gè)CNVs,合并為232個(gè)CNVRs,其中CNV大小范圍為2.7 kb至2.2 Mb,CNVR大小范圍為4.5 kb至2.2 Mb,共覆蓋56.4 Mb,占常染色體基因組的2.50%。通過GWAS分析,發(fā)現(xiàn)1個(gè)CNV在全基因組水平上與胸圍性狀顯著相關(guān),7個(gè)CNV在染色體水平上分別與胸圍、管圍和背膘厚性狀顯著相關(guān),胸圍性狀中顯著性最高的CNV也與管圍性狀顯著相關(guān)。其中,位于17號(hào)染色體上的CLDN23基因與背膘厚顯著相關(guān),推測其可能在肌肉發(fā)育或脂肪沉積中起重要調(diào)控作用。本研究結(jié)果為豫農(nóng)黑豬基因組CNV的功能提供新見解,并為進(jìn)一步分子標(biāo)記輔助選擇在豫農(nóng)黑豬新品種培育中提供了重要的理論支持。
關(guān)鍵詞: 豫農(nóng)黑豬;生長性狀;拷貝數(shù)變異;全基因組關(guān)聯(lián)性分析(GWAS)
中圖分類號(hào):
S828.2"""" 文獻(xiàn)標(biāo)志碼:A"""" 文章編號(hào): 0366-6964(2025)03-1110-10
收稿日期:2024-08-26
基金項(xiàng)目:國家重點(diǎn)研發(fā)計(jì)劃(2021YFD1301201);河南高等學(xué)校重點(diǎn)科研項(xiàng)目(23A230012;25CY014);河南省農(nóng)業(yè)良種聯(lián)合攻關(guān)項(xiàng)目(2022020101)
作者簡介:吳嘉浩(2001-),男,河南駐馬店人,碩士,主要從事動(dòng)物遺傳育種與繁殖研究,E-mail:m17630413022@163.com;吳姿儀(1999-),女,河南駐馬店人,碩士,主要從事動(dòng)物遺傳育種與繁殖研究,E-mail: W17746978907@163.com。吳嘉浩和吳姿儀為同等貢獻(xiàn)作者
*通信作者:李秀領(lǐng),主要從事豬遺傳育種研究,E-mail:xiulingli@henau.edu.cn
Genome-wide Association Study of Copy Number Variation in Growth-Related Traits of
Yunong-Black Pigs
WU" Jiahao "WU" Ziyi "DOU" Tengfei "BAI" Liyao1, ZHANG" Yongqian2,3, DONG" Lianhe2,3,
LI Pengfei2,3, LI Xinjian1,4, HAN Xuelei1, LI Xiuling1,2*
(1.College of Animal Science and Technology, Henan Agricultural University,
Zhengzhou 450046," China;
2.Henan Xun County Swine Science and Technology Courtyard,
Hebi 456285," China;
3.Henan Yifa Animal Husbandry Co., Ltd, Hebi 456285," China;
4.Hainan Academy of Agricultural Sciences, Sanya 572025," China)
Abstract: This study aimed to detect genome-wide copy number variations (CNVs) in Yunong-black pigs and identify candidate genes associated to growth-related traits in this breed. Growth-related traits were collected from 807 Yunong-black pigs (738 sows and 69 boars) across four generations (2rd-5th generation), with body weight range of 95 to 105 kg. The measured traits included body length (BL), body height (BH), chest circumference (CC), cannon bone circumference (CBC), legs buttocks circumference (LBC), backfat thickness (BF), and loin muscle depth (LMD). Ear tissue samples from the experimental population were genotyped using the \"Zhongxin-1\"50K SNP chip, and CNV detection was performed using PennCNV software. The CNV regions (CNVRs) were identified by merging overlapping CNVs and genome-wide association analysis (GWAS) was conducted using Plink software to examine associations between CNVs and growth-related traits. A total of 1 432 CNVs were identified on 18 autosomes and merged into 232 CNVRs. The CNVs ranged in size from 2.7 kb to 2.2 Mb, while CNVRs spanned from 4.5 kb to 2.2 Mb, covering 56.4 Mb or 2.50% of the autosomal genome. GWAS identified one CNV was associated with CC at the genome-wide significance level, and seven CNVs showed suggestive associated with CC, CBC and BF. The CNV most strongly associated with CC also showed a strong association with CBC. Additionally, the CLDN23 gene on SSC17 was significantly associated with BF, suggesting its potential role in regulating muscle development or fat deposition. This study provides new insights into the functional implications of CNVs in the Yunong-black pig, and offering valuable theoretical support for implement molecular marker-assisted selection in Yunong-black pigs breeding programs.
Keywords: Yunong-black pigs; growth traits; copy number variation; genome-wide association study(GWAS)
*Corresponding author:LI Xiuling, E-mail:xiulingli@henau.edu.cn
豬生長性狀能直觀反映豬的生長發(fā)育情況,是生豬養(yǎng)殖業(yè)的重要經(jīng)濟(jì)性狀。而豬的體尺性狀(如體長、體高、胸圍、管圍等)雖不作為主要目標(biāo)性狀納入育種目標(biāo),但其會(huì)間接影響其他重要經(jīng)濟(jì)性狀的選擇。生長性狀和體尺性狀都屬于中高遺傳力性狀,其遺傳機(jī)制復(fù)雜,由微效多基因調(diào)控[1-4]。因此,研究這些性狀的遺傳機(jī)制和挖掘候選基因,可為豬遺傳改良提供新的分子標(biāo)記,有助于豬生長和體尺性狀的遺傳解析。
近年來,隨著測序技術(shù)及分子生物學(xué)技術(shù)的不斷發(fā)展,全基因組拷貝數(shù)變異(copy number variations, CNVs)關(guān)聯(lián)研究在牛[5]、羊[6]、豬[7]等家畜中的得到廣泛應(yīng)用,并證實(shí)一些關(guān)聯(lián)CNV的基因或基因區(qū)域與家畜脂肪代謝[8]和繁殖[9]等密切相關(guān)。CNV是一種大小介于1 kb至數(shù)Mb不等的DNA片段的插入、缺失、重復(fù)等多位點(diǎn)變異,在基因組中廣泛分布且具有多態(tài)性和可遺傳性等特點(diǎn),是通過多種機(jī)制影響基因表達(dá)和表型產(chǎn)生的一種分子標(biāo)記,如基因結(jié)構(gòu)的改變和調(diào)控元件或多態(tài)性喪失,可能具有重要生物學(xué)意義[10-11]。CNV所覆蓋的核苷酸總數(shù)遠(yuǎn)超過單核苷酸多態(tài)性(single nucleotide polymorphism, SNP)的總數(shù),極大地豐富了基因組遺傳變異的多樣性[12-13]。近年來,CNV在不同豬群中的研究逐漸增多且各物種基因組信息不斷完善,對CNV的研究也從最開始的人類疾病到現(xiàn)在的動(dòng)植物的復(fù)雜性狀上。在豬的研究領(lǐng)域中,CNV的研究也有了一定的突破。
豬基因組中關(guān)于CNV的第一個(gè)記錄是由Fadista等[14]首次使用定制的aCGH芯片,鑒定到在杜洛克豬染色體(Sus scrofa chromosome,SSC)4、7、14和17上的共37個(gè)拷貝數(shù)變異區(qū)域。Ramayo-Caldas等[15]利用Porcine SNP 60K BeadChip對55頭伊比利亞豬與長白豬的雜交后代進(jìn)行基因分型,并運(yùn)用PennCNV、CnvPartition和GADA三個(gè)軟件分析雜交豬常染色體中的CNV,共鑒定到49個(gè)CNVR。此外,利用PennCNV軟件,Chen等[16]對來自18個(gè)不同種群的1 693頭豬的常染色體CNV進(jìn)行鑒定,共發(fā)現(xiàn)了565個(gè)CNV區(qū)域(CNV region, CNVR),占豬基因組的5.84%,并且識(shí)別出ANP32B、KIT和BSCL2等7個(gè)基因作為豬復(fù)雜性狀的潛在候選基因。
而后隨著鑒定到的CNVR數(shù)目越來越多,研究人員開始將鑒定到的CNV與特定的性狀結(jié)合分析。Wang等[17]對豬的CNVs與肉質(zhì)性狀進(jìn)行全基因組關(guān)聯(lián)分析9(genome-wide association study, GWAS),最終確定了8個(gè)CNVRs與至少一種肉質(zhì)性狀顯著相關(guān)。Qian等[18]使用CNVnator軟件對安慶六白豬和杜洛克豬的重測序數(shù)據(jù)進(jìn)行CNV分析,共發(fā)現(xiàn)881個(gè)CNVRs,并鑒定出DPF3、LEPR、MAP2K6、PPARA、TRAF6和NLRP4等基因與脂肪代謝、繁殖能力和抗逆性等性狀密切相關(guān)。Revilla等[19]基于二代測序數(shù)據(jù)對豬的CNVR進(jìn)行全基因組關(guān)聯(lián)分析,發(fā)現(xiàn)拷貝數(shù)變異區(qū)域CNVR 112 (GPAT2) 與生長性狀的遺傳變異有關(guān)。
豫農(nóng)黑豬是通過中國優(yōu)質(zhì)地方豬南陽黑豬、萊蕪豬、二花臉豬與外來品種杜洛克豬雜交的新品種,兼具繁殖力高、耐粗飼、抗病力強(qiáng)及肉質(zhì)優(yōu)良等特性[20-21]。為探究豫農(nóng)黑豬生長相關(guān)性狀拷貝數(shù)變異并篩選相關(guān)性候選基因,本研究對807頭豫農(nóng)黑豬的中芯一號(hào)50K SNP芯片進(jìn)行CNV檢測,并進(jìn)一步對豫農(nóng)黑豬生長相關(guān)性狀進(jìn)行CNV的全基因組關(guān)聯(lián)分析,鑒定與生長性狀相關(guān)基因的遺傳變異并確定候選基因,為豫農(nóng)黑豬的分子標(biāo)記育種提供理論支撐。
1 材料與方法
1.1 試驗(yàn)動(dòng)物
本研究中的試驗(yàn)動(dòng)物選自河南省誼發(fā)牧業(yè)責(zé)任有限公司豫農(nóng)黑豬育種場,共收集并采集了2~5 世代共807頭豫農(nóng)黑豬的資源種群信息和耳組織樣本,其中母豬738頭,公豬69頭,體重范圍為95~105 kg。
1.2 試驗(yàn)方法
在早晨時(shí)將空腹的豬只趕到電子籠稱重,待其平穩(wěn)后進(jìn)行性狀測定。根據(jù)Ogawa等[22]的描述對體長(body length, BL)、體高(body height, BH)、胸圍(chest circumference, CC)、管圍(cannon bone circumference, CBC)、腿臀圍(legs buttocks circumference, LBC)、背膘厚(backfat thickness, BF)和眼肌深度(loin muscle depth, LMD)等7個(gè)生長相關(guān)性狀的表型進(jìn)行測量。為了確定100 kg體重的BF,使用以下公式對原始數(shù)據(jù)進(jìn)行校正[23]:
BF=Measured backfat thickness+(100-Measured weight)×Measured backfat thickness(Measured weight+20)
將5 646條表型記錄進(jìn)行均值、標(biāo)準(zhǔn)差、最小值、最大值、變異系數(shù)的統(tǒng)計(jì),分析詳細(xì)描述見Wu等[24]的研究。
1.3 樣本DNA提取及基因分型
使用天根生化科技(北京)有限公司的組織基因組 DNA 試劑盒從 807 頭豫農(nóng)黑豬的耳組織樣本中提取基因組DNA,提取的DNA使用NanoDrop2000微量紫外分光光度計(jì)檢測樣本濃度及質(zhì)量。保留光吸收比(A260 nm/A280 nm)在1.8和2.0之間,濃度≥50 ng·μL-1的基因組DNA樣本。使用中芯一號(hào) 50K SNP芯片 (北京康普森生物技術(shù)有限公司,北京,中國)進(jìn)行全基因組芯片分型。
1.4 全基因組拷貝數(shù)變異檢測
使用PennCNV軟件[25]進(jìn)行個(gè)體CNV的檢測,該軟件是基因SNP芯片數(shù)據(jù)開發(fā)的Perl程序免費(fèi)軟件,適用于Illumina arrays、Affymetrix arrays以及其他高密度分型數(shù)據(jù)的CNV檢測。軟件運(yùn)用隱馬爾可夫模型(hidden markov model,HMM)算法進(jìn)行推斷。從Illumina BeadStudio軟件中導(dǎo)出log R比率(log R ratio,LRR)和B等位基因頻率(B allele frequency,BAF)信號(hào)強(qiáng)度數(shù)據(jù)。使用HMM模型的默認(rèn)參數(shù),通過整合LRR、BAF、群體等位基因頻率和SNP距離進(jìn)行CNV的檢測。
設(shè)置LRR的標(biāo)準(zhǔn)偏差(standard deviation,SD)小于0.30,BAF值小于0.01,基因組波動(dòng)因子(waviness factor value, WF)值小于0.05,檢測出的CNV必須包含3個(gè)或更多連續(xù)的SNP,以降低CNV檢測結(jié)果的假陽性率,最后在命令行中設(shè)置“-qcnumcnv 50”的參數(shù),將任何檢測出大于50個(gè)CNV的樣本視為低質(zhì)量樣本,將其剔除。最終,共641個(gè)樣本通過質(zhì)量控制標(biāo)準(zhǔn),用于后續(xù)的分析。
使用R包“HandyCNV”進(jìn)行CNV的合并[26],根據(jù)重疊區(qū)域超過1 bp的原則,合并全部有交集的CNV并利用R軟件構(gòu)建CNVR圖譜。每個(gè)CNVR在染色體的起始和終止位置作為圖譜各自染色體的起始和終止位置,分為3種狀態(tài):“Loss”、“Gain”和“Mixed”(Loss:缺失;Gain:重復(fù);Mixed:在CNVR中存在Gain和Loss類型)。
1.5 生長相關(guān)性狀拷貝數(shù)變異的全基因組關(guān)聯(lián)分析
使用Plink軟件進(jìn)行關(guān)聯(lián)分析,用于檢測所研究性狀的CNV與表型之間的關(guān)聯(lián),模型如下:
yc=Xb+e
其中 yc 是校正表型向量, b 是CNV的固定效應(yīng), X 是將表型與每一個(gè)CNV的固定效應(yīng)關(guān)聯(lián)的矩陣, e 是隨機(jī)殘差效應(yīng)向量。使用以下校正表型公式計(jì)算生長相關(guān)性狀:
yn=μ+CG+en
其中 yn 為第 n 個(gè)個(gè)體的表型值; μ 為均值; CG 為固定效應(yīng)(contemporary group),包括:性別、出生年份和季節(jié)和日齡(其中BF性狀不考慮日齡); en 為第 n 個(gè)個(gè)體的殘差,即校正后的表型值。
使用Bonferroni方法確定全基因組顯著性閾值(0.05/N),其中N代表CNV的數(shù)量。鑒于此嚴(yán)格的標(biāo)準(zhǔn),本研究使用更寬松的閾值來檢測染色體水平的顯著性(1/N)[27]。
利用Ensembl(http://asia.ensembl.org/index.html)數(shù)據(jù)庫對顯著CNV區(qū)域進(jìn)行基因注釋,之后通過GeneCards(https://www.genecards.org/)等數(shù)據(jù)庫查詢基因功能,使用PigQTLdb在2023年12月27日發(fā)布的第52版數(shù)據(jù)庫(https://www.animalgenome.org/QTLdb/release/52/),對基因組中先前確定的QTL進(jìn)行了評(píng)估[28]。
2 結(jié) 果
2.1 全基因組拷貝數(shù)變異與拷貝數(shù)變異區(qū)域檢測結(jié)果
使用PennCNV檢測了豫農(nóng)黑豬18個(gè)常染色體中的CNV,共發(fā)現(xiàn)了1 432個(gè)通過質(zhì)量控制的CNV(1 211個(gè)缺失、221個(gè)重復(fù))。這些CNV按照重疊區(qū)域大于1 bp的原則的方式識(shí)別并合并CNVR,共鑒定出232個(gè)CNVR,其中21個(gè)Gain,179個(gè)Loss,32個(gè)Mixed類型。本研究檢測的CNV的大小范圍為2.7 kb至2.2 Mb,Gain類型CNV在SSC17上檢測到的最多,為70個(gè),沒有在SSC18上檢測到Gain類型CNV。Loss類型CNV在SSC11上檢測到的最多,為167個(gè),在SSC18上檢測到的最少,為12個(gè)。而CNVR的大小范圍為4.5 kb至2.2 Mb(圖1)。
2.2 拷貝數(shù)變異區(qū)域圖譜
表1和圖2總結(jié)了不同染色體上CNVR的分布。其中SSC4上CNVR覆蓋率最高(4.5%),而SSC7中的CNVR覆蓋率最低(1.0%)。CNVR的數(shù)量從5個(gè)(SSC17)到23個(gè)(SSC13)分布不等。本研究檢測到的CNVR總大小為56.4 Mb,約占豬常染色體基因組的2.50%。其中,Loss類型占比77%,Gain類型占比9%,Mixed類型占比14%。
2.3 生長相關(guān)性狀拷貝數(shù)變異的全基因組關(guān)聯(lián)分析
為進(jìn)一步分析CNV在豫農(nóng)黑豬中的功能,本研究對7個(gè)生長相關(guān)性狀進(jìn)行了GWAS。其中,共確定了與生長相關(guān)性狀有關(guān)的1個(gè)全基因組(4.73×10-5)CNV和7個(gè)染色體水平(9.47×10-4)CNV(圖3)。其中,鑒定到的1個(gè)全基因組CNV與CC性狀相關(guān),另外7個(gè)染色體水平顯著的CNV分別與CC、CBC和BF性狀相關(guān)。候選區(qū)域在SSC1、3、11、15和17上。其中,在CC性狀中檢測到位于SSC1上1∶157232630-157498487的區(qū)域內(nèi)強(qiáng)相關(guān)的CNV,值得注意的是該CNV在CBC性狀中也表現(xiàn)顯著(表2)。而后對顯著CNV進(jìn)行基因注釋,僅在與BF相關(guān)的SSC17上0.32 Mb~0.69 Mb定位到一個(gè)編碼蛋白基因CLDN23,并在PigGTEx[29]平臺(tái)(https://piggtex.farmgtex.org/)上發(fā)現(xiàn)該基因與BF性狀顯著相關(guān)(圖4)。
3 討 論
GWAS在揭示影響復(fù)雜性狀的常見SNP方面取得了顯著的進(jìn)展[30],然而,大多數(shù)變異只能解釋小部分遺傳力,這種現(xiàn)象被稱為“遺傳力缺失”[31]。為此,CNV作為遺傳多樣性的重要來源,可能為解釋GWAS無法檢測到的遺傳變異提供新的途徑,增加了與復(fù)雜經(jīng)濟(jì)性狀相關(guān)的遺傳變異的識(shí)別,并闡明了不同畜禽中這些性狀的遺傳基礎(chǔ)[32-35]。
3.1 全基因組拷貝數(shù)變異檢測
本研究使用嚴(yán)格的篩選標(biāo)準(zhǔn)來減少假陽性結(jié)果,最終在豫農(nóng)黑豬的常染色體上鑒定到1 432個(gè)CNV。結(jié)果表明,CNV中Loss的數(shù)量遠(yuǎn)多于Gain的數(shù)量(1 211個(gè)Loss、221個(gè)Gain)。這與Chen等[16]使用Porcine SNP60 BeadChip進(jìn)行CNV檢測到大約1 149個(gè)Loss和964個(gè)Gain。同樣Shi等[36]利用Oula羊和Panou羊的重測序數(shù)據(jù)并通過CNVnator軟件在常染色體上檢測到1 788個(gè)Loss和1 232個(gè)Gain。而后本研究將所有的CNV合并,得到232個(gè)CNVR,約占豬常染色體基因組的2.50%。其中包括21個(gè)Gain、179個(gè)Loss、32個(gè)Mixed類型,這些CNVR的大小在4.5 kb至2.2 Mb之間。這個(gè)大小范圍與CGH陣列檢測的大小范圍(1.74~61.92 kb)有所不同,可能是由于豬的50K芯片中SNP的覆蓋率相對較低且分布不均勻所導(dǎo)致的[10]。
3.2 拷貝數(shù)變異基因功能注釋
為進(jìn)一步探究CNV與生長相關(guān)性狀之間的關(guān)系,本研究對豫農(nóng)黑豬進(jìn)行了基于CNV的GWAS,共確定了8個(gè)顯著CNV。在這些CNV中,發(fā)現(xiàn)了一些以前報(bào)道的與生長相關(guān)性狀有關(guān)的QTL(表2)。如在SSC1上與CBC和CC性狀顯著相關(guān)的CNV區(qū)域內(nèi),Ding等[37]在158.31~162.19 Mb范圍內(nèi)發(fā)現(xiàn)與BF性狀顯著相關(guān)的QTL。此外,Lee等[38]基于大白豬和梅山豬的雜交后代,分析并使用111個(gè)遺傳標(biāo)記進(jìn)行基因分型,發(fā)現(xiàn)在SSC1上142.36~168.36 Mb區(qū)域存在兩個(gè)QTL與豬后腿構(gòu)造密切相關(guān),會(huì)對CBC性狀發(fā)育產(chǎn)生影響。在SS11上,Cassady等[39]曾發(fā)現(xiàn)與乳頭數(shù)顯著相關(guān)的QTL,推測其可能在豬生長發(fā)育過程中對體長和體高起到調(diào)控作用,間接影響后代的生長性狀。在本研究中與CBC性狀相關(guān)的CNV區(qū)域內(nèi),Howard等[40]曾在SSC3的104.93~106.74 Mb區(qū)域內(nèi)發(fā)現(xiàn)與采食量顯著相關(guān)的QTL,而采食量又會(huì)影響諸如體高、體長等生長性狀。此外,在該顯著CNV區(qū)域Tribout等[41]和Cherel等[42]先后有研究表明,在96.79~113.64 Mb范圍內(nèi)存在與皮下脂肪沉積相關(guān)的QTL,可能對BF性狀產(chǎn)生影響。在SSC15上,與BF性狀顯著相關(guān)的CNV區(qū)域(99.97~135.44 Mb)內(nèi),Liu等[43]曾報(bào)道過與日增重有密切相關(guān)的QTL,而日增重會(huì)影響豬的脂肪沉積,進(jìn)而對豬體重產(chǎn)生影響。而在SSC17上,Won等[44]在該染色體0.44~13.25 Mb范圍內(nèi)報(bào)道過與肌內(nèi)脂肪含量高度相關(guān)的QTL,這可能影響B(tài)F性狀。
本研究對顯著CNV進(jìn)行基因注釋,并定位到與BF相關(guān)的編碼蛋白基因CLDN23。CLDN23通過不依賴鈣的細(xì)胞黏附活性,在細(xì)胞間隙的緊密連接特異性閉塞中起主要作用。通過PigGTEx[29]平臺(tái)對比基因在各組織中的表達(dá)量數(shù)據(jù),本研究觀察到該基因在脂肪組織中的表達(dá)量較低,這可能影響它對BF的調(diào)控。截至目前,在豬上對CLDN23的研究較少,主要集中在人類疾病上,例如結(jié)腸癌和皮膚屏障修復(fù)[45-47]。本研究對脂肪沉積的影響提供了新的見解,為進(jìn)一步的遺傳改良和育種提供了新的思路。
4 結(jié) 論
本研究對豫農(nóng)黑豬的生長相關(guān)性狀進(jìn)行基因組CNV檢測、繪制CNVR圖譜和基于CNV的GWAS。本研究檢測了18個(gè)常染色體中的CNV,共發(fā)現(xiàn)1 432個(gè)CNV,大小范圍在2.7 kb至2.2 Mb,共合并為232個(gè)CNVR,大小范圍為4.5 kb至2.2 Mb,約占豬常染色體基因組的2.50%,其中,Loss類型占比77%,Gain類型占比9%,Mixed類型占比14%。GWAS共發(fā)現(xiàn)8個(gè)顯著CNV,其中在SSC1上1∶157232630-157498487的區(qū)域內(nèi)檢測到與CC性狀極顯著相關(guān)的CNV,該CNV與CBC性狀也具有顯著相關(guān)性。在顯著CNV區(qū)域中,SSC17上0.32~0.69 Mb的區(qū)間定位到僅與BF相關(guān)的編碼蛋白基因CLDN23。本研究對于進(jìn)一步研究CNV與豫農(nóng)黑豬重要經(jīng)濟(jì)性狀的關(guān)聯(lián)性有重要參考價(jià)值。
參考文獻(xiàn)(References):
[1] 許 迪,顏 港,張 帥,等.大白豬生長性狀影響因素分析及遺傳參數(shù)估計(jì)[J].中國畜牧獸醫(yī),2024,51(1):193-202.
XU D,YAN G,ZHANG S,et al.Influencing factors analysis and genetic parameters estimation of growth traits in yorkshire pigs[J].China Animal Husbandry amp; Veterinary Medicine,2024,51(1):193-202.(in Chinese)
[2] 康佳威,黃宣凱,王志鵬,等.大白豬生長、繁殖和體尺性狀遺傳參數(shù)估計(jì)[J].畜牧獸醫(yī)學(xué)報(bào),2024,55(5):1936-1944.
KANG J W,HUANG X K,WANG Z P,et al.Estimation of genetic parameters for growth,reproduction,and body measurements traits in large white pigs[J].Acta Veterinaria et Zootechnica Sinica,2024,55(5):1936-1944.(in Chinese)
[3] 王克君.基于多重關(guān)聯(lián)分析鑒定豬生長性狀相關(guān)基因及其功能驗(yàn)證[D].北京:中國農(nóng)業(yè)大學(xué),2017.
WANG K J.Identification of growth-related genes based on multi-association analysis and their potential gene function verification in pig[D].Beijing:China Agricultural University,2017.(in Chinese)
[4] 阮棟林,陳 悅,莊站偉,等.基于SNP芯片的杜洛克種豬生長和體尺性狀遺傳參數(shù)估計(jì)及相關(guān)分析[J].家畜生態(tài)學(xué)報(bào),2023,44(2):19-24.
RUAN D L,CHEN Y,ZHUANG Z W,et al.Genetic parameter estimation and correlation analysis of growth traits and body traits in duroc pigs based on SNP chip[J].Acta Ecologae Animalis Domastici,2023,44(2):19-24.(in Chinese)
[5] ZHOU J H,LIU L Y,REYNOLDS E,et al.Discovering copy number variation in dual-purpose XinJiang brown cattle[J].Front Genet,2022,12:747431.
[6] HUANG Y Z,LI Y J,WANG X H,et al.An atlas of CNV maps in cattle,goat and sheep[J].Sci China Life Sci,2021,64(10): 1747-1764.
[7] ZHANG W,ZHOU M,LIU L Q,et al.Population structure and selection signatures underlying domestication inferred from genome-wide copy number variations in Chinese indigenous pigs[J].Genes (Basel),2022,13(11):2026.
[8] CENDRON F,CASSANDRO M,PENASA M.Genome-wide investigation to assess copy number variants in the Italian local chicken population[J].J Anim Sci Biotechnol,2024,15(1):2.
[9] DE OLIVEIRA H R,CHUD T C S,OLIVEIRA G A Jr,et al.Genome-wide association analyses reveal copy number variant regions associated with reproduction and disease traits in Canadian Holstein cattle[J].J Dairy Sci,2024,107(9):7052-7063.
[10] 饒友生,張細(xì)權(quán).拷貝數(shù)目變異:基因組遺傳變異的新詮釋[J].生物多樣性,2008,16(4):399-406.
RAO Y S,ZHANG X Q.Copy-number variant:new annotation for genetic variation across genomes[J].Biodiversity Science,2008,16(4):399-406.(in Chinese)
[11] BICKHART D M,LIU G E.The challenges and importance of structural variation detection in livestock[J].Front Genet, 2014,5:37.
[12] GARRICK D J,TAYLOR J F,F(xiàn)ERNANDO R L.Deregressing estimated breeding values and weighting information for genomic regression analyses[J].Genet Sel Evol,2009,41(1):55.
[13] WONG K K,DELEEUW R J,DOSANJH N S,et al.A comprehensive analysis of common copy-number variations in the human genome[J].Am J Hum Genet,2007,80(1):91-104.
[14] FADISTA J,NYGAARD M,HOLM L E,et al.A snapshot of CNVs in the pig genome[J].PLoS One,2008,3(12):e3916.
[15] RAMAYO-CALDAS Y,CASTELL "A,PENA R N,et al.Copy number variation in the porcine genome inferred from a 60 k SNP BeadChip[J].BMC Genomics,2010,11:593.
[16] CHEN C Y,QIAO R M,WEI R X,et al.A comprehensive survey of copy number variation in 18 diverse pig populations and identification of candidate copy number variable genes associated with complex traits[J].BMC Genomics,2012,13:733.
[17] WANG L G,XU L Y,LIU X,et al.Copy number variation-based genome wide association study reveals additional variants contributing to meat quality in swine[J].Sci Rep,2015,5:12535.
[18] QIAN R,XIE F,ZHANG W,et al.Genome-wide detection of CNV regions between Anqing six-end-white and Duroc pigs[J].Mol Cytogenet,2023,16(1):12.
[19] REVILLA M,PUIG-OLIVERAS A,CASTELL "A,et al.A global analysis of CNVs in swine using whole genome sequence data and association analysis with fatty acid composition and growth traits[J].PLoS One,2017,12(5):e0177014.
[20] 王明宇,張 晨,葉建偉,等.雛鷹黑豬血液生理指標(biāo)與肉質(zhì)性狀及屠宰性能間的相關(guān)性分析[J].家畜生態(tài)學(xué)報(bào),2018, 39(12):38-43.
WANG M Y,ZHANG C,YE J W,et al.Correlation analysis between blood physiological indexes and meat ouality traits and slaughter performance of chuying black pigs[J].Acta Ecologiae Animalis Domastici,2018,39(12):38-43.(in Chinese)
[21] 薛亞輝,王明宇,張 晨,等.雛鷹黑豬與確山黑豬血液生理指標(biāo)及其與生產(chǎn)性能的相關(guān)性分析[J].河南農(nóng)業(yè)大學(xué)學(xué)報(bào), 2019,53(6):884-890.
XUE Y H,WANG M Y,ZHANG C,et al.Correlation between blood physiological indexes and production performance in Chuying Black Pig and Queshan Black Pig[J].Journal of Henan Agricultural University,2019,53(6):884-890.(in Chinese)
[22] OGAWA S,YAZAKI N,OHNISHI C,et al.Maternal effect on body measurement and meat production traits in purebred Duroc pigs[J].J Anim Breed Genet,2021,138(2):237-245.
[23] XUE Y,LI C,DUAN D,et al.Genome-wide association studies for growth-related traits in a crossbreed pig population[J]. Anim Genet,2021,52(2):217-222.
[24] WU Z Y,DOU T F,BAI L Y,et al.Genomic prediction and genome-wide association studies for additive and dominance effects for body composition traits using 50 K and imputed high-density SNP genotypes in Yunong-black pigs[J].J Anim Breed Genet,2024,141(2):124-137.
[25] WANG K,LI M Y,HADLEY D,et al.PennCNV:an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data[J].Genome Res,2007,17(11):1665-1674.
[26] ZHOU J H,LIU L Y,LOPDELL T J,et al.HandyCNV:standardized summary,annotation,comparison,and visualization of copy number variant,copy number variation region,and runs of homozygosity[J].Front Genet,2021,12:731355.
[27] YANG Q,CUI J,CHAZARO I,et al.Power and type I error rate of 1 discovery rate approaches in genome-wide association studies[J].BMC Genet,2005,6(S1):S134.
[28] HU Z L,PARK C A,REECY J M.Bringing the animal QTLdb and CorrDB into the future:meeting new challenges and providing updated services[J].Nucleic Acids Res,2022,50(D1):D956-D961.
[29] TENG J Y,GAO Y H,YIN H W,et al.A compendium of genetic regulatory effects across pig tissues[J].Nat Genet,2024,56(1): 112-123.
[30] ABDELLAOUI A,YENGO L,VERWEIJ K J H,et al.15 years of GWAS discovery:realizing the promise[J].Am J Hum Genet, 2023,110(2):179-194.
[31] MANOLIO T A,COLLINS F S,COX N J,et al.Finding the missing heritability of complex diseases[J].Nature,2009, 461(7265):747-753.
[32] MAHER B.Personal genomes:the case of the missing heritability[J].Nature,2008,456(7218):18-21.
[33] SALEHIAN-DEHKORDI H,XU Y X,XU S S,et al.Genome-wide detection of copy number variations and their association with distinct phenotypes in the world’s sheep[J].Front Genet,2021,12:670582.
[34] TAGHIZADEH S,GHOLIZADEH M,RAHIMI-MIANJI G,et al.Genome-wide identification of copy number variation and association with fat deposition in thin and fat-tailed sheep breeds[J].Sci Rep,2022,12(1):8834.
[35] XU L Y,YANG L,WANG L,et al.Probe-based association analysis identifies several deletions associated with average daily gain in beef cattle[J].BMC Genomics,2019,20(1):31.
[36] SHI H B,LI T T,SU M C,et al.Identification of copy number variation in Tibetan sheep using whole genome resequencing reveals evidence of genomic selection[J].BMC Genomics,2023,24(1):555.
[37] DING R R,ZHUANG Z W,QIU Y B,et al.Identify known and novel candidate genes associated with backfat thickness in Duroc pigs by large-scale genome-wide association analysis[J].J Anim Sci,2022,100(2):skac012.
[38] LEE G J,ARCHIBALD A L,GARTH G B,et al.Detection of quantitative trait loci for locomotion and osteochondrosis-related traits in Large White×Meishan pigs[J].Anim Sci,2003,76(2):155-165.
[39] CASSADY J P,JOHNSON R K,POMP D,et al.Identification of quantitative trait loci affecting reproduction in pigs[J].J Anim Sci,2001,79(3):623-633.
[40] HOWARD J T,JIAO S H,TIEZZI F,et al.Genome-wide association study on legendre random regression coefficients for the growth and feed intake trajectory on Duroc Boars[J].BMC Genet,2015,16:59.
[41] TRIBOUT T,IANNUCCELLI N,DRUET T,et al.Detection of quantitative trait loci for reproduction and production traits in Large White and French Landrace pig populations[J].Genet Sel Evol,2008,40(1):61-78.
[42] CHEREL P,PIRES J,GL NISSON J,et al.Joint analysis of quantitative trait loci and major-effect causative mutations affecting meat quality and carcass composition traits in pigs[J].BMC Genet,2011,12:76.
[43] LIU G S,KIM J J,JONAS E,et al.Combined line-cross and half-sib QTL analysis in Duroc-Pietrain population[J].Mamm Genome,2008,19(6):429-438.
[44] WON S,JUNG J,PARK E,et al.Identification of genes related to intramuscular fat content of pigs using genome-wide association study[J].Asian-Australas J Anim Sci,2018,31(2):157-162.
[45] KUO I H,CARPENTER-MENDINI A,YOSHIDA T,et al.Activation of epidermal toll-like receptor 2 enhances tight junction function:implications for atopic dermatitis and skin barrier repair[J].J Invest Dermatol,2013,133(4):988-998.
[46] LIU X K,BING Z T,WU J R,et al.Integrative gene expression profiling analysis to investigate potential prognostic biomarkers for colorectal cancer[J].Med Sci Monit,2020,26:e918906.
[47] YANG H J,LIU H,LIN H C,et al.Association of a novel seven-gene expression signature with the disease prognosis in colon cancer patients[J].Aging (Albany NY),2019,11(19):8710-8727.
(編輯 郭云雁)