摘 要: 豬繁殖與呼吸綜合征(porcine reproductive and respiratory syndrome,PRRS)是由豬繁殖與呼吸綜合征病毒(porcine reproductive and respiratory syndrome virus,PRRSV)引起的以豬呼吸系統(tǒng)疾病和母豬繁殖障礙為主要特征的傳染病,給全球養(yǎng)豬業(yè)造成了巨大的經(jīng)濟損失。然而,PRRS至今仍沒有安全有效的疫苗和藥物進行防治。全面深入理解PRRSV生命周期可以為PRRS防控提供新的思路。因此,本文在簡述PRRSV生命周期的基礎(chǔ)上,重點對病毒侵入、復(fù)制與轉(zhuǎn)錄、翻譯及翻譯后修飾、組裝等過程的研究進展進行綜述,以期為PRRSV致病機制及防控研究提供參考。
關(guān)鍵詞: 豬繁殖與呼吸綜合征病毒;入侵;復(fù)制和轉(zhuǎn)錄;翻譯及翻譯后修飾;組裝
中圖分類號:
S852.659.6"""" 文獻標志碼:A"""" 文章編號: 0366-6964(2025)03-1027-15
收稿日期:2024-03-29
基金項目:浙江省科技計劃項目(2023C0203)
作者簡介:劉愛軍(1989-),男,江西上饒人,碩士,獸醫(yī)師,主要從事疫病監(jiān)測與流行病學(xué)調(diào)查,E-mail:1468965900@qq.com,Tel:0571-56269625
*通信作者:周彩琴,主要從事豬病凈化研究,E-mail:44619165@qq.com,手機:13757194795
Research Progress on the Life Cycle of Porcine Reproductive and Respiratory Syndrome Virus
LIU" Aijun, ZHANG" Chuanliang, HUANG" Xiaobing, ZHOU" Caiqin*
(Zhejiang Animal Disease Prevention and Control Center, Hangzhou 311119," China)
Abstract: "Porcine reproductive and respiratory syndrome (PRRS) is an infectious disease caused by porcine reproductive and respiratory syndrome virus (PRRSV), which is mainly characterized by respiratory symptoms in pigs and reproductive failures in sows. PRRS has led to huge economic losses to the global swine industry. However, there is still no safe and effective vaccine or drug against PRRS. A comprehensive and in-depth understanding of the PRRSV life cycle can provide new ideas for PRRS prevention and control. Therefore, based on a brief description of the PRRSV life cycle, this paper focuses on the research progress of viral invasion, replication and transcription, translation and post-translational modification, assembly, with a view to providing a reference for the study of PRRSV pathogenic mechanism, prevention and control.
Keywords: porcine reproductive and respiratory syndrome virus; invasion; replication and transcription; translation and post-translational modification; assembly
*Corresponding author:" ZHOU Caiqin,E-mail: 44619165@qq.com
豬繁殖與呼吸綜合征(porcine reproductive and respiratory syndrome, PRRS)是由豬繁殖與呼吸綜合征病毒(porcine reproductive and respiratory syndrome virus, PRRSV)引起的一種危害全球養(yǎng)豬業(yè)的重要傳染病,臨床上以各年齡階段豬的呼吸系統(tǒng)疾病和妊娠母豬繁殖障礙為主要特征。在美國,按照每年580萬頭能繁母豬和1.1億頭上市豬計算,每年因 PRRS 造成的損失估計為 6.64 億美元[1]。我國是世界第一的養(yǎng)豬大國,2023年末能繁母豬存欄4 142萬頭,年出欄生豬7.27億頭,PRRS造成的經(jīng)濟損失巨大[2]。目前,仍然沒有特效的PRRS治療藥物,國內(nèi)防控PRRS主要依賴疫苗接種,但由于PRRSV具有易變異、持續(xù)性感染、免疫抑制和免疫逃逸等特點,疫苗仍難以兼顧安全性和有效性。因此,本文對PRRSV生命周期的進行了簡要概述,并在此基礎(chǔ)上對病毒侵入、復(fù)制與轉(zhuǎn)錄、翻譯及翻譯后修飾、組裝等過程研究進展進行了綜述,以期為PRRSV致病機制及防控研究提供新的思路。
1 PRRSV基因組及其生命周期概述
1.1 PRRSV基因組
PRRSV是一種不分節(jié)段、有囊膜的單股正鏈RNA病毒。PRRSV屬于套式病毒目(Nidovirales),動脈炎病毒科(Arteriviridae),動脈炎病毒屬(Arterivirus family)。PRRSV 基因組長約15 kb,除兩端的 5′和3′非編碼區(qū)(untranslated region,UTR)外,由至少11個開放閱讀框(open reading frames,ORF)組成。其中,ORF1a 和 ORF1b 編碼pp1a、pp1ab、pp1a-Nsp2TF和pp1a-Nsp2N等4種多聚蛋白,經(jīng)水解加工成至少16種非結(jié)構(gòu)蛋白(non-structural proteins,Nsps),包括Nsp1α、Nsp1β、Nsp2、Nsp2TF、Nsp2N、Nsp3-6、Nsp7α、Nsp7β和Nsp8-12。ORF2a、ORF2b、ORF3-7和ORF5a分別編碼GP2(又稱為GP2a)、E(又稱為GP2b)、GP3、GP4、GP5、M、N和Gp5a等8種結(jié)構(gòu)蛋白[3]。國際病毒分類與命名委員會(ICTV)最新分型方式,已將PRRSV分為PRRSV-1和PRRSV-2兩個種。PRRSV的3′UTR和5′UTR在病毒復(fù)制、轉(zhuǎn)錄、蛋白質(zhì)翻譯和病毒衰減中發(fā)揮關(guān)鍵作用。PRRSV 3′UTR中的第117~120位的核苷酸在各系毒株中高度保守,第117位或第119位核苷酸與復(fù)制效率顯著相關(guān),而第120位的核苷酸對病毒的拯救非常重要[4]。PRRSV 5′UTR 第61至90 nt的核苷酸對啟動子活性至關(guān)重要[5]。
1.2 PRRSV生命周期簡介
PRRSV具有嚴格的細胞嗜性,主要感染豬肺泡巨噬細胞(porcine alveolar macrophages,PAMs)。非洲綠猴腎細胞系MA-104及其衍生細胞(Marc-145 細胞)中也支持PRRSV感染[6]。PRRSV生命周期一般可分為侵入(黏附、內(nèi)化及脫殼)、復(fù)制與轉(zhuǎn)錄、翻譯、組裝與釋放等步驟。首先,PRRSV依賴多種細胞受體或因子,可通過網(wǎng)格蛋白介導(dǎo)的內(nèi)吞(clathrin-mediated endocytosis,CME)[7]、脂筏介導(dǎo)的內(nèi)吞[8]、巨胞飲[9]、膜融合[10]等多種途徑進入宿主細胞。脫殼后,PRRSV基因組RNA(genomic RNA,gRNA)進入細胞質(zhì)開始進行大型復(fù)制酶基因的翻譯。PRRSV gRNA翻譯產(chǎn)生4種多聚蛋白,隨后經(jīng)水解加工成16種Nsps[11]。隨后,Nsps和一些宿主因子在內(nèi)質(zhì)網(wǎng)(endoplasmic reticulum,ER)上,組裝成復(fù)制和轉(zhuǎn)錄復(fù)合體(replication transcription complex,RTC)[12],且誘導(dǎo)產(chǎn)生雙膜囊泡(double-membrane vesicles,DMV),為病毒復(fù)制提供場所。RTC負責(zé)病毒gRNA和亞基因組RNA(subgenomic RNA,sgRNA)的合成。sgRNA在ER核糖體上翻譯產(chǎn)生病毒的結(jié)構(gòu)蛋白。結(jié)構(gòu)蛋白翻譯結(jié)束后,N蛋白形成同源二聚體,將新合成的全長gRNA包裹起來[13]。在ER中,GP2、GP3、GP4和 GP5被糖基化。同時,主要囊膜蛋白形成GP5/M異源二聚體,次要囊膜蛋白GP2、GP3和GP4在 PRRSV囊膜中形成異源三聚體復(fù)合物[14]。當(dāng)所有結(jié)構(gòu)組成都位于ER的同一部位時,核衣殼會在膜周圍移動,在ER腔內(nèi)出芽。子代病毒粒子經(jīng)過高爾基體對糖蛋白進行修剪而成熟,并主要以胞吐的形式外排[14]。最后,活化的乙酰肝素酶在細胞外切割硫酸乙酰肝素,促進病毒釋放[15]。此外,外泌體[16]和納米管[17]等途徑也可介導(dǎo)PRRSV的細胞間傳播,并在很大程度上能夠抵抗PRRSV特異性中和抗體的作用。
2 PRRSV的侵入
2.1 黏附和內(nèi)化
病毒黏附及內(nèi)化是病毒生命周期中的起始步驟,與病毒的宿主范圍、組織嗜性和發(fā)病機制密切相關(guān)。已經(jīng)被鑒定有助于PRRSV感染的受體/因子至少有 12種,包括硫酸乙酰肝素(heparan sulfate,HS)[18]、唾液酸黏附素(sialoadhesin,Sn)[19-20]、分化抗原簇163(cluster of differentiation 163,CD163)[21]、非肌球蛋白重鏈 9(non-muscle myosin heavy chain 9,MYH9)[22-23]、波形蛋白(vimentin)[24-25]、熱休克蛋白A家族成員8(heat shock protein family A member 8,HSPA8)[26]、T細胞免疫球蛋白黏蛋白分子(T-cell immunoglobulin and mucin domain,TIM)[9]、表皮生長因子受體(epidermal growth factor receptor,EGFR)[27]、多配體蛋白聚糖4(Syndecan-4)[28]、CD151[29]、CD209[30]和唾液酸結(jié)合Ig樣凝集素10(sialic acid-binding Ig-like lectin-10,Siglec-10)[31],它們參與PRRSV的黏附、內(nèi)化和脫殼等過程(表1)。
2.1.1 CD163" CD163是
PRRSV感染不可或缺的受體,是控制 PRRS最合適的靶標。CD163是清道夫受體家族的一個重要成員,由胞外區(qū)、跨膜區(qū)和胞內(nèi)區(qū)組成。其胞外區(qū)含有九個富含半胱氨酸的清道夫受體結(jié)構(gòu)域(scavenger receptor cysteine-rich,SRCR)和兩個富含脯氨酸-絲氨酸-蘇氨酸的基序(proline-serine-threonine,PST)。Das等[21]發(fā)現(xiàn)在 PRRSV 進入易感細胞的過程中,CD163 與 PRRSV GP2/GP4 相互作用,并且 GP4 能夠招募 GP2、GP3 和 GP5形成復(fù)合體,從而促進 GP2/GP4 與 CD163 的相互作用[21]。GP4是一種糖基化磷脂酰肌醇錨定蛋白,能將共定位于脂筏的CDl63/GP4復(fù)合物錨定在質(zhì)膜上,從而促進PRRSV感染[32]。先前的研究支持 PRRSV與 CD163之間相互作用的“單域”模型,其中SRCR5是CD163與PRRSV囊膜蛋白之間的主要接觸點[33]。SRCR5特異性抗體[34-35]、靶向SRCR5的小分子藥物[36] 和缺失SRCR5基因的豬[37] 可有效阻止 PRRSV 感染,進一步支持了這一模型。Xu等[38]通過利用CRISPR/Cas9技術(shù)進一步鑒定SRCR5的關(guān)鍵基序,發(fā)現(xiàn)CD163的523—562位氨基酸中含有介導(dǎo)PRRSV感染的必需氨基酸殘基,第561位的精氨酸參與了PRRSV感染的過程。然而,近期研究發(fā)現(xiàn)CD163的PSTII結(jié)構(gòu)域?qū)?PRRSV 感染也至關(guān)重要[39-40]。CD163 PSTII 結(jié)構(gòu)域由外顯子13編碼。體外試驗發(fā)現(xiàn),缺失外顯子13的豬能有效抵御 PRRSV 感染,且不影響 CD163在體內(nèi)的主要生理功能[40]。有趣的是,缺失SRCR5 或 PSTII 結(jié)構(gòu)域,并沒有破壞CD163與病毒囊膜糖蛋白相互作用的能力[39]。這些結(jié)果提示,PRRSV 糖蛋白可能與 CD163 分子上的多個多肽序列相互作用,包括 SRCR5 結(jié)構(gòu)域、PSTII、SRCR7-9 結(jié)構(gòu)域以及對 PRRSV 感染非常重要的其他特定序列[39]。因此,Salgado等[40]提出了另一種“多結(jié)構(gòu)域”模型來描述 PRRSV與 CD163 之間的相互作用。在該模型中,PRRSV與CD163 的相互作用發(fā)生在該蛋白的一個特定區(qū)域,這一區(qū)域存在對病毒感染至關(guān)重要的所有結(jié)構(gòu)域,可能與病毒囊膜糖蛋白形成多重相互作用。去除任何與 PRRSV 相互作用有關(guān)的結(jié)構(gòu)域,都足以抑制感染[40]。
2.1.2 MYH9" 雖然有報道稱CD163足以將非允許性細胞系轉(zhuǎn)化為完全允許PRRSV
感染的細胞系,但很難僅由一種受體介導(dǎo)病毒感染的整個過程。MYH9是促進 PRRSV進入宿主細胞的關(guān)鍵輔助因子,在MYH9缺陷的COS7細胞中,單獨引入CD163并不能介導(dǎo)PRRSV感染[41]。Hou等[22]研究發(fā)現(xiàn),MYH9 C端結(jié)構(gòu)域與CD163 SRCR1-4相互作用,促進了PRRSV病毒內(nèi)化。此外,MYH9 C端結(jié)構(gòu)域直接與PRRSV GP5結(jié)合,從而誘導(dǎo)內(nèi)化所需的MYH9聚集[23]。MYH9的1 676—1 791位氨基酸殘基是與PRRSV結(jié)合的關(guān)鍵基序,針對該區(qū)域的多克隆抗體通過“占位效應(yīng)”可以抑制 PRRSV感染[41]。
2.1.3 抗體依賴性增強作用
抗體依賴性增強作用(antibody dependent enhancement,ADE)是PRRS疫苗和抗體藥物研發(fā)需要重點關(guān)注的問題。ADE的發(fā)生有兩種不同的機制:一種是抗體介導(dǎo)的表達IgG Fc受體(FcγR)的吞噬細胞對病毒的攝取增強,導(dǎo)致病毒感染和復(fù)制增加;另一種是抗體 Fc 介導(dǎo)的效應(yīng)器功能過度或免疫復(fù)合物形成過多,導(dǎo)致炎癥和免疫病理增強[42]。體內(nèi)和體外試驗都表明,PRRSV感染存在ADE效應(yīng)[43]。FcγR主要有 FcγRⅠ(CD64)、FcγRⅡ(CD32)和FcγRⅢ(CD16)和FcγRⅣ四個亞群。已有的研究顯示pCD64-T1[44]、FcγRIIb[45]、FcγRⅢ[46]等介導(dǎo)了 PRRSV 感染的 ADE效應(yīng)。Gu等[46]發(fā)現(xiàn)FcγRⅢ介導(dǎo)PRRSV ADE效應(yīng),PRRSV-抗體復(fù)合物可以進入表達FcγRⅢ的非允許細胞COS-7細胞中,內(nèi)化后病毒可以在細胞中復(fù)制和釋放。此外,最近的研究發(fā)現(xiàn)Sn、CD163和豬I型補體受體等宿主因子,參與介導(dǎo)PRRSV ADE效應(yīng)[47-48]。
2.2 膜融合和脫殼
囊膜病毒利用其表面的糖蛋白介導(dǎo)膜融合,這是進入細胞的重要步驟。Hou等[49]首次揭示了 PRRSV 膜融合的分子細節(jié),發(fā)現(xiàn)PRRSV膜融合有兩種策略:一種是在CME途徑,于PRRSV感染早期的再循環(huán)內(nèi)體中,在低pH條件下由組織蛋白酶E(cathepsin E)識別、結(jié)合并切割 PRRSV GP5蛋白觸發(fā)膜融合[49]。另一種,HP-PRRSV 可以直接在細胞表面進行膜融合,不依賴CME途徑和低pH條件,通過彈性蛋白酶(elastase)切割PRRSV GP5觸發(fā)膜融合[10]。有趣的是,除了結(jié)構(gòu)蛋白外,PRRSV Nsp2 第323—521氨基酸殘基的缺失影響了病毒膜融合,但相關(guān)機制尚不清楚[50]。此外,宿主干擾素誘導(dǎo)的跨膜蛋白3(interferon-induced transmembrane protein 3,IFITM3)可以通過誘導(dǎo)內(nèi)體或溶酶體中膽固醇的積累來阻礙PRRSV的膜融合[51]。
病毒脫殼釋放基因組是病毒感染早期階段的關(guān)鍵環(huán)節(jié)。當(dāng)內(nèi)體pH 值下降時,PRRSV 會脫殼釋放gRNA到細胞質(zhì)中。cathepsin E 和一種類胰蛋白酶絲氨酸蛋白酶都參與了 PRRSV的脫殼[52]。CD163 SRCR5對PRRSV脫殼至關(guān)重要,缺失 SRCR5 的 CD163 會失去與PRRSV GP2、GP3 和 GP5 的相互作用,從而阻斷病毒在早期內(nèi)體中的脫殼。此外,宿主鈣蛋白酶1與CD163相互作用,具有促進PRRSV脫殼的作用[53]。
3 PRRSV復(fù)制與轉(zhuǎn)錄
正鏈RNA病毒入侵宿主細胞常重塑細胞內(nèi)膜,誘導(dǎo)雙膜囊泡(DMV)的形成,為RTC提供復(fù)制位點。DMV能夠起到支架作用,增加病毒因子和宿主因子的局部濃度,并限制天然免疫系統(tǒng)對病毒蛋白和核酸的識別作用[54]。在套式病毒目中,Nsps是DMV形成的關(guān)鍵。在宿主自噬和脂質(zhì)合成途徑相關(guān)因子的參與下,Nsps劫持宿主ER、高爾基體和其他細胞器的膜重排過程,誘導(dǎo)DMV的形成[55]。馬動脈炎病毒(equine arteritis virus,EAV)的 Nsp2、Nsp3 和 Nsp5 參與調(diào)節(jié)膜曲率和 DMV 的形成,PRRSV 與 EAV同屬動脈炎病毒科,PRRSV 的 Nsp2、Nsp3 和 Nsp5 也可能參與 DMV 形成[56]。PRRSV誘導(dǎo)形成的DMV,其膜來源于ER[12]。近期發(fā)現(xiàn),PRRSV 會誘導(dǎo)高爾基體破碎介導(dǎo)的自噬來促進病毒增殖,PRRSV是否有利用高爾基體膜碎片和囊泡組裝成DMV,仍有待進一步研究[57]。
RTC是由病毒蛋白和宿主蛋白組成的復(fù)合體,且與宿主之間存在復(fù)雜的相互作用。V′kovsk等[58]利用鄰近生物素標記技術(shù),在冠狀病毒RTC的微環(huán)境中鑒定出了超過 500 種宿主蛋白,其中53種宿主因子siRNA干擾沉默后可顯著減少病毒復(fù)制,主要包含囊泡運輸途徑、泛素蛋白酶體途徑以及翻譯起始因子等相關(guān)的蛋白。近年來,已經(jīng)至少發(fā)現(xiàn)DEAD-box(DDX)解旋酶[59-61]、DEAH-box(DHX)解旋酶[62]、核不均一核糖核蛋白(heterogeneous nuclear ribonucleoproteins,HnRNPs)[63-64]、RNA結(jié)合蛋白39(RNA binding motif protein 39,RBM39)[65]、多聚腺苷酸結(jié)合蛋白[poly(A)-binding protein,PABP][66]、轉(zhuǎn)錄激活子4(transcription factor 4,ATF4)[67]、分子信號識別粒子(signal recognition particle,SRP)[68]、熱休克蛋白(HSP)[69-71]、膜聯(lián)蛋白A2(annexin A2,ANXA2)[72]、增殖細胞核抗原(proliferating cell nuclear antigen,PCNA)[73]、細胞周期蛋白依賴性激酶9(cyclin-dependent kinase,CDK9)[74]、對氧磷酶1(paraoxonase 1,PON1)[75]等多種宿主蛋白,與PRRSV基因、Nsps或N蛋白等相互作用,促進病毒gRNA復(fù)制或轉(zhuǎn)錄(表2)。
3.1 復(fù)制與轉(zhuǎn)錄復(fù)合體中的病毒蛋白
在 PRRSV 感染期間,大多數(shù) Nsps 被招募到RTC 中,PRRSV Nsp2、Nsp3 和Nsp5是RTC的支架成分,Nsp9、Nsp10、Nsp11和Nsp12是RTC的核心成分[56,76-77]。此外,Nsp1α、Nsp1β、Nsp4、Nsp7、Nsp8也被招募至RTC[56,77]。Nsp9 蛋白的C端和N端分別含有一個RNA 依賴性 RNA 聚合酶(RNA dependent RNA polymerase,RdRp)結(jié)構(gòu)域和RdRp相關(guān)核苷酸轉(zhuǎn)移酶結(jié)構(gòu)域,RdRp對病毒復(fù)制至關(guān)重要[78]。NSP10具有解旋酶和腺苷三磷酸酶(ATPase)活性,對病毒gRNA和sgRNA的生成不可或缺[79]。Nsp11有一個核酸內(nèi)切酶結(jié)構(gòu)域,它是病毒sgRNA合成所必需的[80]。Nsp12 是連接其它Nsps的樞紐,其第35位和79位半胱氨酸的組合是 sgRNA合成所必需的[77,81]。PRRSV Nsp2 超變異區(qū)在控制gRNA 和sgRNA的平衡方面發(fā)揮著重要作用[50]。除非結(jié)構(gòu)蛋白外,PRRSV N 蛋白參與病毒gRNA的復(fù)制與轉(zhuǎn)錄,其第78位氨基酸從絲氨酸變?yōu)楸彼?,可以降低病毒gRNA和sgRNA 的水平[82]。
3.2 促進病毒復(fù)制和轉(zhuǎn)錄的RNA結(jié)合蛋白
在 RNA 病毒感染中,病毒 RNA(virus RNA,vRNA)起著核心作用,因為它必須同時充當(dāng) mRNA 和病毒基因組。因此,vRNA需要劫持眾多的細胞RNA結(jié)合蛋白(RNA-binding proteins,RBPs)來促進病毒復(fù)制。雖然與不同病毒科的vRNA相互作用的RBPs具有很高的異質(zhì)性。但有近200個RBPs與冠狀病毒科、披膜病毒科和黃病毒科vRNA 都存在相互作用,其中約37%的蛋白質(zhì)含有經(jīng)典的 RNA結(jié)合結(jié)構(gòu)域,如 DDX結(jié)構(gòu)域、K同源結(jié)構(gòu)域(KH)或RNA 識別基序(RRM)[83]。研究顯示,在PRRSV感染中,RNA解旋酶、HnRNPs、RBM39等多種RBPs,通過與病毒蛋白或vRNA相互作用,促進病毒復(fù)制和轉(zhuǎn)錄。
3.2.1 RNA解旋酶
DDX家族蛋白廣泛參與宿主細胞的 RNA 剪接、轉(zhuǎn)錄和翻譯等多種生命活動,對宿主天然免疫反應(yīng)和多種病毒復(fù)制具有重要作用,是潛在的抗病毒藥物靶標。G-四鏈體(G4)是由富含鳥嘌呤的核酸折疊形成的核酸二級結(jié)構(gòu),PRRSV 負鏈gRNA中具有一條高度保守的平行G4型結(jié)構(gòu)。宿主DDX18與PRRSV Nsp10解開G4結(jié)構(gòu),促進病毒gRNA復(fù)制[59]。DDX5與Nsp9的相互作用,促進PRRSV gRNA復(fù)制 [60]。PRRSV N與Nsp9蛋白結(jié)合,并招募DHX9解旋酶加入RTC。被招募的RNA 解旋酶會解開 RNA 二級結(jié)構(gòu),使 RdRp 能夠讀取模板并生成更長的病毒 gRNA和sgRNA[62]。PRRSV 感染會增強 DDX21 的表達,并促進其出核。DDX21 通過穩(wěn)定 PRRSV Nsp1α、Nsp1β 和N蛋白的表達,從而促進病毒復(fù)制[61]。
3.2.2 HnRNPs
HnRNPs在各種細胞和組織中廣泛表達,其最顯著的功能是通過與RNA結(jié)合影響RNA的代謝,在轉(zhuǎn)錄調(diào)節(jié)、可變剪接、核質(zhì)運輸?shù)冗^程中發(fā)揮重要作用。大多數(shù) HnRNPs主要位于細胞核中,但在病毒感染過程中,一些HnRNPs會重新分布到胞質(zhì)中。PRRSV-2感染后,HnRNP F出核與G4解旋酶DHX36形成復(fù)合物,正向調(diào)節(jié)病毒gRNA復(fù)制[64]。HnRNP E1和 E2與 PRRSV 5′UTR 和Nsp1β相互作用,正向調(diào)節(jié)PRRSV gRNA的復(fù)制和轉(zhuǎn)錄[63]。
3.2.3 其它RNA結(jié)合蛋白
RBM39依賴其RRM結(jié)構(gòu)域,增強PRRSV RNA熱穩(wěn)定性,對PRRSV增殖至關(guān)重要[65];多聚腺苷酸結(jié)合蛋白[poly(A)-binding protein,PABP]是mRNA poly (A)尾的一種保護屏障,可通過使 mRNA 環(huán)化來提高翻譯效率。PABP 具有直接調(diào)節(jié)vRNA 合成的功能。PABP與N蛋白結(jié)合,沉默PABP可以抑制PRRSV RNA 的合成[66];PRRSV劫持宿主未折疊蛋白反應(yīng),通過GP2a靶向降解中央調(diào)節(jié)因子葡萄糖調(diào)節(jié)蛋白78(GRP78),激活PERK-eIF2α-ATF4信號。ATF4被Nsp2/3招募到RTC,與vRNA相互作用,促進vRNA的合成[67];分子信號識別粒子(SRP)是一種保守的核糖核蛋白復(fù)合物。SRP14可在翻譯過程中攔截核糖體,以便將分泌蛋白正確定向到ER。SRP14 在感染過程中被Nsp2劫持到病毒RTC中,促進 PRRSV gRNA復(fù)制[68];HSP70是一種在進化上高度保守的分子伴侶蛋白,參與蛋白質(zhì)的合成、折疊、組裝及降解等過程。PRRSV 感染時,HSP70會顯著上調(diào)表達,可能參與病毒RTC的形成,促進vRNA的合成[69]。Dong等[71]研究發(fā)現(xiàn)HSP70被Nsp12招募,并與之相互作用,以維持Nsp12穩(wěn)定性;ANXA2是一種具有多種生物學(xué)功能的鈣磷脂結(jié)合蛋白,參與囊泡轉(zhuǎn)運、細胞骨架膜動力學(xué)和信號轉(zhuǎn)導(dǎo)等多個生物學(xué)過程[72]。ANXA2具有RNA結(jié)合的特性,并可與PRRSV Nsp9相互作用,促進PRRSV gRNA復(fù)制。ANXA2與波形蛋白結(jié)合后形成的復(fù)合物能夠結(jié)合N蛋白,進一步促進PRRSV的復(fù)制[72]。
4 PRRSV劫持翻譯及翻譯后修飾機制
4.1 PRRSV劫持宿主翻譯機制
病毒感染會激活細胞的信號通路和宿主天然免疫防御機制,感染的細胞可能會特異性地沉默病毒 mRNA 的翻譯或全面關(guān)閉蛋白翻譯。病毒反過來又進化出了逃逸或破壞這些宿主反應(yīng)的機制,使病毒蛋白翻譯能夠得以維持[84]。研究顯示,PRRSV劫持真核翻譯起始因子(eukaryotic translation initiation factors,eIFs)促進病毒增殖。哺乳動物的eIF4F復(fù)合物由eIF4A、elF4G、eIF4E構(gòu)成,參與調(diào)控翻譯啟動位點和定位過程,elF4E在該復(fù)合物中具有調(diào)控翻譯速度的功能,也是目前為止最為重要的調(diào)控因子。PRRSV Nsp2 通過抑制 mTOR-S6K-4E-BP1-eIF4E通路的激活,從而抑制宿主蛋白翻譯[85];eIF4A是一種DDX解旋酶,是eIF4F復(fù)合物的重要組成部分,它負責(zé)解開5′UTR中的二級結(jié)構(gòu),促進核糖體募集。大多數(shù)RNA病毒的5′UTR具有復(fù)雜的二級結(jié)構(gòu),需依賴eIF4A翻譯mRNA。PRRSV 5′UTR介導(dǎo)的翻譯起始同樣需要eIF4A[86];eIF5A具有介導(dǎo)翻譯終止、mRNA的核質(zhì)轉(zhuǎn)運及促進多脯氨酸鏈的延伸等生物學(xué)功能。近期研究發(fā)現(xiàn),過表達eIF5A能夠顯著促進PRRSV增殖[87],eIF5A缺失則抑制了PRRSV增殖[88],但有關(guān)機制仍需進一步研究;此外,eIF2α磷酸化對宿主翻譯抑制的作用有限,PRRSV可能通過Nsp5誘導(dǎo)不完成自噬介導(dǎo)翻譯抑制[85]。
除了劫持eIFs 之外,PRRSV可能劫持核糖體生物發(fā)生、核質(zhì)轉(zhuǎn)運、核糖體蛋白等調(diào)節(jié)宿主翻譯機制。PRRSV N 蛋白與fibrillarin在細胞核內(nèi)共定位,并特異性地與其相互作用,推測PRRSV可能參與調(diào)節(jié) rRNA 前體加工和核糖體生物發(fā)生[89]。PRRSV Nsp1β與定位于核孔復(fù)合體 (nuclear pore complex,NPC)的中心通道結(jié)構(gòu)中的核孔蛋白Nup62(nucleoporin p62)結(jié)合,從而瓦解NPC,阻斷宿主 mRNA 和宿主蛋白的核質(zhì)轉(zhuǎn)運,有利于抑制宿主抗病毒蛋白的表達和獨占宿主翻譯機器[90]。此外,PRRSV能夠劫持核糖體蛋白L12(RPL12)促進增殖[91]。
4.2 PRRSV蛋白的翻譯后修飾
蛋白翻譯后修飾(post-translational modifications,PTMs)是將一些化學(xué)基團共價偶聯(lián)到蛋白質(zhì)特定氨基酸上的過程,是近年來備受關(guān)注的前沿研究領(lǐng)域。在病毒感染中,宿主利用PTMs機制,通過激活免疫反應(yīng)、抑制病毒蛋白質(zhì)合成或降解病毒蛋白等策略,抑制病毒增殖。反過來,病毒進化出劫持宿主的 PTMs機制對病毒蛋白進行翻譯后修飾,促進自身的生存[92]。PRRSV蛋白至少存在泛素化、乙酰化、磷酸化、糖基化、棕櫚?;榷喾N類型的PTMs。泛素化修飾是通過E1泛素活化酶、E2泛素結(jié)合酶和E3泛素連接酶相互配合,將泛素分子添加至底物蛋白的過程。宿主通過對病毒蛋白進行泛素化修飾,介導(dǎo)病毒蛋白的蛋白酶體或溶酶體降解,從而抑制病毒增殖。E3泛素連接酶三基序結(jié)合蛋白26(tripartite motif protein 26,TRIM26)和RNF114(RING-type zinc-finger protein 114)分別介導(dǎo)N和Nsp12等蛋白的泛素化蛋白酶體降解,抑制了 PRRSV的增殖[93-94]。TRIM22 通過與PRRSV N 蛋白相互作用介導(dǎo)其溶酶體途徑降解,從而抑制病毒增殖[95]。PRRSV也可以劫持去泛素化系統(tǒng)或利用自身的去泛素化酶(deubiquitinase,DUB)活性等機制,拮抗宿主對病毒蛋白的泛素化降解作用。例如,泛素特異性蛋白酶1(USP1)介導(dǎo)Nsp1β去泛素化,通過增加Nsp1β的穩(wěn)定性來促進病毒增殖[96]。PRRSV Nsp2TF的DUB活性拮抗了GP5和M蛋白的泛素化蛋白酶體降解,促進了GP5/M二聚體的形成[97]。甚至,PRRSV也可劫持宿主泛素化機制,促進病毒增殖。例如,E3泛素連接酶ASB8(ankyrin repeat and SOCS box containing protein-8)介導(dǎo)Nsp1α蛋白的K63連接泛素化,通過穩(wěn)定Nsp1α蛋白來促進病毒增殖[98]。N 端乙?;钦婧思毎凶畛R姷墓卜g和翻譯后修飾之一,由 N-乙酰轉(zhuǎn)移酶家族成員催化,將乙?;鶊F轉(zhuǎn)移并添加在蛋白N端。ER駐留的 N-乙酰轉(zhuǎn)移酶9與PRRSV的GP5蛋白相互作用,介導(dǎo)GP5蛋白的N端乙?;鰪娏薌P5的K27泛素化和蛋白酶體降解,抑制病毒的組裝[99]。
PRRSV可以劫持磷酸化[100-101]、糖基化[102-103]、 棕櫚酰化[104]等PTMs機制,促進病毒增殖。磷酸化修飾是通過蛋白激酶介導(dǎo) ATP 或GTP中的γ-磷酸向目標蛋白質(zhì)的特定殘基(Ser、Thr 或 Tyr)轉(zhuǎn)移的過程。據(jù)報道,PRRSV N蛋白存在多個磷酸化位點,Ser-105和Ser-120等兩個磷酸化位點的突變會損害病毒的gRNA復(fù)制和轉(zhuǎn)錄能力[100]。Nsp2、Nsp2TF 和 Nsp2N等蛋白Ser 918磷酸化位點的突變,會顯著降低病毒 sgRNA 的穩(wěn)態(tài),削弱PRRSV體外復(fù)制的能力[101];糖基化是將聚糖連接到蛋白質(zhì)上的一種關(guān)鍵PTM。N-連接的糖基化,即聚糖連接到天冬酰胺的酰胺氮上,是最常見、研究最廣泛的蛋白質(zhì)糖基化形式。病毒糖蛋白的N-糖基化具有促進表達、運輸、融合、與細胞表面受體結(jié)合以及防止抗體中和等多種功能。Das等[102]通過突變PRRSV糖蛋白的糖基化位點,發(fā)現(xiàn)GP2 的 N184、GP3 的 N42、N50 和 N131 位點的糖基化是產(chǎn)生感染性病毒的必要條件。GP4 蛋白存在N 37、84、120和 130等4個N-糖基化位點,雖然 GP4 的單位點突變體能產(chǎn)生感染性病毒,但4個位點中任何兩個位點的突變都不能產(chǎn)生感染性病毒[102]。PRRSV GP5 蛋白N44 的N-糖基化是病毒感染性所必需的,N44 的突變不會產(chǎn)生感染性的后代。N34 和 N51 位點上的聚糖可作為病毒蛋白的保護層,防止宿主抗體中和。N34、N51 和 N34/51突變病毒的生長滴度低于野生型 PRRSV[103];棕櫚?;前l(fā)生在細胞膜胞質(zhì)一側(cè)的可逆脂修飾。S 型棕櫚?;侵舅崤c半胱氨酸的巰基形成硫酯鍵,主要由具有鋅指D-H-H-C結(jié)構(gòu)域的棕櫚?;D(zhuǎn)移酶(ZDHHC)家族蛋白所介導(dǎo)。PRRSV組裝和出芽需要對GP5和M進行S型棕櫚酰化修飾。在 PRRSV-2中,一旦GP5中的三個半胱氨酸或 M中的兩個半胱氨酸都被替換,感染性病毒或含gRNA的病毒粒子都無法被拯救。研究推測,ER中附著在GP5和M 上的多個脂肪酸是 GP5/M 二聚體在高爾基體膜上聚集的必要條件,也是病毒組裝的必要前提[104]。
5 PRRSV的組裝
多項研究揭示脂質(zhì)代謝在PRRSV復(fù)制和組裝中發(fā)揮了重要作用,靶向脂質(zhì)合成是一種有前景的PRRS治療策略。脂滴(lipid droplets,LDs)在病毒的生命周期中發(fā)揮著多種不可或缺的作用。與新型冠狀病毒(severe acute respiratory syndrome coronavirus 2,SARS-CoV-2)不同,PRRSV 的復(fù)制和組裝并不依賴于 LDs,LDs增加反而可能是宿主抵御其感染的一種策略[105]。脂噬是最新被描述的選擇性自噬亞型,脂滴可以通過泛素化和招募脂噬選擇性因子和自噬受體而靶向至溶酶體。隨后,LDs中的甘油三酯被溶酶體內(nèi)的酶水解為游離脂肪酸[106]。據(jù)報道,PRRSV-2通過上調(diào)鳥苷三磷酸酶RAB18,誘導(dǎo)分子伴侶介導(dǎo)的自噬(chaperone-mediated autophagy,CMA)來促進脂噬[107]。PRRSV抑制N-Myc下游調(diào)控基因1 (NDRG1)的表達,促進脂噬[108]。兩項研究都發(fā)現(xiàn),脂噬促進PRRSV子代病毒的復(fù)制和組裝[107-108]。表沒食子兒茶素沒食子酸酯(EGCG)則可以通過抑制脂噬,負向調(diào)節(jié) PRRSV 的復(fù)制和組裝[109]。Zheng等[105]發(fā)現(xiàn)PRRSV 感染會上調(diào)宿主轉(zhuǎn)錄因子陰陽-1(Yin-Yang1,YY1)的表達,YY1正向調(diào)節(jié)激活過氧化物酶體增殖物激活受體γ(peroxisome proliferator-activated receptorγ,PPARγ)的表達和負向調(diào)節(jié)脂肪酸合酶的表達,促進細胞內(nèi) LDs 的合成和減少脂肪酸的合成,從而抑制 PRRSV 增殖。
真核細胞中,內(nèi)吞體分選轉(zhuǎn)運復(fù)合體(endosomal sorting complex required for transport,ESCRT)在多泡體(multivesicular bodies,MVBs)形成、核膜重構(gòu)、質(zhì)膜修復(fù)、自噬體閉合和外泌體形成等生理過程中發(fā)揮重要作用。病毒可以劫持 ESCRT 介導(dǎo)的生理過程來增加感染宿主的機會。許多RNA 病毒蛋白都進化出了類似富含脯氨酸的短肽序列(P[T/S]AP),并命名為“晚期組裝結(jié)構(gòu)域(late assembly domains)”,使它們能夠招募宿主的 ESCRT 亞基蛋白,以促進病毒的內(nèi)吞、運輸、復(fù)制、出芽、成熟。為了抵御病毒感染,受感染細胞內(nèi)的干擾素刺激基因 15(ISG15)或 E3泛素連接酶HERC5系統(tǒng)會被激活,以降解 ESCRT 蛋白[110]。ESCRT是由ESCRT-0、I、II、III和VPS4(vacuolar protein sorting 4)這5個功能不同的亞復(fù)合體以及一些輔助蛋白等組成。ESCRT-I是由TSG101、VPS28、VPS37A/B/C/D和MVB12A/B組成的復(fù)合物。據(jù)報道,TSG101通過與 PRRSV N 蛋白在早期分泌途徑中相互作用,促進病毒的組裝。TSG101 與 PRRSV N 蛋白,在ER、內(nèi)質(zhì)網(wǎng)-高爾基體中間區(qū)室(ERGIC)和高爾基體在共定位。在組裝過程中,TSG101并不影響 N 蛋白寡聚化,可能在 N 蛋白的胞內(nèi)運輸和誘導(dǎo)膜變形發(fā)揮作用[111]。
6 問題與展望
PRRSV同科的猿猴出血熱(simian hemorrhagic fever virus,SHFV)會在一些猴子中引起致命的類似埃博拉病毒病的癥狀,并且正“準備溢出”到人類身上[112]。因此,全面深入闡明PRRSV生命周期不僅可以為PRRS藥物研發(fā)提供思路和理論基礎(chǔ),也具有重要的公共衛(wèi)生意義。近年來,在PRRSV入侵機制方面,發(fā)現(xiàn)了十余種介導(dǎo)入侵的宿主受體/因子[18-31],并鑒定出了CD163[38]和MYH9[41]這2個必需受體的關(guān)鍵結(jié)構(gòu)域。在CME介導(dǎo)的內(nèi)化基礎(chǔ)上[7],又發(fā)現(xiàn)PRRSV通過脂筏[8]、巨胞飲[9]、膜融合[10]等進入細胞的途徑(圖1)。然而,這些入侵途徑的分子機制仍有待進一步研究。對于病毒脫殼、復(fù)制與轉(zhuǎn)錄、翻譯與翻譯后修飾、組裝及釋放等過程的認識,仍非常欠缺。例如,RTC是如何形成的,還有哪些宿主因子對RTC形成是至關(guān)重要的?DMV是PRRSV復(fù)制位點,它的形成機制仍不清楚,高爾基體、自噬體等是否參與其形成?PRRSV子代gRNA和sgRNA是如何轉(zhuǎn)出DMV的? PRRSV如何劫持宿主的翻譯機制,在促進病毒蛋白表達的同時,拮抗宿主抗病毒天然免疫反應(yīng)?還哪些病毒蛋白的翻譯后修飾對PRRSV感染不可或缺,其背后的又蘊含了怎樣的分子機制?病毒粒子在ER、ERGIC以及高爾基體是怎樣的形態(tài),有哪些宿主因子參與病毒粒子的組裝、運輸和釋放?
由于PRRSV疫苗仍難以兼顧安全性和有效性,通過直接靶向保守的病毒基因組/蛋白或宿主因子,研發(fā)阻斷病毒生命周期關(guān)鍵步驟的藥物,將成為PRRS防控的重要方向。研究人員嘗試了阻斷病毒侵入、阻止RTC形成、抑制復(fù)制與轉(zhuǎn)錄和抑制病毒組裝等多種策略研發(fā)抗PRRSV藥物[113]。其中,反義寡核苷酸(antisense oligonucleotide,ASO)和納米抗體(nanobody,Nb)可以分別抑制靶基因的表達和中和靶蛋白,具有特異性高、療效好、易于生產(chǎn)和成本低等多種優(yōu)勢,經(jīng)過一定修飾可以進入細胞內(nèi)發(fā)揮作用,是未來抗病毒藥物研發(fā)的熱點[114-116]。無論ASO[117-118]或是Nb[35,119-120],在體內(nèi)和體外對PRRS治療都表現(xiàn)出巨大的潛力。
參考文獻(References):
[1] HOLTKAMP D J, KLIEBENSTEIN J B, ZIMMERMAN J J, et al. Economic impact of porcine reproductive and respiratory syndrome virus on U.S. pork producers[R]//Iowa State University Animal Industry Report 2012. 658(1): doi: https://doi.org/10.31274/ans_air-180814-28.
[2] 劉小紅, 陳瑤生. 2023年生豬產(chǎn)業(yè)與技術(shù)發(fā)展狀況[J]. 中國畜牧雜志, 2024, 60(3):302-307.
LIU X H, CHEN Y S. Development of swine industry and technology in 2023[J]. Chinese Journal of Animal Science, 2024, 60(3):302-307. (in Chinese)
[3] CHEN X X, QIAO S L, LI R, et al. Evasion strategies of porcine reproductive and respiratory syndrome virus[J]. Front Microbiol, 2023, 14:1140449.
[4] XIONG J Y, CUI X Y, ZHAO K, et al. A novel motif in the 3′-UTR of PRRSV-2 is critical for viral multiplication and contributes to enhanced replication ability of highly pathogenic or L1 PRRSV[J]. Viruses, 2022, 14(2):166.
[5] CHAUDHARI J, NGUYEN T N, VU H L X. Identification of cryptic promoter activity in cDNA sequences corresponding to PRRSV 5′ untranslated region and transcription regulatory sequences[J]. Viruses, 2022, 14(2):400.
[6] LUNNEY J K, FANG Y, LADINIG A, et al. Porcine reproductive and respiratory syndrome virus (PRRSV):pathogenesis and interaction with the immune system[J]. Annu Rev Anim Biosci, 2016, 4:129-154.
[7] NAUWYNCK H J, DUAN X, FAVOREEL H W, et al. Entry of porcine reproductive and respiratory syndrome virus into porcine alveolar macrophages via receptor-mediated endocytosis[J]. J Gen Virol, 1999, 80(2):297-305.
[8] YANG Q, ZHANG Q, TANG J, et al. Lipid rafts both in cellular membrane and viral envelope are critical for PRRSV efficient infection[J]. Virology, 2015, 484:170-180.
[9] WEI X, LI R, QIAO S L, et al. Porcine reproductive and respiratory syndrome virus utilizes viral apoptotic mimicry as an alternative pathway to infect host cells[J]. J Virol, 2020, 94(17):e00709-20.
[10] HOU J, LI R, QIAO S L, et al. Elastase-mediated membrane fusion of highly pathogenic porcine reproductive and respiratory syndrome virus at host cell surface[J]. Vet Microbiol, 2020, 250:108851.
[11] MA J, MA L L, YANG M T, et al. The function of the PRRSV-host interactions and their effects on viral replication and propagation in antiviral strategies[J]. Vaccines (Basel), 2021, 9(4):364.
[12] ZHANG W, CHEN K R, ZHANG X Q, et al. An integrated analysis of membrane remodeling during porcine reproductive and respiratory syndrome virus replication and assembly[J]. PLoS One, 2018, 13(7):e0200919.
[13] WOOTTON S K, YOO D. Homo-oligomerization of the porcine reproductive and respiratory syndrome virus nucleocapsid protein and the role of disulfide linkages[J]. J Virol, 2003, 77(8):4546-4557.
[14] BELLO-ONAGHISE G, WANG G, HAN X, et al. Antiviral strategies of Chinese herbal medicine against PRRSV infection[J]. Front Microbiol, 2020, 11:1756.
[15] GUO C H, ZHU Z B, GUO Y, et al. Heparanase upregulation contributes to porcine reproductive and respiratory syndrome virus release[J]. J Virol, 2017, 91(15):e00625-17.
[16] WANG T, FANG L R, ZHAO F W, et al. Exosomes mediate intercellular transmission of porcine reproductive and respiratory syndrome virus[J]. J Virol, 2018, 92(4):e01734-17.
[17] GUO R, KATZ B B, TOMICH J M, et al. Porcine reproductive and respiratory syndrome virus utilizes nanotubes for intercellular spread[J]. J Virol, 2016, 90(10):5163-5175.
[18] DELPUTTE P L, VANDERHEIJDEN N, NAUWYNCK H J, et al. Involvement of the matrix protein in attachment of porcine reproductive and respiratory syndrome virus to a heparinlike receptor on porcine alveolar macrophages[J]. J Virol, 2002, 76(9):4312-4320.
[19] VAN BREEDAM W, VAN GORP H, ZHANG J Q, et al. The M/GP5 glycoprotein complex of porcine reproductive and respiratory syndrome virus binds the sialoadhesin receptor in a sialic acid-dependent manner[J]. PLoS Pathog, 2010, 6(1):e1000730.
[20] 秦夢夢. 豬CD169分子單克隆抗體制備及CD169在PRRSV感染中作用機制初探[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2022.
QIN M M. Preparation of porcine CD169 monoclonal antibody and preliminary study on the mechanism of CD169 in PRRSV infection[D]. Yangling: Northwest Aamp;F University, 2022. (in Chinese)
[21] DAS P B, DINH P X, ANSARI I H, et al. The minor envelope glycoproteins GP2a and GP4 of porcine reproductive and respiratory syndrome virus interact with the receptor CD163[J]. J Virol, 2010, 84(4):1731-1740.
[22] HOU G P, XUE B Y, LI L L, et al. Direct interaction between CD163 N-terminal domain and MYH9 C-terminal domain contributes to porcine reproductive and respiratory syndrome virus internalization by permissive cells[J]. Front Microbiol, 2019, 10:1815.
[23] GAO J M, XIAO S Q, XIAO Y H, et al. MYH9 is an essential factor for porcine reproductive and respiratory syndrome virus infection[J]. Sci Rep, 2016, 6(1):25120.
[24] SONG T, FANG L R, WANG D, et al. Quantitative interactome reveals that porcine reproductive and respiratory syndrome virus nonstructural protein 2 forms a complex with viral nucleocapsid protein and cellular vimentin[J]. J Proteomics, 2016, 142:70-81.
[25] LIANG Z P, LI P J, WANG C P, et al. Visualizing the transport of porcine reproductive and respiratory syndrome virus in live cells by quantum dots-based single virus tracking[J]. Virol Sin, 2020, 35(4):407-416.
[26] WANG L, LI R, GENG R, et al. Heat shock protein member 8 (HSPA8) is involved in porcine reproductive and respiratory syndrome virus attachment and internalization[J]. Microbiol Spectr, 2022, 10(1):e0186021.
[27] WANG R, WANG X, WU J Q, et al. Efficient porcine reproductive and respiratory syndrome virus entry in MARC-145 cells requires EGFR-PI3K-AKT-LIMK1-COFILIN signaling pathway[J]. Virus Res, 2016, 225:23-32.
[28] WANG R, WANG X, NI B, et al. Syndecan-4, a PRRSV attachment factor, mediates PRRSV entry through its interaction with EGFR[J]. Biochem Biophys Res Commun, 2016, 475(2):230-237.
[29] SHANMUKHAPPA K, KIM J K, KAPIL S. Role of CD151, A tetraspanin, in porcine reproductive and respiratory syndrome virus infection[J]. Virol J, 2007, 4(1):62.
[30] HUANG Y W, DRYMAN B A, LI W, et al. Porcine DC-SIGN:molecular cloning, gene structure, tissue distribution and binding characteristics[J]. Dev Comp Immunol, 2009, 33(4):464-480.
[31] XIE J X, CHRISTIAENS I, YANG B, et al. Preferential use of Siglec-1 or Siglec-10 by type 1 and type 2 PRRSV strains to infect PK15S1-CD163 and PK15S10-CD163 cells[J]. Vet Res, 2018, 49(1):67.
[32] DU Y J, PATTNAIK A K, SONG C, et al. Glycosyl-phosphatidylinositol (GPI)-anchored membrane association of the porcine reproductive and respiratory syndrome virus GP4 glycoprotein and its co-localization with CD163 in lipid rafts[J]. Virology, 2012, 424(1):18-32.
[33] SU C M, ROWLAND R R R, YOO D. Recent advances in PRRS virus receptors and the targeting of receptor-ligand for control[J]. Vaccines (Basel), 2021, 9(4):354.
[34] XU H L, LIU Z H, ZHENG S Y, et al. CD163 antibodies inhibit PRRSV infection via receptor blocking and transcription suppression[J]. Vaccines (Basel), 2020, 8(4):592.
[35] DENG Z F, ZHANG S K, SUN M Q, et al. Nanobodies against porcine CD163 as PRRSV broad inhibitor[J]. Int J Biol Macromol, 2023, 253:127493.
[36] ZHU J Q, HE X, BERNARD D, et al. Identification of new compounds against PRRSV infection by directly targeting CD163[J]. J Virol, 2023, 97(5):e0005423.
[37] BURKARD C, LILLICO S G, REID E, et al. Precision engineering for PRRSV resistance in pigs:macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function[J]. PLoS Pathog, 2017, 13(2):e1006206.
[38] XU K, ZHOU Y R, SHANG H T, et al. Pig macrophages with site-specific edited CD163 decrease the susceptibility to infection with porcine reproductive and respiratory syndrome virus[J]. J Integr Agric, 2023, 22(7):2188-2199.
[39] STOIAN A M M, ROWLAND R R R, BRANDARIZ-NUEZ A. Identification of CD163 regions that are required for porcine reproductive and respiratory syndrome virus (PRRSV) infection but not for binding to viral envelope glycoproteins[J]. Virology, 2022, 574:71-83.
[40] SALGADO B, RIVAS R B, PINTO D, et al. Genetically modified pigs lacking CD163 PSTII-domain-coding exon 13 are completely resistant to PRRSV infection[J]. Antivir Res, 2024, 221:105793.
[41] LI L L, SUN W Y, HU Q F, et al. Identification of MYH9 key domain involved in the entry of PRRSV into permissive cells[J]. Front Microbiol, 2022, 13:865343.
[42] LEE W S, WHEATLEY A K, KENT S J, et al. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies[J]. Nat Microbiol, 2020, 5(10):1185-1191.
[43] YOON K J, WU L L, ZIMMERMAN J J, et al. Antibody-dependent enhancement (ADE) of porcine reproductive and respiratory syndrome virus (PRRSV) infection in pigs[J]. Viral Immunol, 1996, 9(1):51-63.
[44] SHI P D, SU Y X, LI Y, et al. The alternatively spliced porcine FcγRI regulated PRRSV-ADE infection and proinflammatory cytokine production[J]. Dev Comp Immunol, 2019, 90:186-198.
[45] QIAO S L, JIANG Z Z, TIAN X H, et al. Porcine FcγRIIb mediates enhancement of porcine reproductive and respiratory syndrome virus (PRRSV) infection[J]. PLoS One, 2011, 6(12):e28721.
[46] GU W H, GUO L J, YU H D, et al. Involvement of CD16 in antibody-dependent enhancement of porcine reproductive and respiratory syndrome virus infection[J]. J Gen Virol, 2015, 96(Pt 7):1712-1722.
[47] 張留君, 師瑞龍, 王煥弟, 等. Sn受體N端V-set結(jié)構(gòu)域和CD163受體SRCR5結(jié)構(gòu)域在PRRSV-ADE感染中的作用[J]. 中國獸醫(yī)學(xué)報, 2022, 42(12):2458-2463.
ZHANG L J, SHI R L, WANG H D, et al. Roles of N-terminal V-set domain of Sn receptor and SRCR5 domain of CD163 receptor in PRRSV-ADE infection[J]. Chinese Journal of Veterinary Science, 2022, 42(12):2458-2463. (in Chinese)
[48] 張 崢, 孫雨晨, 范闊海, 等. PAMs免疫粘附受體CR 1-like對PRRSV感染的影響[J]. 山西農(nóng)業(yè)大學(xué)學(xué)報:自然科學(xué)版, 2023, 43(2):100-110.
ZHANG Z, SUN Y C, FAN K H, et al. Effects of porcine alveolar macrophages immune adhesive receptor CR1-like on PRRSV infection[J]. Journal of Shanxi Agricultural University:Natural Science Edition, 2023, 43(2):100-110. (in Chinese)
[49] HOU J, LI R, QIAO S L, et al. Glycoprotein 5 is cleaved by cathepsin E during porcine reproductive and respiratory syndrome virus membrane fusion[J]. J Virol, 2020, 94(10):e00097-20.
[50] SONG J W, GAO P, KONG C, et al. The nsp2 hypervariable region of porcine reproductive and respiratory syndrome virus strain JXwn06 is associated with viral cellular tropism to primary porcine alveolar macrophages[J]. J Virol, 2019, 93(24):e01436-19.
[51] ZHANG A K, DUAN H, ZHAO H J, et al. Interferon-induced transmembrane protein 3 is a virus-associated protein which suppresses porcine reproductive and respiratory syndrome virus replication by blocking viral membrane fusion[J]. J Virol, 2020, 94(24):e01350-20.
[52] MISINZO G M, DELPUTTE P L, NAUWYNCK H J. Involvement of proteases in porcine reproductive and respiratory syndrome virus uncoating upon internalization in primary macrophages[J]. Vet Res, 2008, 39(6):55.
[53] YU P, WEI R P, DONG W J, et al. CD163ΔSRCR5 MARC-145 cells resist PRRSV-2 infection via inhibiting virus uncoating, which requires the interaction of CD163 with calpain 1[J]. Front Microbiol, 2020, 10:3115.
[54] WI ING M H, BR GGEMANN Y, STEINMANN E, et al. Virus-host cell interplay during hepatitis E virus infection[J]. Trends Microbiol, 2021, 29(4):309-319.
[55] WANG X, CHEN Y W, QI C Y, et al. Mechanism, structural and functional insights into nidovirus-induced double-membrane vesicles[J]. Front Immunol, 2024, 15:1340332.
[56] NAN H, LAN J X, TIAN M M, et al. The network of interactions among porcine reproductive and respiratory syndrome virus non-structural proteins[J]. Front Microbiol, 2018, 9:970.
[57] ZHAO S S, QIAN Q S, CHEN X X, et al. Porcine reproductive and respiratory syndrome virus triggers Golgi apparatus fragmentation-mediated autophagy to facilitate viral self-replication[J]. J Virol, 2024, 98(2):e0184223.
[58] V′KOVSKI P, GERBER M, KELLY J, et al. Determination of host proteins composing the microenvironment of coronavirus replicase complexes by proximity-labeling[J]. eLife, 2019, 8:e42037.
[59] FANG P X, XIE C B, PAN T, et al. Unfolding of an RNA G-quadruplex motif in the negative strand genome of porcine reproductive and respiratory syndrome virus by host and viral helicases to promote viral replication[J]. Nucleic Acids Res, 2023, 51(19):10752-10767.
[60] ZHAO S C, GE X N, WANG X L, et al. The DEAD-box RNA helicase 5 positively regulates the replication of porcine reproductive and respiratory syndrome virus by interacting with viral Nsp9 in vitro[J]. Virus Res, 2015, 195:217-224.
[61] LI J, WANG D, FANG P X, et al. DEAD-box RNA helicase 21 (DDX21) positively regulates the replication of porcine reproductive and respiratory syndrome virus via multiple mechanisms[J]. Viruses, 2022, 14(3):467.
[62] LIU L, TIAN J, NAN H, et al. Porcine reproductive and respiratory syndrome virus nucleocapsid protein interacts with Nsp9 and cellular DHX9 to regulate viral RNA synthesis[J]. J Virol, 2016, 90(11):5384-5398.
[63] BEURA L K, DINH P X, OSORIO F A, et al. Cellular poly(C) binding proteins 1 and 2 interact with porcine reproductive and respiratory syndrome virus nonstructural protein 1β and support viral replication[J]. J Virol, 2011, 85(24):12939-12949.
[64] ZHANG A G, SUN Y T, JING H Y, et al. Interaction of HnRNP F with the guanine-rich segments in viral antigenomic RNA enhances porcine reproductive and respiratory syndrome virus-2 replication[J]. Virol J, 2022, 19(1):82.
[65] SONG Y N, GUO Y Y, LI X Y, et al. RBM39 alters phosphorylation of c-Jun and binds to viral RNA to promote PRRSV proliferation[J]. Front Immunol, 2021, 12:664417.
[66] WANG X Y, BAI J, ZHANG L L, et al. Poly (A)-binding protein interacts with the nucleocapsid protein of porcine reproductive and respiratory syndrome virus and participates in viral replication[J]. Antivir Res, 2012, 96(3):315-323.
[67] GAO P, CHAI Y, SONG J W, et al. Reprogramming the unfolded protein response for replication by porcine reproductive and respiratory syndrome virus[J]. PLoS Pathog, 2019, 15(11):e1008169.
[68] ZHENG Z F, FU X L, LING X, et al. Host cells actively resist porcine reproductive and respiratory syndrome virus infection via the IRF8-MicroRNA-10a-SRP14 regulatory pathway[J]. J Virol, 2022, 96(7):e0000322.
[69] GAO J T, XIAO S Q, LIU X H, et al. Inhibition of HSP70 reduces porcine reproductive and respiratory syndrome virus replication in vitro[J]. BMC Microbiol, 2014, 14:64.
[70] SONG C H, LIU H Z, CAO Z, et al. HSP27 interacts with nonstructural proteins of porcine reproductive and respiratory syndrome virus and promotes viral replication[J]. Pathogens, 2023, 12(1):91.
[71] DONG S, LIU L, WU W N, et al. Determination of the interactome of non-structural protein12 from highly pathogenic porcine reproductive and respiratory syndrome virus with host cellular proteins using high throughput proteomics and identification of HSP70 as a cellular factor for virus replication[J]. J Proteomics, 2016, 146:58-69.
[72] CHANG X B, YANG Y Q, GAO J C, et al. Annexin A2 binds to vimentin and contributes to porcine reproductive and respiratory syndrome virus multiplication[J]. Vet Res, 2018, 49(1):75.
[73] WANG Q M, YI H Y, GUO Y C, et al. PCNA promotes PRRSV replication by increasing the synthesis of viral genome[J]. Vet Microbiol, 2023, 281:109741.
[74] WANG M D, YANG L, MENG J J, et al. Functionally active cyclin-dependent kinase 9 is essential for porcine reproductive and respiratory syndrome virus subgenomic RNA synthesis[J]. Mol Immunol, 2021, 135:351-364.
[75] ZHANG L, PAN Y, XU Y F, et al. Paraoxonase-1 facilitates PRRSV replication by interacting with viral nonstructural protein-9 and inhibiting type I interferon pathway[J]. Viruses, 2022, 14(6):1203.
[76] ZHU Z B, XU Y Q, CHEN L L, et al. Bergamottin inhibits PRRSV replication by blocking viral non-structural proteins expression and viral RNA synthesis[J]. Viruses, 2023, 15(6):1367.
[77] SONG J W, LIU Y Y, GAO P, et al. Mapping the nonstructural protein interaction network of porcine reproductive and respiratory syndrome virus[J]. J Virol, 2018, 92(24):e01112-18.
[78] SHA H Y, ZHANG H, CHEN Y, et al. Research progress on the NSP9 protein of porcine reproductive and respiratory syndrome virus[J]. Front Vet Sci, 2022, 9:872205.
[79] LI G, ZHENG Y J, LUO Q, et al. Research progress on the NSP10 protein of porcine reproductive and respiratory syndrome virus[J]. Microorganisms, 2024, 12(3):553.
[80] ZHENG Y J, ZHANG H, LUO Q, et al. Research progress on NSP11 of porcine reproductive and respiratory syndrome virus[J]. Vet Sci, 2023, 10(7):451.
[81] WANG T Y, FANG Q Q, CONG F, et al. The Nsp12-coding region of type 2 PRRSV is required for viral subgenomic mRNA synthesis[J]. Emerg Microbes Infect, 2019, 8(1):1501-1510.
[82] DENG H, XIN N, ZENG F C, et al. A novel amino acid site of N protein could affect the PRRSV-2 replication by regulating the viral RNA transcription[J]. BMC Vet Res, 2022, 18(1):171.
[83] ISELIN L, PALMALUX N, KAMEL W, et al. Uncovering viral RNA-host cell interactions on a proteome-wide scale[J]. Trends Biochem Sci, 2022, 47(1):23-38.
[84] ROZMAN B, FISHER T, STERN-GINOSSAR N. Translation-a tug of war during viral infection[J]. Mol cell, 2023, 83(3):481-495.
[85] 李 洋. PRRSV調(diào)控細胞翻譯和自噬的機制研究[D]. 武漢:華中農(nóng)業(yè)大學(xué), 2020.
LI Y. The mechanism of PRRSV regulating cell translation and autophagy[D]. Wuhan:Huazhong Agricultural University, 2020. (in Chinese)
[86] WEI R P, ZHANG X X, WANG X Y, et al. PDCD4 restricts PRRSV replication in an eIF4A-dependent manner and is antagonized by the viral nonstructural protein 9[J]. J Virol, 2024, 98(5):e0006024.
[87] 李華瑋, 王旭英, 喬宏興, 等. 慢病毒載體介導(dǎo)的穩(wěn)定表達eIF5A細胞系的建立及其對豬繁殖與呼吸綜合征病毒增殖的影響[J]. 畜牧獸醫(yī)學(xué)報, 2023, 54(3):1169-1176.
LI H W, WANG X Y, QIAO H X, et al. Establishment of a lentiviral vector-mediated stable expression of eIF5A cell line and its effect on porcine reproductive and respiratory syndrome virus propagation[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3):1169-1176. (in Chinese)
[88] 李華瑋, 王旭英, 井匯源, 等. eIF5A基因敲除MARC-145多克隆細胞系的建立及其對PRRSV增殖的影響[J]. 中國農(nóng)業(yè)大學(xué)學(xué)報, 2023, 28(7):122-129.
LI H W, WANG X Y, JING H Y, et al. Establishment of eIF5A gene knockout polyclonal MARC-145 cell line and its effect on PRRSV infection[J]. Journal of China Agricultural University, 2023, 28(7):122-129. (in Chinese)
[89] YOO D, WOOTTON S K, LI G, et al. Colocalization and interaction of the porcine arterivirus nucleocapsid protein with the small nucleolar RNA-associated protein fibrillarin[J]. J Virol, 2003, 77(22):12173-12183.
[90] KE H Z, HAN M Y, KIM J, et al. Porcine reproductive and respiratory syndrome virus nonstructural protein 1 beta interacts with nucleoporin 62 to promote viral replication and immune evasion[J]. J Virol, 2019, 93(14):e00469-19.
[91] 殷 杰, 趙永祥, 薛江東, 等. 核糖體蛋白L12(RPL12)在豬繁殖與呼吸綜合征病毒復(fù)制中的作用[J]. 江蘇農(nóng)業(yè)學(xué)報, 2021, 37(3).
YIN J, ZHAO Y X, XUE J D, et al. Role of ribosomal protein L12 (RPL12) in porcine reproductive and respiratory syndrome virus replication[J]. Jiangsu Journal of Agricultural Sciences, 2021, 37(3):686-693. (in Chinese)
[92] KUMAR R, MEHTA D, MISHRA N, et al. Role of host-mediated post-translational modifications (PTMs) in RNA virus pathogenesis[J]. Int J Mol Sci, 2020, 22(1):323.
[93] ZHAO P D, JING H Y, DONG W, et al. TRIM26-mediated degradation of nucleocapsid protein limits porcine reproductive and respiratory syndrome virus-2 infection[J]. Virus Res, 2022, 311:198690.
[94] BAI Y Z, LI L W, SHAN T L, et al. Proteasomal degradation of nonstructural protein 12 by RNF114 suppresses porcine reproductive and respiratory syndrome virus replication[J]. Vet Microbiol, 2020, 246:108746.
[95] CHEN J, ZHAO S J, CUI Z Y, et al. MicroRNA-376b-3p promotes porcine reproductive and respiratory syndrome virus replication by targeting viral restriction factor TRIM22[J]. J Virol, 2022, 96(2):e01597-21.
[96] CUI Z Y, ZHOU L K, ZHAO S J, et al. The host E3-ubiquitin ligase TRIM28 impedes viral protein GP4 ubiquitination and promotes prrsv replication[J]. Int J Mol Sci, 2023, 24(13):10965.
[97] GUO R, YAN X Y, LI Y H, et al. A swine arterivirus deubiquitinase stabilizes two major envelope proteins and promotes production of viral progeny[J]. PLoS Pathog, 2021, 17(3):e1009403.
[98] LI R Q, CHEN C, HE J, et al. E3 ligase ASB8 promotes porcine reproductive and respiratory syndrome virus proliferation by stabilizing the viral Nsp1α protein and degrading host IKKβ kinase[J]. Virology, 2019, 532:55-68.
[99] LI X Y, SUN R Q, GUO Y Y, et al. N-acetyltransferase 9 inhibits porcine reproductive and respiratory syndrome virus proliferation by N-terminal acetylation of the structural protein GP5[J]. Microbiol Spectr, 2022, 11(1):e02442-22.
[100] 易和友, 于之清, 陳 耀, 等. N蛋白磷酸化位點突變影響豬繁殖與呼吸綜合征病毒的復(fù)制及亞基因組的轉(zhuǎn)錄[J]. 畜牧獸醫(yī)學(xué)報, 2019, 50(12):2470-2478.
YI H Y, YU Z Q, CHEN Y, et al. Mutation of N protein phosphorylation site affects replication and subgenomic transcription of porcine reproductive and respiratory syndrome virus[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50(12):2470-2478. (in Chinese)
[101] SHANG P C, YUAN F F, MISRA S, et al. Hyper-phosphorylation of nsp2-related proteins of porcine reproductive and respiratory syndrome virus[J]. Virology, 2020, 543:63-75.
[102] DAS P B, VU H L X, DINH P X, et al. Glycosylation of minor envelope glycoproteins of porcine reproductive and respiratory syndrome virus in infectious virus recovery, receptor interaction, and immune response[J]. Virology, 2011, 410(2):385-394.
[103] RUPASINGHE R, LEE K, LIU X, et al. Molecular evolution of porcine reproductive and respiratory syndrome virus field strains from two swine production systems in the Midwestern United States from 2001 to 2020[J]. Microbiol Spectr, 2022, 10(3):e0263421.
[104] ZHANG M Z, HAN X L, OSTERRIEDER K, et al. Palmitoylation of the envelope membrane proteins GP5 and M of porcine reproductive and respiratory syndrome virus is essential for virus growth[J]. PLoS Pathog, 2021, 17(4):e1009554.
[105] ZHENG Z F, LING X, LI Y, et al. Host cells reprogram lipid droplet synthesis through YY1 to resist PRRSV infection[J]. mBio, 2024, 15(8):e01549-24.
[106] LAVAL T, OUIMET M. A role for lipophagy in atherosclerosis[J]. Nat Rev Cardiol, 2023, 20(7):431-432.
[107] LI G L, HAN Y Q, SU B Q, et al. Porcine reproductive and respiratory syndrome virus 2 hijacks CMA-mediated lipolysis through upregulation of small GTPase RAB18[J]. PLoS Pathog, 2024, 20(4):e1012123.
[108] WANG J, LIU J Y, SHAO K Y, et al. Porcine reproductive and respiratory syndrome virus activates lipophagy to facilitate viral replication through downregulation of NDRG1 expression[J]. J Virol, 2019, 93(17):e00526-19.
[109] YU P W, FU P F, ZENG L, et al. EGCG restricts PRRSV proliferation by disturbing lipid metabolism[J]. Microbiol Spectr, 2022, 10(2):e02276-21.
[110] DAI J, FENG Y Y, LIAO Y, et al. ESCRT machinery and virus infection[J]. Antiviral Res, 2024, 221:105786.
[111] ZHANG L X, LI R, GENG R, et al. Tumor susceptibility gene 101 (TSG101) contributes to virion formation of porcine reproductive and respiratory syndrome virus via interaction with the nucleocapsid (N) protein along with the early secretory pathway[J]. J Virol, 2022, 96(6):e00005-22.
[112] WARREN C J, YU S Q, PETERS D K, et al. Primate hemorrhagic fever-causing arteriviruses are poised for spillover to humans[J]. Cell, 2022, 185(21):3980-3991. e18.
[113] DU T F, NAN Y C, XIAO S Q, et al. Antiviral strategies against PRRSV infection[J]. Trends Microbiol, 2017, 25(12):968-979.
[114] TANG H P, GAO Y, HAN J Y. Application progress of the single domain antibody in medicine[J]. Int J Mol Sci, 2023, 24(4):4176.
[115] DE VLIEGER D, BALLEGEER M, ROSSEY I, et al. Single-domain antibodies and their formatting to combat viral infections[J]. Antibodies (Basel), 2018, 8(1):1.
[116] BUTHELEZI L A, PILLAY S, NTULI N N, et al. Antisense therapy for infectious diseases[J]. Cells, 2023, 12(16):2119.
[117] HAN X, FAN S M, PATEL D, et al. Enhanced inhibition of porcine reproductive and respiratory syndrome virus replication by combination of morpholino oligomers[J]. Antiviral Res, 2009, 82(1):59-66.
[118] OPRIESSNIG T, PATEL D, WANG R, et al. Inhibition of porcine reproductive and respiratory syndrome virus infection in piglets by a peptide-conjugated morpholino oligomer[J]. Antiviral Res, 2011, 91(1):36-42.
[119] REN J H, DUAN H, DONG H X, et al. TAT nanobody exerts antiviral effect against PRRSV in vitro by targeting viral nucleocapsid protein[J]. Int J Mol Sci, 2023, 24(3):1905.
[120] DUAN H, CHEN X, ZHANG Z W, et al. A nanobody inhibiting porcine reproductive and respiratory syndrome virus replication via blocking self-interaction of viral nucleocapsid protein[J]. J Virol, 2024, 98(1):e0131923.
(編輯 白永平)