摘 要: 犢牛腹瀉是養(yǎng)牛業(yè)面臨的重要問題,其發(fā)病率高、死亡率高、防治成本高,甚至愈后易出現(xiàn)發(fā)育遲緩、生產(chǎn)性能低下等現(xiàn)象,威脅著養(yǎng)牛業(yè)的可持續(xù)發(fā)展。而功能性寡糖作為一類水溶性膳食纖維和具有雙歧因子特性的益生元,被廣泛應(yīng)用于維護(hù)腸道健康。本文綜述了功能性寡糖的結(jié)構(gòu)、功能以及犢牛腹瀉的致病因子,并重點闡述了功能性寡糖緩解犢牛腹瀉的作用機(jī)理研究進(jìn)展,將為促進(jìn)犢牛腸道健康與功能性寡糖的合理利用提供重要參考。
關(guān)鍵詞: 功能性寡糖;犢牛腹瀉;毒力機(jī)制;腸道菌群;免疫功能
中圖分類號:S823.5
"文獻(xiàn)標(biāo)志碼:A""" 文章編號: 0366-6964(2025)03-0979-16
收稿日期:2024-04-23
基金項目:河南省重點研發(fā)與推廣專項(科技攻關(guān))項目(232102111038;232102111039;232102111049)
作者簡介:張燕敏(2000-),女,河南漯河人,碩士生,主要從事反芻動物營養(yǎng)研究,E-mail:zyanmin0718@163.com
*通信作者:常美楠,主要從事反芻動物營養(yǎng)研究,E-mail:meinan5176@126.com
Research Progress on the Mechanism of Functional Oligosaccharides Alleviating Calf Diarrhea
ZHANG" Yanmin "LIU" Shuai "TENG" Zhanwei "XIE" Hongbing "XIA" Xiaojing
HE" Yonghui "CHANG" Meinan1,2*
(1.College of Animal Science and Veterinary Medicine, Henan Institute of Science and
Technology, Xinxiang 453003," China; 2.Branch Laboratory of the Key Laboratory of Animal
Pathogens and Biosafety, Ministry of Education, Zhengzhou 450000," China)
Abstract: Calf diarrhea is an important issue faced by the cattle industry. It has high incidence and mortality rates, high prevention and treatment costs, and even developmental delays and reduced production performance after recovery, threatening the industry’s sustainable development. Functional oligosaccharides, as a type of water-soluble dietary fiber and prebiotics with bifidogenic properties, have been widely used for maintaining intestinal health. This article reviews the structure and function of functional oligosaccharides, as well as the factors that cause calf diarrhea. It also highlights the progress of research on the mechanism of functional oligosaccharides in alleviating calf diarrhea. These contents will provide an important reference for promoting calf intestinal health and the rational utilization of functional oligosaccharides.
Keywords: functional oligosaccharides; calf diarrhea; virulence mechanism; intestinal microorganism; immunity function
*Corresponding author: CHANG Meinan,E-mail: meinan5176@126.com
犢牛斷奶前胃腸道屏障功能和免疫力較低,易受到各種病原體感染,多種因素導(dǎo)致的腹瀉引起犢牛死亡率高達(dá)57%,嚴(yán)重影響?zhàn)B牛業(yè)的可持續(xù)發(fā)展[1]。在畜牧業(yè)中,抗生素廣泛用于治療犢牛腹瀉,但耐藥細(xì)菌和抗生素殘留問題日益突出。因此,急需尋找安全、天然的抗生素替代品以改善犢牛胃腸道發(fā)育,降低腹瀉率和死亡率。已有研究證實,益生菌[2]、益生元[3]、精油[4]、植物提取物[5]等對緩解犢牛腹瀉具有一定效果。其中,寡糖作為一種益生元,不僅能夠提高反芻動物的營養(yǎng)物質(zhì)吸收利用率、氮代謝[6]和抗氧化能力[7],還能夠增強(qiáng)機(jī)體免疫和胃腸道屏障功能。研究表明,功能性寡糖可促進(jìn)斷奶前或瘤胃發(fā)育前階段犢牛生長,提高飼料轉(zhuǎn)化率、減少腹瀉發(fā)生率[8-9]。因此,本文就功能性寡糖對犢牛腹瀉的緩解作用及其機(jī)理研究進(jìn)展進(jìn)行了簡要綜述,以期為功能性寡糖在反芻動物生產(chǎn)中的應(yīng)用提供參考。
1 功能性寡糖及其生理特性
寡糖,又稱為低聚糖,是由2~10個單糖單位以糖苷鍵連接而成的具有直鏈或支鏈的低度聚合糖類的總稱。在自然界,寡糖類組分以游離的狀態(tài)存在于植物體和果實中。構(gòu)成寡糖的單糖主要是五碳糖和六碳糖,包括葡萄糖、半乳糖、木糖、阿拉伯糖、鼠李糖、甘露糖、巖藻糖和半乳糖醛酸等[10]。由于其獨特的益生特性,功能性寡糖現(xiàn)已被廣泛應(yīng)用于食品、保健品、飲料、醫(yī)藥、飼料添加劑等領(lǐng)域[11]。常見的功能性寡糖有果寡糖、大豆寡糖、半乳寡糖(GOS)、異麥芽寡糖、木寡糖、甘露寡糖、殼寡糖(COS)、褐藻寡糖、異麥芽酮糖、低聚龍膽糖、水蘇糖、棉子糖、乳果糖等(表1)。
1.1 促進(jìn)有益菌增殖,抑制有害菌繁殖
功能性寡糖在促進(jìn)腸道內(nèi)有益菌增殖,優(yōu)化微生態(tài)平衡的同時,在體外抑菌試驗中還表現(xiàn)出良好的抑菌效果。研究顯示,褐藻寡糖能夠有效抑制銅綠假單胞菌、沙門菌[57,74]。COS[75]和山楂果膠寡糖[76]對大腸桿菌和金黃色葡萄球菌等有害菌也有抑制作用,這種抗菌活性的實現(xiàn)機(jī)制包括改變細(xì)菌生物膜通透性、細(xì)胞質(zhì)膜屏障功能或營養(yǎng)物質(zhì)運輸?shù)韧緩?sup>[77]。此外,COS的抗菌效果主要受到多個因素的影響,例如平均分子量、去乙?;潭取⒓?xì)菌類型、pH以及濃度等[78],隨著濃度升高和pH降低,COS的抑菌活性會進(jìn)一步增強(qiáng)[79]。桃膠寡糖在100 μg·mL-1濃度下對枯草芽孢桿菌、金黃色葡萄球菌和大腸桿菌都表現(xiàn)出較高的抑菌活性[80]。由此可見,功能性寡糖不僅有利于腸道健康,還具備作為抗菌劑的潛力,呈現(xiàn)出廣泛的應(yīng)用前景。
1.2 提高營養(yǎng)物質(zhì)的消化和吸收
反芻動物的小腸中吸收的大部分蛋白質(zhì)來源于其瘤胃中合成的微生物蛋白,這些微生物蛋白具有高消化率和優(yōu)質(zhì)的氨基酸組成,因此被認(rèn)為是反芻動物的優(yōu)質(zhì)蛋白質(zhì)來源。研究表明,如果瘤胃中可降解蛋白質(zhì)供應(yīng)不足,將會影響微生物蛋白質(zhì)的合成、纖維消化率和采食量[81]。功能性寡糖在此起到了促進(jìn)作用,不僅可以增加反芻動物對粗蛋白質(zhì)的消化率[82],還能增強(qiáng)瘤胃微生物合成微生物蛋白的能力,提高蛋白質(zhì)的利用率[7]。此外,當(dāng)雙歧桿菌利用功能性寡糖產(chǎn)生大量短鏈脂肪酸(SCFA)時,這些SCFA通過滲透作用吸收水分,增加結(jié)腸對鋅、鈣和鎂離子的吸收。這些礦物質(zhì)在滲透作用中被溶解,為生物體提供能量和代謝的底物以及必需的微量元素[83]。作為益生元飼料添加劑,功能性寡糖還能增加畜禽腸道絨毛長度和腸道絨毛長度與隱窩深度比值,從而增加營養(yǎng)物質(zhì)吸收率[84]。在動物生產(chǎn)中,功能性寡糖有助于提高蛋白質(zhì)利用率和促進(jìn)動物健康生長,因此,合理的使用可以有效地改善動物生產(chǎn)效益。
1.3 抗氧化作用
畜禽在代謝過程中會產(chǎn)生自由基和活性氧,當(dāng)氧化還原平衡被破壞時,導(dǎo)致氧化應(yīng)激現(xiàn)象,損害機(jī)體組織和細(xì)胞功能,最終影響畜禽的生長性能。功能性寡糖如COS[85-86]、MOS[87]、蘋果果膠寡糖[88]、桃膠寡糖[80]和褐藻寡糖[89]等,通過抑制自由基的產(chǎn)生和激活抗氧化酶的表達(dá),可以有效減輕氧化損傷,提高機(jī)體的抗氧化能力。功能性寡糖作為天然的抗氧化劑在動物生產(chǎn)中具有重要的潛在意義,可以為解決氧化應(yīng)激問題提供一種可行方案。
2 犢牛腹瀉的類型及發(fā)病機(jī)制
新生犢牛在前3周內(nèi)胃腸道發(fā)育不完全,極易發(fā)生腹瀉,嚴(yán)重者可導(dǎo)致犢牛死亡,引起犢牛腹瀉的因素可分為傳染性和非傳染性。
2.1 非傳染性腹瀉
引起犢牛非傳染性腹瀉的因素,包括但不限于:1)營養(yǎng)性因素;2)應(yīng)激性因素;3)代謝性因素;4)藥物性因素;5)先天性因素。除先天性因素外,另外4種因素在犢牛養(yǎng)殖過程中均可以降低發(fā)生幾率,例如改善飼料質(zhì)量和飼養(yǎng)管理;提供高質(zhì)量的綠色飼料添加劑;避免犢牛過早斷奶、運輸?shù)葢?yīng)激事件;定期進(jìn)行犢牛的體格檢查和健康管理,及時發(fā)現(xiàn)和治療犢牛的代謝性疾病;補(bǔ)充維生素和微量元素等。
2.2 傳染性腹瀉
犢牛傳染性腹瀉是一種常見的犢牛傳染病,涉及多種病原體的毒素作用、黏附和侵襲機(jī)制,嚴(yán)重影響犢牛的生長發(fā)育和養(yǎng)殖業(yè)的發(fā)展。感染犢牛腹瀉的病原一般包括細(xì)菌、病毒和寄生蟲,其中具有代表性的包括大腸桿菌、牛輪狀病毒、牛冠狀病毒、牛微小隱孢子蟲等。
2.2.1 大腸桿菌性腹瀉
大腸桿菌是引起犢牛腹瀉的常見致病細(xì)菌之一,根據(jù)其毒力因子的不同可分為多種類型,包括產(chǎn)腸毒素大腸桿菌(ETEC)、腸致病性大腸桿菌、腸侵襲性大腸桿菌、腸出血性大腸桿菌、腸聚集性大腸桿菌、產(chǎn)志賀毒素大腸桿菌等(表2)。其中ETEC誘發(fā)的犢牛腹瀉具有發(fā)病范圍廣、傳播速度快等特點,給犢牛養(yǎng)殖造成了巨大的困擾和損失。犢牛出生后不久通過糞口傳播途徑感染ETEC,由于較高的真胃pH、緩慢的腸道運動和缺乏競爭菌群等因素快速定植于回腸-盲腸交界處[90]。由于ETEC具有特定的黏附素,如K99菌毛,通過與宿主細(xì)胞表面的特異受體結(jié)合,實現(xiàn)在犢牛腸上皮細(xì)胞的黏附。一旦附著成功,大腸桿菌開始繁殖并形成微菌落,覆蓋在腸道絨毛表面。這種附著機(jī)制有助于細(xì)菌在腸道內(nèi)定植,并產(chǎn)生熱不穩(wěn)定毒素(LT)、熱穩(wěn)定毒素a(STa)、熱穩(wěn)定毒素b(STb)。這些毒素通過不同的途徑作用于腸細(xì)胞,引起犢牛水樣腹瀉、脫水、電解質(zhì)失衡等,最終可能導(dǎo)致犢牛死亡。ETEC的毒力因子致腹瀉機(jī)制見圖1。
LT是由A亞基和B亞基組成的低聚毒素,A亞基由A1和A2通過二硫鍵連接,A1亞基是活性分子,A2亞基則將A亞基錨定在B亞基上。B亞基與質(zhì)膜上的單唾液神經(jīng)節(jié)苷(GM1)具有高親和力,與之結(jié)合后通過內(nèi)吞作用進(jìn)入細(xì)胞內(nèi)部,LT全毒素通過囊泡轉(zhuǎn)移到高爾基體并被分解,A1亞基穿過內(nèi)質(zhì)網(wǎng)(ER)膜進(jìn)入胞質(zhì)溶膠。A1亞基與ADP-核糖基化因子(ARF)的活性位點結(jié)合,ADP-核糖基化G蛋白的Gsα亞基,這導(dǎo)致Gsα的內(nèi)在GTP酶(Gsα GTPase)活性降低,從而刺激腺苷酸環(huán)化酶,導(dǎo)致環(huán)磷酸腺苷(cAMP)水平升高,激活了依賴性蛋白激酶A(PKA),PKA通過刺激刷狀邊界的囊性纖維化跨膜調(diào)節(jié)因子(CFTR)刺激Cl-和HCO3-的分泌,還通過磷酸化NHE3抑制腸道對Na+的重吸收,導(dǎo)致腸腔內(nèi)液體和電解質(zhì)潴留,引發(fā)腹瀉[97]。
Sta能夠與小腸上皮細(xì)胞刷狀緣膜上的鳥苷酸環(huán)化酶C(GC-C)受體結(jié)合,從而激活其細(xì)胞內(nèi)催化結(jié)構(gòu)域,導(dǎo)致三磷酸鳥苷(GTP)水解引發(fā)細(xì)胞內(nèi)環(huán)狀GMP(cGMP)水平急劇升高。cGMP的蓄積激活cGMP依賴性蛋白激酶II(PKGII),抑制磷酸二酯酶3(PDE3),激活PKA,PKA刺激CFTR通道,促使Cl-和HCO3-釋放到腸腔中,同時PKA阻斷NHE3通道抑制Na+重吸收[92]。
STb與存在于腸上皮細(xì)胞上的硫酸鹽(SFT)受體結(jié)合,通過內(nèi)吞作用進(jìn)入細(xì)胞后,STb刺激百日咳毒素敏感GTP結(jié)合調(diào)節(jié)蛋白(Gαi3),導(dǎo)致Ca2+進(jìn)入細(xì)胞并激活鈣調(diào)蛋白依賴性激酶Ⅱ(CAMKⅡ)和蛋白激酶C(PKC),CAMKⅡ和PKC激活CFTR通道,CAMKⅡ還可打開一個鈣活化的Cl-通道(CaCC),導(dǎo)致腸道積液。PKC還可阻斷NHE3通道抑制Na+重吸收。細(xì)胞內(nèi)Ca2+水平增加會刺激膜脂通過磷脂酶A2(PLA2)和磷脂酶C(PLC)來合成腸道促泌劑前列腺素E2(PGE2)和五羥色胺(5-HT),這些分子也調(diào)節(jié)腸道內(nèi)Cl-、HCO3-和Na+等電解質(zhì)和水的聚積,引起腹瀉[92]。5-HT作用于腸神經(jīng)系統(tǒng),可以收縮腸壁平滑肌,研究表明,腸道內(nèi)5-HT含量升高還與腸道炎癥有關(guān)[98]。
2.2.2 輪狀病毒性腹瀉
牛輪狀病毒主要感染新生犢牛[100]。犢牛通過口腔途徑感染后,病毒最先定植在十二指腸絨毛上皮細(xì)胞,在胰蛋白酶和糜蛋白酶的幫助下清除病毒的外層衣殼蛋白,導(dǎo)致病毒感染性增強(qiáng),同時激活RNA聚合酶,轉(zhuǎn)錄產(chǎn)生mRNA的正鏈RNA分子,在細(xì)胞質(zhì)中開始復(fù)制增殖,進(jìn)一步向小腸遠(yuǎn)端擴(kuò)散并釋放大量病毒。病毒增殖不僅導(dǎo)致腸細(xì)胞脫落,腸絨毛萎縮,還會產(chǎn)生腸毒素NSP4,引起腸腔內(nèi)液體吸收和分泌功能紊亂,電解質(zhì)轉(zhuǎn)運失衡,以及腸道上皮細(xì)胞的炎癥,最終導(dǎo)致犢牛腹瀉[101]。研究發(fā)現(xiàn),牛輪狀病毒通常與ETEC混合感染,ETEC存在時增加了牛輪狀病毒引起腹瀉的嚴(yán)重程度[90]?;旌细腥究蓪?dǎo)致犢牛體溫升高,白細(xì)胞減少,最終死于消化道潰瘍引起的出血性腸炎。
2.2.3 冠狀病毒性腹瀉
犢牛冠狀病毒性腹瀉與牛輪狀病毒引起腹瀉的流行病學(xué)和病理生理學(xué)具有極大地相似性,但其臨床癥狀和腸道病變比感染輪狀病毒時嚴(yán)重。牛冠狀病毒即使不與大腸桿菌并存,也可導(dǎo)致犢牛死亡。犢牛感染牛冠狀病毒后,從近端小腸開始擴(kuò)散至整個腸道。首先,病毒通過刺突和血凝素糖蛋白附著在腸細(xì)胞上,病毒包膜通過與細(xì)胞膜或內(nèi)吞囊泡融合進(jìn)入細(xì)胞,此后開始大量復(fù)制,引起細(xì)胞凋亡并出現(xiàn)絨毛樣鈍化,嚴(yán)重?fù)p傷腸道[102]。
2.2.4 寄生蟲性腹瀉
除了病毒性感染,寄生蟲感染也是造成犢牛腹瀉不可忽視的一種病因,犢牛通過糞口傳播途徑感染,導(dǎo)致消化紊亂和持續(xù)性腹瀉,甚至死亡。對犢牛威脅最大的是牛微小隱孢子蟲,感染后可誘發(fā)嚴(yán)重的腸絨毛萎縮。犢牛攝入卵囊后由于胃腸道的低pH環(huán)境和體溫,卵囊釋放4個孢子體并黏附在回腸上皮細(xì)胞上發(fā)育成滋養(yǎng)體,在經(jīng)歷有性和無性繁殖后產(chǎn)生薄壁卵囊和厚壁卵囊。薄壁卵囊自體感染上皮細(xì)胞,厚壁卵囊隨宿主糞便排出[103]。
綜上,犢牛傳染性腹瀉的毒力侵襲機(jī)制是一個復(fù)雜而多樣的過程,不同的病原體入侵犢牛機(jī)體后引起腸道菌群紊亂,腸上皮通透性增加,誘發(fā)炎癥反應(yīng),導(dǎo)致犢牛腹瀉。因此,保持腸道健康和加強(qiáng)機(jī)體免疫力對于減輕犢牛腹瀉至關(guān)重要。
3 功能性寡糖緩解犢牛腹瀉的作用機(jī)理
寡糖作為一種新型功能性飼料添加劑,可通過以下三種機(jī)制發(fā)揮其緩解犢牛腹瀉的作用效果,包括調(diào)節(jié)腸道菌群結(jié)構(gòu)、增強(qiáng)屏障功能和提高機(jī)體免疫力。下面對功能性寡糖緩解犢牛腹瀉的作用機(jī)理進(jìn)行探討。
3.1 促進(jìn)胃腸道有益微生物生長,抵抗病原菌定植
腸道菌群是一個復(fù)雜的共生微生態(tài)系統(tǒng),在機(jī)體內(nèi)相互依存,始終處于動態(tài)平衡,對反芻動物的營養(yǎng)代謝和免疫屏障功能具有重要作用。功能性寡糖作為益生菌的“食物”,可調(diào)控動物胃腸道菌群多樣性與結(jié)構(gòu),抑制病原菌在宿主體內(nèi)定植。研究表明,連續(xù)28 d在飼糧中添加GOS可顯著增加犢牛直腸中放線菌門、毛螺菌科、乳酸桿菌屬和瘤胃球菌屬的相對豐度[104]。添加MOS或GOS也有效減少犢牛糞便中大腸桿菌數(shù)量,顯著增加乳酸桿菌和雙歧桿菌的豐度,降低犢牛腹瀉率[105-107]。含有6 g果寡糖的合生元能調(diào)控犢牛糞便菌群和代謝物,降低糞便評分和腹瀉發(fā)生率[108]。將低聚果糖與噴霧干燥的牛血清聯(lián)用,可降低犢牛腸道疾病的發(fā)病率和嚴(yán)重程度[109]。瘤胃作為反芻動物的厭氧發(fā)酵罐,寄居著龐大而多樣的微生物,包括細(xì)菌、真菌、古菌和原蟲等。這些微生物輔助消化植物纖維,在瘤胃內(nèi)進(jìn)行發(fā)酵代謝,維持瘤胃內(nèi)環(huán)境穩(wěn)定。飼糧作為瘤胃微生物發(fā)酵的底物,在早期階段可直接影響微生物的定植。研究發(fā)現(xiàn),GOS可增加反芻動物瘤胃中的原蟲數(shù)量[110]。在犢牛飼糧中添加GOS可以促進(jìn)瘤胃微生物定植,如普雷沃氏菌屬,同時對瘤胃發(fā)酵具有持續(xù)作用,增加SCFA濃度,這有助于微生物蛋白的合成[3]。Li等[111]利用瘤胃發(fā)酵技術(shù)評估寡糖和多糖對瘤胃發(fā)酵和細(xì)菌數(shù)量的影響,結(jié)果表明,香菇多糖和木寡糖可作為潛在的飼料添加劑操縱瘤胃發(fā)酵。功能性寡糖起到可溶性纖維和益生元的作用,在瘤胃和腸道內(nèi)被微生物發(fā)酵產(chǎn)生SCFA,如乙酸、丙酸、丁酸,這些SCFA可作為乳酸桿菌和雙歧桿菌等有益菌的底物,促進(jìn)有益菌增殖[112]。
功能性寡糖具有抗菌活性,能夠直接與有害微生物接觸并抑制其增殖,被認(rèn)為是病原體增殖的抑制劑。其作用機(jī)制包括以下兩個方面:1)寡糖促進(jìn)乳酸桿菌、雙歧桿菌等有益菌或常駐菌增殖,這些有益菌或常駐菌一方面與腸道內(nèi)的有害菌競爭營養(yǎng)物質(zhì)和生存空間,另一方面它們代謝產(chǎn)生的SCFA能降低胃腸道微環(huán)境的pH,間接抑制大腸桿菌、沙門菌等有害菌(生存環(huán)境的pH一般在8左右)在胃腸道內(nèi)的增殖[109]。此外,乳酸桿菌和雙歧桿菌可產(chǎn)生蛋白質(zhì)或乳鏈球菌肽等抗菌化合物,通過競爭排出有害菌或抑制其生長,減少胃腸道有害微生物的數(shù)量[113]。2)寡糖與腸道上皮細(xì)胞表面的糖蛋白受體結(jié)構(gòu)相似,可作為受體類似物,抑制病原體在腸上皮細(xì)胞的黏附[114-115]。體外試驗結(jié)果顯示,GOS可減少病原菌的數(shù)量,降低腸致病性大腸桿菌對結(jié)腸上皮細(xì)胞的黏附[116]。將HT-29細(xì)胞暴露于富含游離寡糖的牛初乳中,能夠增加雙歧桿菌對細(xì)胞的黏附,抑制腸道病原體的黏附[117]。果膠寡糖與Stx2競爭性結(jié)合細(xì)胞上的受體,能抑制產(chǎn)志賀毒素大腸桿菌O157:H7對HT-29細(xì)胞的黏附,還能降低細(xì)胞中的Stx2細(xì)胞毒性[118]。這提示寡糖可能靶向作用于病原菌的毒力因子來發(fā)揮抑菌效果,然而詳細(xì)的作用機(jī)制仍有待進(jìn)一步剖析。
3.2 恢復(fù)腸道屏障功能
胃腸道黏膜表面排列著緊密連接的上皮細(xì)胞,構(gòu)建了一個半透性屏障,既防止有害物質(zhì)通過,又允許必要營養(yǎng)物質(zhì)和電解質(zhì)的吸收。這種腸道屏障功能涉及細(xì)胞內(nèi)和細(xì)胞外各種元素的復(fù)雜防御系統(tǒng),對抵抗病原體入侵至關(guān)重要。腸道屏障完整性受損將導(dǎo)致腸道功能障礙[119]。二胺氧化酶(DAO)是評估腸道機(jī)械屏障完整性和黏膜絨毛損傷程度的重要指標(biāo),其釋放到血液中可反映腸道上皮的損傷程度。He等[120]發(fā)現(xiàn),大腸桿菌可顯著提高犢牛血清中DAO和內(nèi)毒素水平,降低腸道上皮細(xì)胞緊密連接蛋白Occludin、Claudin-1和ZO-1的表達(dá)水平,表明大腸桿菌導(dǎo)致的犢牛腹瀉會破壞腸道屏障,增加腸道通透性。寡糖可通過改善腸道通透性和調(diào)節(jié)腸道上皮細(xì)胞緊密連接蛋白的表達(dá)增強(qiáng)犢牛的腸道屏障功能。COS不僅可以抑制大腸桿菌增殖,還能通過影響血清中DAO活性和D-乳酸濃度改善腸道通透性[121]。果寡糖在體外和體內(nèi)試驗中均顯著提高了仔豬緊密連接蛋白Occludin、ZO-1的表達(dá)水平,降低仔豬血清中DAO、D-乳酸和內(nèi)毒素的濃度[122]。在哺乳期羔羊的開食料中添加1%果寡糖能降低血清中DAO和D-乳酸的含量[14]。仔雞感染ETEC K88導(dǎo)致腸道緊密連接蛋白表達(dá)水平降低,而殼寡糖干預(yù)后能顯著上調(diào)仔雞Occludin、Claudin、和ZO-1的表達(dá)水平,修復(fù)受損的腸道屏障[51]。寡糖還可增強(qiáng)腸道的生物屏障和免疫屏障功能,提高腸黏膜的抵抗力和修復(fù)能力,減少病原菌對腸道的侵害,緩解犢牛腹瀉。寡糖益生元通過抑制病原微生物的生長、降低pH、阻止肽降解和毒素合成等方式增強(qiáng)宿主的生物屏障,維持腸道健康[123]。殼寡糖能緩解LPS誘導(dǎo)的緊密連接蛋白表達(dá)下調(diào)和杯狀細(xì)胞數(shù)量、黏蛋白含量的降低,促進(jìn)腸道上皮細(xì)胞緊密連接復(fù)合體結(jié)構(gòu)的修復(fù),改善腸道屏障[124-125]。此外,由魔芋葡甘聚糖純化得到的卡拉膠寡糖通過增加MUC2基因的表達(dá)來改善結(jié)腸黏膜屏障功能[126]。低聚果糖能預(yù)防早期斷奶犢牛腸絨毛萎縮,維持腸道的正常形態(tài)結(jié)構(gòu)[127]。
3.3 提高機(jī)體免疫力
新生犢牛胃腸道發(fā)育不完善,機(jī)體免疫力與抗病能力差,易受病原菌、氣候變化等外界因素影響發(fā)生腹瀉。犢牛出生24~48 h,血清IgG含量低于10 mg·mL-1或血清總蛋白含量低于5.2~5.5 g·dL-1時被界定為免疫失敗,由于缺乏足夠的抗體保護(hù),犢牛在早期生長階段更容易受到腹瀉病毒的感染[128]。因此,犢牛出生后必須依靠攝入初乳來克服無丙種球蛋白血癥(先天性或獲得性血清免疫球蛋白濃度低)[129]。炎癥調(diào)節(jié)在維持體內(nèi)平衡中起著至關(guān)重要的作用,炎癥反應(yīng)是機(jī)體對外界刺激的一種自然保護(hù)機(jī)制。腹瀉犢牛血液中促炎細(xì)胞因子,如IL-1β、IL-6和TNF-α濃度顯著升高[130]。研究發(fā)現(xiàn),腹瀉犢牛血清中IL-6濃度高于康復(fù)犢牛,IL-6可作為新生犢牛腹瀉的預(yù)后指標(biāo)[131]。寡糖益生元可通過增加免疫球蛋白和抗炎因子水平,降低促炎因子水平,從而達(dá)到提高犢牛免疫力的目的。以往研究證實,MOS可降低幼齡反芻動物血清中IL-6水平,增加IL-4水平和回腸消化液的sIgA濃度[132]。MOS還能提高犢牛血清中IgA、IgM、IgG、IL-2的含量,降低IL-1和TNF-α的含量,通過改善腸道微生物組成,增強(qiáng)犢牛免疫力,減少炎癥反應(yīng),緩解犢牛腹瀉[133]。在產(chǎn)前給母牛飼喂MOS可增加產(chǎn)后初乳中IgG的濃度,亦可增加犢牛對初乳中IgG的吸收[134]。果寡糖和復(fù)合益生菌組合可降低犢牛血清中IL-1含量,增加IgG含量[135]。新生犢牛飼喂10 g·d-1 GOS可增加血清中IgA和IgG濃度,改善腸道菌群結(jié)構(gòu),緩解犢牛腹瀉,提高生長性能[105,135]。此外,Toll樣受體(TLR)在犢牛先天免疫中發(fā)揮關(guān)鍵作用,它能夠直接感應(yīng)碳水化合物和細(xì)菌細(xì)胞壁成分,如大腸桿菌分泌的內(nèi)毒素(LPS)、病原體相關(guān)分子模式,從而激活免疫系統(tǒng)。TLR的識別通過激活下游靶蛋白MyD88以及MAPK和NF-κB等炎癥信號通路導(dǎo)致促炎細(xì)胞因子的表達(dá)量增加,從而誘發(fā)腸道炎癥。Wan等[136]的研究表明,褐藻寡糖可下調(diào)ETEC感染后宿主空腸黏膜中TLR4和MyD88的mRNA水平,降低NF-κB p65的核豐度,抑制LPS誘導(dǎo)的小腸上皮細(xì)胞中NF-κB通路的活化,繼而阻止炎癥因子過度分泌。由此可見,寡糖的應(yīng)用可調(diào)節(jié)炎癥反應(yīng),增強(qiáng)免疫力,緩解腹瀉癥狀,為維護(hù)犢牛健康提供了一種有效途徑。
4 展 望
綜上所述,功能性寡糖在緩解犢牛腹瀉的研究中展現(xiàn)出了積極的作用效果,為改善犢牛健康提供了新的思路和方法。未來的研究可以進(jìn)一步探索不同種類和劑量的寡糖在防治犢牛腹瀉過程中的作用機(jī)制,以及寡糖與其他營養(yǎng)成分的配伍應(yīng)用對犢牛健康的綜合影響,為犢牛養(yǎng)殖業(yè)的可持續(xù)發(fā)展提供更多有益的信息和策略。
參考文獻(xiàn)(References):
[1] DU W J,WANG X H,HU M Y,et al.Modulating gastrointestinal microbiota to alleviate diarrhea in calves[J].Front Microbiol,2023,14:1181545.
[2] ABD EL-TAWAB M M,YOUSSEF I M I,BAKR H A,et al.Role of probiotics in nutrition and health of small ruminants[J].Pol J Vet Sci,2016,19(4):893-906.
[3] CHANG M N,WANG F F,MA F T,et al.Supplementation with galacto-oligosaccharides in early life persistently facilitates the microbial colonization of the rumen and promotes growth of preweaning Holstein dairy calves[J].Anim Nutr,2022,10:223-233.
[4] LIU T,CHEN H,BAI Y,et al.Calf starter containing a blend of essential oils and prebiotics affects the growth performance of Holstein calves[J].J Dairy Sci,2020,103(3):2315-2323.
[5] JAHANI-AZIZABADI H,BARAZ H,BAGHERI N,et al.Effects of a mixture of phytobiotic-rich herbal extracts on growth performance,blood metabolites,rumen fermentation,and bacterial population of dairy calves[J].J Dairy Sci,2022,105(6):5062-5073.
[6] ZHENG C,ZHOU J W,ZENG Y Q,et al.Effects of mannan oligosaccharides on growth performance,nutrient digestibility,ruminal fermentation and hematological parameters in sheep[J].PeerJ,2021,9:e11631.
[7] ZHENG C,LI F D,HAO Z L,et al.Effects of adding mannan oligosaccharides on digestibility and metabolism of nutrients,ruminal fermentation parameters,immunity,and antioxidant capacity of sheep[J].J Anim Sci,2018,96(1):284-292.
[8] ROODPOSHTI P M,DABIRI N.Effects of probiotic and prebiotic on average daily gain,fecal shedding of Escherichia coli,and immune system status in newborn female calves[J].Asian-Australas J Anim Sci,2012,25(9):1255-1261.
[9] GHOSH S,MEHLA R K.Influence of dietary supplementation of prebiotics (mannanoligosaccharide) on the performance of crossbred calves[J].Trop Anim Health Prod,2012,44(3):617-622.
[10] 崔連杰,李 科,李震宇,等.寡糖提取分離與質(zhì)譜結(jié)構(gòu)解析研究進(jìn)展[J].藥學(xué)學(xué)報,2020,55(5):843-853.
CUI L J,LI K,LI Z Y,et al.Progress in oligosaccharide extraction,separation and structural analysis by mass spectrometry[J].Acta Pharmaceutica Sinica,2020,55(5):843-853.(in Chinese)
[11] 常美楠,朱亞如,趙 元,等.功能性低聚糖及其緩解機(jī)體過敏反應(yīng)的研究進(jìn)展[J].動物營養(yǎng)學(xué)報,2018,30(6):2090-2096.
CHANG M N,ZHU Y R,ZHAO Y,et al.Research progress of functional oligosaccharides alleviate body allergic reaction and its mechanism[J].Chinese Journal of Animal Nutrition,2018,30(6):2090-2096.(in Chinese)
[12] HUANG X Q,CHEN Q Y,F(xiàn)AN Y Y,et al.Fructooligosaccharides attenuate non-alcoholic fatty liver disease by remodeling gut microbiota and association with lipid metabolism[J].Biomed Pharmacother,2023,159:114300.
[13] 李 炯,唐亞楠,魏 賾,等.果寡糖對哺乳羔羊營養(yǎng)物質(zhì)表觀消化率及糞便微生物菌群的影響[J].動物營養(yǎng)學(xué)報,2024,36(2):1096-1106.
LI J,TANG Y N,WEI Z,et al.Effects of fructooligosaccharides on apparent digestibility of nutrients and fecal microbial flora in suckling lambs[J].Chinese Journal of Animal Nutrition,2024,36(2):1096-1106.(in Chinese)
[14] 李 炯,唐亞楠,魏 賾,等.果寡糖對哺乳羔羊生長性能及斷奶應(yīng)激的影響[J].動物營養(yǎng)學(xué)報,2024,36(1):397-405.
LI J,TANG Y N,WEI Z,et al.Effects of fructooligosaccharides on growth performance and weaning stress of suckling lambs[J].Chinese Journal of Animal Nutrition,2024,36(1):397-405.(in Chinese)
[15] 趙義潤,馬曉康,張文熙,等.低聚果糖替代金霉素對斷奶仔豬生長性能及血清生化指標(biāo)的影響[J].飼料研究,2023,46(19):16-20.
ZHAO Y R,MA X K,ZHANG W X,et al.Effect of fructooligosaccharides replacing chloramphenicol on growth performance and serum biochemical indexes of weaned piglets[J].Feed Research,2023,46(19):16-20.(in Chinese)
[16] PENGRATTANACHOT N,THONGNAK L,LUNGKAPHIN A.The impact of prebiotic fructooligosaccharides on gut dysbiosis and inflammation in obesity and diabetes related kidney disease[J].Food Funct,2022,13(11):5925-5945.
[17] NAKATA T,KYOUI D,TAKAHASHI H,et al.Inhibitory effects of soybean oligosaccharides and water-soluble soybean fibre on formation of putrefactive compounds from soy protein by gut microbiota[J].Int J Biol Macromol,2017,97:173-180.
[18] 劉小平,周英煥,高玉云.大豆寡糖的生理功能及在畜禽營養(yǎng)中的應(yīng)用研究進(jìn)展[J].中國畜牧雜志,2024,60(3):39-45.
LIU X P,ZHOU Y H,GAO Y Y.Research progress on the physiological function of soybean oligosaccharides and its application in livestock and poultry nutrition[J].Chinese Journal of Animal Science,2024,60(3):39-45.(in Chinese)
[19] ZHANG M,CAI S L,MA J W.Evaluation of cardio-protective effect of soybean oligosaccharides[J].Gene,2015,555(2):329-334.
[20] LIU H Y,LI X,ZHU X,et al.Soybean oligosaccharides attenuate odour compounds in excreta by modulating the caecal microbiota in broilers[J].Animal,2021,15(3):100159.
[21] BERGANDI L,F(xiàn)LUTTO T,VALENTINI S,et al.Whey derivatives and galactooligosaccharides stimulate the wound healing and the function of human keratinocytes through the NF-κB and FOXO-1 signaling pathways[J].Nutrients,2022,14(14):2888.
[22] SUN C C,HAO B F,PANG D R,et al.Diverse galactooligosaccharides differentially reduce LPS-induced inflammation in macrophages[J].Foods,2022,11(24):3973.
[23] WANG G,WANG H D,JIN Y Y,et al.Galactooligosaccharides as a protective agent for intestinal barrier and its regulatory functions for intestinal microbiota[J].Food Res Int,2022,155:111003.
[24] 高 仁,田時祎,汪 晶,等.低聚半乳糖對脂多糖刺激哺乳仔豬盲腸微生物區(qū)系、腸道炎癥和屏障功能的影響[J].動物營養(yǎng)學(xué)報,2022,34(1):177-189.
GAO R,TIAN S Y,WANG J,et al.Effects of galacto-oligosaccharides on cecal microflora,intestinal inflammation and barrier function of suckling piglets stimulated by lipopolysaccharides[J].Chinese Journal of Animal Nutrition,2022,34(1):177-189.(in Chinese)
[25] MORTAZ E,NOMANI M,ADCOCK I,et al.Galactooligosaccharides and 2’-fucosyllactose can directly suppress growth of specific pathogenic microbes and affect phagocytosis of neutrophils[J].Nutrition,2022,96:111601.
[26] 王飛飛,常美楠,馬峰濤,等.低聚半乳糖對荷斯坦?fàn)倥IL性能、血清生化指標(biāo)及礦物質(zhì)元素含量的影響[J].動物營養(yǎng)學(xué)報,2022,34(3):1623-1631.
WANG F F,CHANG M N,MA F T,et al.Effects of galactooligosaccharides on growth performance,serum biochemical parameters and mineral element contents of Holstein calves[J].Chinese Journal of Animal Nutrition,2022,34(3):1623-1631.(in Chinese)
[27] DOS SANTOS E F,TSUBOI K H,ARAJO M R,et al.Dietary galactooligosaccharides increase calcium absorption in normal and gastrectomized rats[J].Rev Col Bras Cir,2011,38(3):186-191.
[28] KIM S K,JANG W J,KIM C E,et al.Characterization of Latilactobacillus curvatus MS2 isolated from Korean traditional fermented seafood and cholesterol reduction effect as synbiotics with isomalto-oligosaccharide in BALB/c mice[J].Biochem Biophys Res Commun,2021,571:125-130.
[29] 吳 俊,許二學(xué),劉 強(qiáng).日糧添加異麥芽寡糖對斷奶仔豬生長性能、抗氧化和免疫性能及腸道微生物含量的影響[J].中國飼料,2018(12):46-50.
WU J,XU E X,LIU Q.Effects of dietary supplementation of isomalto oligosaccharide on growth performance,antioxidant capacity,immunity and gut microbiota of weaning pigs[J].China Feed,2018(12):46-50.(in Chinese)
[30] 孫鎮(zhèn)平,孫 偉,于瑞奎,等.異麥芽寡糖菌質(zhì)粉對黃羽肉雞盲腸pH及免疫性能的影響[J].飼料研究,2014(11):23-27.
SUN Z P,SUN W,YU R K,et al.Effects of isomaltooligosaccharide fungal powder on cecal pH and immune performance of yellow-feathered broilers[J].Feed Reaserch,2014(11):23-27.(in Chinese)
[31] 孫鎮(zhèn)平,于瑞奎,林 琳,等.玉米源異麥芽寡糖菌質(zhì)粉對黃羽肉雞生長性能和激素分泌的影響[J].動物營養(yǎng)學(xué)報,2012,24(5):918-925.
SUN Z P,YU R K,L L,et al.Effects of activity flour of isomalto-oligosaccharides bacterium substance from corn on growth performance and hormone secretion of yellow-feathered broilers[J].Chinese Journal of Animal Nutrition,2012,24(5):918-925.(in Chinese)
[32] UM H E,PARK B R,KIM Y M,et al.Slow digestion properties of long-sized isomaltooligosaccharides synthesized by a transglucosidase from Thermoanaerobacter thermocopriae[J].Food Chem,2023,417:135892.
[33] CHEN J K,LI Z P,WANG X F,et al.Isomaltooligosaccharides sustain the growth of Prevotella both in vitro and in animal models[J].Microbiol Spectr,2022,10(6):e0262121.
[34] PI G L,WANG J M,SONG W X,et al.Effects of isomalto-oligosaccharides and herbal extracts on growth performance,serum biochemical profiles and intestinal bacterial populations in early-weaned piglets[J].J Anim Physiol Anim Nutr (Berl),2022,106(3):671-681.
[35] 方明玉,湯 柳,李子墨,等.低聚木糖緩解DNFB誘導(dǎo)的特應(yīng)性皮炎小鼠炎癥性皮膚病及相關(guān)抑郁樣行為(英文)[J/OL].食品科學(xué),1-24[2024-02-27].http://kns.cnki.net/kcms/detail/11.2206.TS.20240227.0943.008.html.
FANG M Y,TANG L,LI Z M,et al.Xylooligosaccharide alleviates inflammatory dermatosis and related depressive-like behaviors in atopic dermatitis mice induced by DNFB(in English)[J/OL].Food Science,1-24[2024-02-27].http://kns.cnki.net/kcms/detail/11.2206.TS.20240227.0943.008.html.
[36] 繆金露,張華建.木寡糖提高擬南芥抗病性[J].中國生物防治學(xué)報,2021,37(1):150-155.
MIAO J L,ZHANG H J.Xylo-oligosaccharides elicits disease resistance in Arabidopsis[J].Chinese Journal of Biological Control,2021,37(1):150-155.(in Chinese)
[37] 楊海峰,何宏勇,李艷艷,等.木寡糖對蛋雞產(chǎn)蛋性能、蛋品質(zhì)、營養(yǎng)物質(zhì)消化率和血清生化指標(biāo)的影響[J].中國飼料,2018(8):50-55.
YANG H F,HE H Y,LI Y Y,et al.Effects of xylooligosaccharides on laying performance,egg quality,nutrient digestibility and serum biochemistry parameters in laying hens[J].China Feed,2018(8):50-55.(in Chinese)
[38] ZHANG S M,REN L L,ZHANG C M,et al.Research note:xylooligosaccharide directly attenuates Salmonella Typhimurium colonization and its induction of impairments in intestinal barrier and growth performance of broilers[J].Poult Sci,2024,103(1):103184.
[39] LI Q,WANG J X,YANG J Y,et al.Xylooligosaccharide ameliorates insulin resistance by alleviating gut microbiota dybiosis and modulating NKG2D signaling in gestational diabetes mellitus women[J].Curr Dev Nutr,2023,7:101534.
[40] TANG S L,CHEN Y X,DENG F L,et al.Xylooligosaccharide-mediated gut microbiota enhances gut barrier and modulates gut immunity associated with alterations of biological processes in a pig model[J].Carbohydr Polym,2022,294:119776.
[41] SHU X L,TONG Y J,YANG R J.Administration of xylo-oligosaccharides improves depressive-like behaviour in mice caused by chronic unpredictable mild stress by altering microbiota composition[J].Int J Food Sci Technol,2022,57(7):4222-4233.
[42] YUAN C S,REN L L,SUN R,et al.Mannan oligosaccharides improve the fur quality of raccoon dogs by regulating the gut microbiota[J].Front Microbiol,2023,14:1324277.
[43] 王賀麗.甘露寡糖對斷奶仔豬生長性能、血清免疫指標(biāo)及經(jīng)濟(jì)效益的影響[J].飼料研究,2023,46(11):35-39.
WANG H L.Effect of mannan oligosaccharides on growth performance,serum immunity indicators and breeding economic benefits of weaned piglets[J].Feed Research,2023,46(11):35-39.(in Chinese)
[44] 張賽偉,段春輝,張昕妍,等.甘露寡糖對圍產(chǎn)期湖羊母羊采食量、體重及血清生化指標(biāo)的影響[J].動物營養(yǎng)學(xué)報,2023,35(3):1791-1802.
ZHANG S W,DUAN C H,ZHANG X Y,et al.Effects of Mannan oligosaccharide on feed intake,body weight and serum biochemical indexes of perinatal Hu sheep ewes[J].Chinese Journal of Animal Nutrition,2023,35(3):1791-1802.(in Chinese)
[45] 李 勝,袁非凡,李寒梅,等.甘露寡糖劑量和添加時間對肉雞生長性能及血清生化指標(biāo)的影響[J].中國飼料,2022(13):66-71.
LI S,YUAN F F,LI H M,et al.Effects of mannan oligosaccharide dosage and addition time on growth performance and serum biochemical indexes of broilers[J].China Feed,2022(13):66-71.(in Chinese)
[46] FAUSTINO M,SILVA S,COSTA E M,et al.Effect of mannan oligosaccharides extracts in uropathogenic Escherichia coli adhesion in human bladder cells[J].Pathogens,2023,12(7):885.
[47] LU Z Y,F(xiàn)ENG L,JIANG W D,et al.Mannan oligosaccharides alleviate oxidative injury in the head kidney and spleen in grass carp (Ctenopharyngodon idella) via the Nrf2 signaling pathway after Aeromonas hydrophila infection[J].J Anim Sci Biotechnol,2023,14(1):58.
[48] MITTAL A,SINGH A,HONG H,et al.Chitooligosaccharide and its conjugates with different polyphenols:antihypertensive activity and blood pressure lowering effects in spontaneously hypertensive rats[J].J Funct Foods,2024,113:106039.
[49] 沈巧玲,劉光敏,王亞欽,等.殼寡糖對羽衣甘藍(lán)芽苗硫代葡萄糖苷及抗氧化活性的影響[J].華北農(nóng)學(xué)報,2024,39(1):104-112.
SHEN Q L,LIU G M,WANG Y Q,et al.Effects on glucosinolates and antioxidant activity of chitooligosaccharides on kale sprouts[J].Acta Agriculturae Boreali-Sinica,2024,39(1):104-112.(in Chinese)
[50] 尹明華,肖心怡,方雅軒,等.殼寡糖浸種對低溫下江西鉛山紅芽芋脫毒試管芋萌發(fā)及生理代謝的影響[J].農(nóng)業(yè)工程學(xué)報,2024,40(1):320-330.
YIN M H,XIAO X Y,F(xiàn)ANG Y X,et al.Effects of chitosan oligosaccharide soaking on germination and physiological metabolism of virus-free test tube taro from Jiangxi Yanshan red bud taro at low temperature[J].Transactions of the Chinese Society of Agricultural Engineering,2024,40(1):320-330.(in Chinese)
[51] 皮得金,滕 奕,李 冰,等.殼寡糖對大腸桿菌K88感染肉雞生長性能、抗氧化能力及腸道屏障功能的影響[J].中國畜牧雜志,2024,60(4):292-297.
PI D J,TENG Y,LI B,et al.Effects of chitosan oligosaccharides on growth performance,antioxidant capacity and intestinal barrier function of broilers infected with Escherichia coli K88[J].Chinese Journal of Animal Science,2024,60(4):292-297.(in Chinese)
[52] VIMALRAJ S,GOVINDARAJAN D,SUDHAKAR S,et al.Chitosan derived chito-oligosaccharides promote osteoblast differentiation and offer anti-osteoporotic potential:molecular and morphological evidence from a zebrafish model[J].Int J Biol Macromol,2024,259:129250.
[53] YE X Q,ZHU Y R,YANG Y Y,et al.Biogenic selenium nanoparticles synthesized with alginate oligosaccharides alleviate heat stress-induced oxidative damage to organs in broilers through activating Nrf2-mediated anti-Oxidation and anti-Ferroptosis pathways[J].Antioxidants (Basel),2023,12(11):1973.
[54] 王毓甜,米金秋,全浩瑋,等.褐藻寡糖對嘔吐毒素誘導(dǎo)小鼠肝臟損傷的影響[J].動物營養(yǎng)學(xué)報,2023,35(10):6748-6758.
WANG Y T,MI J Q,QUAN H W,et al.Effects of alginate oligosaccharides on liver injury of mice induced by deoxynivalenol[J].Chinese Journal of Animal Nutrition,2023,35(10):6748-6758.(in Chinese)
[55] 孫 冰,張金梅,劉朋宇,等.不同濃度褐藻寡糖對黃瓜生長、產(chǎn)量、品質(zhì)與抗氧化酶及其基因表達(dá)的影響[J].江蘇農(nóng)業(yè)科學(xué),2023,51(13):175-181.
SUN B,ZHANG J M,LIU P Y,et al.Impacts of different concentrations of brown algal oligosaccharides on growth,yield,quality and expression of antioxidant enzymes and their genes of cucumber[J].Jiangsu Agricultural Sciences,2023,51(13):175-181.(in Chinese)
[56] WANG S,YU Y,LIU J,et al.Alginate oligosaccharide alleviates vascular aging by upregulating glutathione peroxidase 7[J].J Nutr Biochem,2024,126:109578.
[57] 程佳瑩,肖夢詩,任昕淼,等.基于轉(zhuǎn)錄組學(xué)分析腸道菌群發(fā)酵褐藻膠寡糖對沙門氏菌的作用機(jī)制[J].河南農(nóng)業(yè)科學(xué),2023,52(6):139-149.
CHENG J Y,XIAO M S,REN X M,et al.Mechanism of alginate oligosaccharides fermented with gut microbiota inoculum against Salmonella enterica by transcriptomic analysis[J].Journal of Henan Agricultural Sciences,2023,52(6):139-149.(in Chinese)
[58] 高學(xué)秀,李 寧,袁衛(wèi)濤,等.異麥芽酮糖研究進(jìn)展[J].中國食品添加劑,2022,33(1):26-31.
GAO X X,LI N,YUAN W T,et al.Review of isomaltulose[J].China Food Additives,2022,33(1):26-31.(in Chinese)
[59] CORBEE R J,MES J J,DE JONG G A H,et al.Brush border enzyme hydrolysis and glycaemic effects of isomaltulose compared to other saccharides in dogs[J].J Anim Physiol Anim Nutr (Berl),2023,107(6):1456-1464.
[60] 何秋玲,張彩平,桂 靜,等.異麥芽酮糖減少小鼠肝臟脂肪堆積的關(guān)鍵基因篩選與驗證[J].食品工業(yè)科技,2022,43(16):1-8.
HE Q L,ZHANG C P,GUI J,et al.Screening and verification of key genes for isomaltulose reducing liver fat accumulation in mice[J].Science and Technology of Food Industry,2022,43(16):1-8.(in Chinese)
[61] TAKAHASHI H,IMAMURA T,KONNO N,et al.The gentio-oligosaccharide gentiobiose functions in the modulation of bud dormancy in the herbaceous perennial Gentiana[J].Plant Cell,2014,26(10):3949-3963.
[62] 黃瓊?cè)A.帶苦味的低聚龍膽糖玉米糖漿[J].中國食品添加劑,2001(2):52-54.
HUANG Q H.Gentiooligaccharide corn syrup with amer flavor[J].China Food Additives,2001(2):52-54.(in Chinese)
[63] LIU G M,BEI J,LI L,et al.Stachyose improves inflammation through modulating gut microbiota of high-fat diet/streptozotocin-induced type 2 diabetes in rats[J].Mol Nutr Food Res,2018,62(6):e1700954.
[64] 郭 鵬,王際英,李寶山,等.棉子糖對刺參幼參生長、生理指標(biāo)及糖代謝的影響[J].水產(chǎn)學(xué)報,2022,46(10):1940-1949.
GUO P,WANG J Y,LI B S,et al.Effects of dietary raffinose on growth performance,physiological indices and glycometabolism of juvenile sea cucumber (Apostichopus japonicus)[J].Journal of Fisheries of China,2022,46(10):1940-1949.(in Chinese)
[65] 段盛林.水蘇糖的益生元活性及其應(yīng)用研究進(jìn)展[J].中國食品添加劑,2023,34(1):75-82.
DUAN S L.Research progress on prebiotic activity and application of stachyose[J].China Food Additives,2023,34(1):75-82.(in Chinese)
[66] LI Q,TANG X L,XU J H,et al.Study on alleviation effect of stachyose on food allergy through TLR2/NF-κB signal pathway in a mouse model[J].Life Sci,2021,286:120038.
[67] HUANG Y,LI D,WANG C,et al.Stachyose alleviates corticosterone-induced long-term potentiation impairment via the gut-brain axis[J].Front Pharmacol,2022,13:799244.
[68] GUO Y N,SONG L Q,HUANG Y M,et al.Latilactobacillus sakei Furu2019 and stachyose as probiotics,prebiotics,and synbiotics alleviate constipation in mice[J].Front Nutr,2023,9:1039403.
[69] FU H T,ZHAO Y,HUANG J Q,et al.Reduced glutathione and raffinose lengthens postharvest storage of cassava root tubers by improving antioxidant capacity and antibiosis[J].BMC Plant Biol,2023,23(1):475.
[70] 楊 凱,楊 碩,周詩軒,等.棉子糖對肉兔生長性能、屠宰性能、腸道形態(tài)以及血清生化和免疫指標(biāo)的影響[J].動物營養(yǎng)學(xué)報,2024,36(1):507-513.
YANG K,YANG S,ZHOU S X,et al.Effects of raffinose on growth performance,slaughtering performance,intestinal morphology,serum biochemical and immune indexes of meat rabbits[J].Chinese Journal of Animal Nutrition,2024,36(1):507-513.(in Chinese)
[71] MAEGAWA K,KOYAMA H,F(xiàn)UKIYA S,et al.Dietary raffinose ameliorates hepatic lipid accumulation induced by cholic acid via modulation of enterohepatic bile acid circulation in rats[J].Br J Nutr,2022,127(11):1621-1630.
[72] 霍潤甜,夏 偉,劉展志,等.節(jié)桿菌(Arthrobacter sp.)EpRS66 β-呋喃果糖苷酶重組表達(dá)及酶促合成低聚乳果糖[J].微生物學(xué)通報,2024,51(9):3398-3408.
HUO R T,XIA W,LIU Z Z,et al.Recombinant expression of β-fructofuranosidase from Arthrobacter sp. EpRS66 and enzymatic synthesis of lactosucrose[J].Microbiology China,2024,51(9):3398-3408.(in Chinese)
[73] 史漱石,王力群,喬建國,等.用乳酮糖奶粉喂養(yǎng)小鼠糞便中雙歧桿菌屬增殖的實驗[J].衛(wèi)生研究,1993(4):238-239.
SHI S S,WANG L Q,QIAO J G,et al.Experiment on the proliferation of Bifidobacterium in feces of mice fed with lactose milk powder[J].Journal of Hygiene Research,1993(4):238-239.(in Chinese)
[74] JACK A A,KHAN S,POWELL L C,et al.Alginate oligosaccharide-induced modification of the lasI-lasR and rhlI-rhlR quorum-sensing systems in pseudomonas aeruginosa[J].Antimicrob Agents Chemother,2018,62(5):e02318-e02317.
[75] 王壽權(quán),趙雙枝,張彥昊,等.自制殼寡糖抑菌性能及抑菌機(jī)理的初步研究[J].食品工業(yè)科技,2014,35(24):218-221.
WANG S Q,ZHAO S Z,ZHANG Y H,et al.Preliminary study on antibacterialactivity and mechanism of chitosan oligosaccharide[J].Science and Technology of Food Industry,2014,35(24):218-221.(in Chinese)
[76] 王 巍,牟德華,李丹丹.山楂果膠寡糖的抑菌性能及機(jī)理[J].食品科學(xué),2018,39(3):110-116.
WANG W,MOU D H,LI D D.Antibacterial activity and mechanism of hawthorn pectin oligosaccharides[J].Food Science,2018,39(3):110-116.(in Chinese)
[77] YU D W,F(xiàn)ENG J Y,YOU H M,et al.The microstructure,antibacterial and antitumor activities of chitosan oligosaccharides and derivatives[J].Mar Drugs,2022,20(1):69.
[78] GUAN G P,AZAD M A K,LIN Y S,et al.Biological effects and applications of chitosan and chito-oligosaccharides[J].Front Physiol,2019,10:516.
[79] ABD EL-HACK M E,EL-SAADONY M T,SHAFI M E,et al.Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications:a review[J].Int J Biol Macromol,2020,164:2726-2744.
[80] YAO X C,CAO Y,WU S J.Antioxidant activity and antibacterial activity of peach gum derived oligosaccharides[J].Int J Biol Macromol,2013,62:1-3.
[81] SCHWAB C G,BRODERICK G A.A 100-Year Review:protein and amino acid nutrition in dairy cows[J].J Dairy Sci,2017,100(12):10094-10112.
[82] SHARMA A N,CHAUDHARY P,KUMAR S,et al.Effect of synbiotics on growth performance,gut health,and immunity status in pre-ruminant buffalo calves[J].Sci Rep,2023,13(1):10184.
[83] FLORES-MALTOS D A,MUSSATTO S I,CONTRERAS-ESQUIVEL J C,et al.Biotechnological production and application of fructooligosaccharides[J].Crit Rev Biotechnol,2016,36(2):259-267.
[84] WANG G,SUN W J,PEI X,et al.Galactooligosaccharide pretreatment alleviates damage of the intestinal barrier and inflammatory responses in LPS-challenged mice[J].Food Funct,2021,12(4):1569-1579.
[85] 肖定福,鐘 佳,劉進(jìn)輝,等.殼寡糖對脂多糖誘導(dǎo)豬空腸上皮細(xì)胞氧化損傷的作用[J].動物營養(yǎng)學(xué)報,2016,28(7):2090-2095.
XIAO D F,ZHONG J,LIU J H,et al.Effects of chitooligosaccharide on lipopolysaccharide induced oxidative damage in epithelial cells of pig jejunum[J].Chinese Journal of Animal Nutrition,2016,28(7):2090-2095.(in Chinese)
[86] 楊曉莉,唐延?xùn)|,張方東,等.6-羧基殼寡糖清除活性氧的能力及作用機(jī)理[J].天津科技大學(xué)學(xué)報,2021,36(4):73-80.
YANG X L,TANG Y D,ZHANG F D,et al.Activity and mechanism of 6-carboxyl chitosan oligosaccharide to scavenge reactive oxygen species[J].Journal of Tianjin University of Science amp; Technology,2021,36(4):73-80.(in Chinese)
[87] 高溫婷.甘露寡糖的抗氧化作用機(jī)制研究[D].鄭州:河南工業(yè)大學(xué),2021.
GAO W T.Study on the antioxidant mechanism of Mannan-oligosaccharides[D].Zhengzhou:Henan University of Technology,2021.(in Chinese)
[88] WANG J P,ZHANG C H,ZHAO S J,et al.Dietary apple pectic oligosaccharide improves reproductive performance,antioxidant capacity,and ovary function of broiler breeders[J].Poult Sci,2021,100(4):100976.
[89] 阿拉騰珠拉,胡永飛.褐藻寡糖的制備方法及生物活性研究進(jìn)展[J].生物工程學(xué)報,2022,38(1):104-118.
A LA TENG ZHU LA,HU Y F.Advances in the preparation of alginate oligosaccharides and its biological functions[J].Chinese Journal of Biotechnology,2022,38(1):104-118.(in Chinese)
[90] ACRES S D.Enterotoxigenic Escherichia coli infections in newborn calves:a review[J].J Dairy Sci,1985,68(1):229-256.
[91] VON MENTZER A,SVENNERHOLM A M.Colonization factors of human and animal-specific enterotoxigenic Escherichia coli (ETEC)[J].Trends Microbiol,2024,32(5):448-464.
[92] ZHANG Y C,TAN P,ZHAO Y,et al.Enterotoxigenic Escherichia coli:intestinal pathogenesis mechanisms and colonization resistance by gut microbiota[J].Gut Microbes,2022,14(1):2055943.
[93] RIVERA F P,MEDINA A,RIVEROS M,et al.Colonizing and virulence factors in enterotoxigenic Escherichia coli from Peru[J].Am J Trop Med Hyg,2023,108(5):948-953.
[94] VON MENTZER A,ZALEM D,CHRIENOVA Z,et al.Colonization factor CS30 from enterotoxigenic Escherichia coli binds to sulfatide in human and porcine small intestine[J].Virulence,2020,11(1):381-390.
[95] PAKBIN B,BR CK W M,ROSSEN J W A.Virulence factors of enteric pathogenic Escherichia coli:a review[J].Int J Mol Sci,2021,22(18):9922.
[96] BIELASZEWSKA M,GREUNE L,BAUWENS A,et al.Virulence factor cargo and host cell interactions of Shiga toxin-producing Escherichia coli outer membrane vesicles[J].Methods Mol Biol,2021,2291:177-205.
[97] ASADPOOR M,ITHAKISIOU G N,HENRICKS P A J,et al.Non-digestible oligosaccharides and short chain fatty acids as therapeutic targets against Enterotoxin-Producing Bacteria and their toxins[J].Toxins (Basel),2021,13(3):175.
[98] XIE Y,ZHAN X,TU J Y,et al.Atractylodes oil alleviates diarrhea-predominant irritable bowel syndrome by regulating intestinal inflammation and intestinal barrier via SCF/c-kit and MLCK/MLC2 pathways[J].J Ethnopharmacol,2021,272:113925.
[99] WANG H X,ZHONG Z F,LUO Y,et al.Heat-stable enterotoxins of enterotoxigenic Escherichia coli and their impact on host immunity[J].Toxins (Basel),2019,11(1):24.
[100] DODET B,HESELTINE E,MARY C,et al.Rotaviruses in human and veterinary medicine[J].Sante,1997,7(3):195-199.
[101] 賈偉強(qiáng),曲 慶,趙 帥,等.牛輪狀病毒研究進(jìn)展[J].中國奶牛,2020(2):49-52.
JIA W Q,QU Q,ZHAO S,et al.Research progress of bovine rotavirus[J].China Dairy Cattle,2020(2):49-52.(in Chinese)
[102] BLANCHARD P C.Diagnostics of dairy and beef cattle diarrhea[J].Vet Clin North Am Food Anim Pract,2012,28(3):443-464.
[103] THOMSON S,HAMILTON C A,HOPE J C,et al.Bovine cryptosporidiosis:impact,host-parasite interaction and control strategies[J].Vet Res,2017,48(1):42.
[104] 常美楠.低聚半乳糖對荷斯坦?fàn)倥V蹦c菌群結(jié)構(gòu)的調(diào)控機(jī)制研究[D].北京:中國農(nóng)業(yè)科學(xué)院,2022.
CHANG M N.Mechanism of Galacto-oligosaccharides regulating rectal microbial community structure of Holstein dairy calves[D].Beijing:Chinese Academy of Agricultural Sciences,2022.(in Chinese)
[105] 金亞東,張力莉,陳紹淑,等.甘露寡糖添加方式對哺乳期犢牛生長性能、糞便菌群及血清免疫指標(biāo)的影響[J].中國畜牧獸醫(yī),2016,43(11):2922-2930.
JIN Y D,ZHANG L L,CHEN S S,et al.Effect of different addition schemes of mannan oligosaccharide on growth performance,fecal microorganism and serum immune indexes of calves[J].China Animal Husbandry amp; Veterinary Medicine,2016,43(11):2922-2930.(in Chinese)
[106] 趙曉靜,李建國,李秋鳳,等.甘露寡糖對犢牛糞便菌群影響的研究[J].中國畜牧雜志,2007,43(5):31-34.
ZHAO X J,LI J G,LI Q F,et al.Effects of BIO-MOS in neonatal diets on faecal bacterium populations and health of dairy calves[J].Chinese Journal of Animal Science,2007,43(5):31-34.(in Chinese)
[107] 王智航,姜成哲,崔明勛,等.低聚半乳糖對延邊黃牛犢牛糞樣菌群、血液指標(biāo)及生長性能的影響[J].動物營養(yǎng)學(xué)報,2011,23(7):1247-1252.
WANG Z H,JIANG C Z,CUI M X,et al.Effect of galactooligosaccharide on fecal flora,blood indices and growth performance of Yanbian yellow calves[J].Chinese Journal of Animal Nutrition,2011,23(7):1247-1252.(in Chinese)
[108] SHARMA A N,CHAUDHARY P,GROVER C R,et al.Impact of synbiotics on growth performance and gut health in Murrah buffalo calves[J].Vet Res Commun,2024,48(1):179-190.
[109] QUIGLEY III J D,KOST C J,WOLFE T A.Effects of spray-dried animal plasma in milk replacers or additives containing serum and oligosaccharides on growth and health of calves[J].J Dairy Sci,2002,85(2):413-421.
[110] MWENYA B,SANTOSO B,SAR C,et al.Effects of yeast culture and galacto-oligosaccharides on ruminal fermentation in Holstein cows[J].J Dairy Sci,2005,88(4):1404-1412.
[111] LI Z J,BAI H X,ZHENG L X,et al.Bioactive polysaccharides and oligosaccharides as possible feed additives to manipulate rumen fermentation in Rusitec fermenters[J].Int J Biol Macromol,2018,109:1088-1094.
[112] 王飛飛.低聚半乳糖對荷斯坦?fàn)倥IL性能、血液指標(biāo)、瘤胃發(fā)酵及菌群結(jié)構(gòu)的影響[D].北京:中國農(nóng)業(yè)科學(xué)院,2022.
WANG F F.Effects of Galactooligosaccharides on the growth performance,blood parameters,rumen fermentation and microflora structure of Holstein dairy calves[D].Beijing:Chinese Academy of Agricultural Sciences,2022.(in Chinese)
[113] WIEDEMANN I,BREUKINK E,VAN KRAAIJ C,et al.Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity[J].J Biol Chem,2001,276(3):1772-1779.
[114] SHOAF-SWEENEY K D,HUTKINS R W.Adherence,anti-adherence,and oligosaccharides preventing pathogens from sticking to the host[J].Adv Food Nutr Res,2009,55:101-161.
[115] BOEHM G,STAHL B.Oligosaccharides from Milk[J].J Nutr,2007,137(3):847S-849S.
[116] MONTEAGUDO-MERA A,RASTALL R A,GIBSON G R,et al.Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health[J].Appl Microbiol Biotechnol,2019,103(16):6463-6472.
[117] MORRIN S T,LANE J A,MAROTTA M,et al.Bovine colostrum-driven modulation of intestinal epithelial cells for increased commensal colonisation[J].Appl Microbiol Biotechnol,2019,103(6):2745-2758.
[118] DI R,VAKKALANKA M S,ONUMPAI C,et al.Pectic oligosaccharide structure-function relationships:prebiotics,inhibitors of Escherichia coli O157:H7 adhesion and reduction of Shiga toxin cytotoxicity in HT29 cells[J].Food Chem,2017,227:245-254.
[119] ROMERO E S,COTONER C A,CAMACHO C P,et al.The intestinal barrier function and its involvement in digestive disease[J].Rev Esp Enferm Dig,2015,107(11):686-696.
[120] HE L N,WANG C J,SIMUJIDE H,et al.Effect of early pathogenic Escherichia coli infection on the intestinal barrier and immune function in newborn calves[J].Front Cell Infect Microbiol,2022,12:818276.
[121] LAN R X,LI Y X,CHANG Q Q,et al.Dietary chitosan oligosaccharides alleviate heat stress-induced intestinal oxidative stress and inflammatory response in yellow-feather broilers[J].Poult Sci,2020,99(12):6745-6752.
[122] MI M M,CHANG M N,HUANG Y H,et al.Fructo-oligosaccharides ameliorate intestinal mechanical barrier injury in piglets induced by soybean antigen in vitro and in vivo[J].Curr Protein Pept Sci,2023,24(3):267-276.
[123] XU T,SUN R J,ZHANG Y C,et al.Recent research and application prospect of functional oligosaccharides on intestinal disease treatment[J].Molecules,2022,27(21):7622.
[124] NA K,WEI J N,ZHANG L,et al.Effects of chitosan oligosaccharides (COS) and FMT from COS-dosed mice on intestinal barrier function and cell apoptosis[J].Carbohydr Polym,2022,297:120043.
[125] TAO W J,WANG G,PEI X,et al.Chitosan oligosaccharide attenuates lipopolysaccharide-induced intestinal barrier dysfunction through suppressing the inflammatory response and oxidative stress in mice[J].Antioxidants (Basel),2022,11(7):1384.
[126] CUI H,ZHU X Y,WANG Z G,et al.A purified glucomannan oligosaccharide from Amorphophallus konjac improves colonic mucosal barrier function via enhancing butyrate production and histone protein H3 and H4 acetylation[J].J Nat Prod,2021,84(2):427-435.
[127] 邰秀林,龍 翔,向 釗,等.低聚果糖對早期斷奶犢牛生長性能和血液理化指標(biāo)及腸黏膜形態(tài)的影響[J].中國畜牧雜志,2009,45(11):34-38.
TAI X L,LONG X,XIANG Z,et al.Effects of fructooligosaccharides on performance and blood biochemistry index and intestinal mocosa structure in early-weaned calves[J].Chinese Journal of Animal Science,2009,45(11):34-38.(in Chinese)
[128] 吳兆海.糞菌移植對被動免疫失敗犢牛腸道屏障功能及腸道菌群構(gòu)建的影響[D].北京:中國農(nóng)業(yè)大學(xué),2018.
WU Z H.Effects of fecal microbiota transplantation on intestinal barrier function and microbiota establishment in calves with failure of passive immune transfer[D].Beijing:China Agricultural University,2018.(in Chinese)
[129] 宋明明,黨丹岐,趙佳楠,等.幼齡反芻動物胃腸道免疫系統(tǒng)發(fā)育及其調(diào)控的研究進(jìn)展[J].動物營養(yǎng)學(xué)報,2023,35(11):6905-6913.
SONG M M,DANG D Q,ZHAO J N,et al.Research progress in development and regulation of gastrointestinal immune system in young ruminants[J].Chinese Journal of Animal Nutrition,2023,35(11):6905-6913.(in Chinese)
[130] BEHESHTIPOUR J,RAEESZADEH M.Evaluation of interleukin-10 and pro-inflammatory cytokine profile in calves naturally infected with neonatal calf diarrhea syndrome[J].Arch Razi Inst,2020,75(2):213-218.
[131] FISCHER S,BAUERFEIND R,CZERNY C P,et al.Serum interleukin-6 as a prognostic marker in neonatal calf diarrhea[J].J Dairy Sci,2016,99(8):6563-6571.
[132] YANG C,ZHANG T X,TIAN Q H,et al.Supplementing mannan oligosaccharide reduces the passive transfer of immunoglobulin G and improves antioxidative capacity,immunity,and intestinal microbiota in neonatal goats[J].Front Microbiol,2022,12:795081.
[133] 白 雪,吳妍妍,張文舉.復(fù)合微生態(tài)制劑和甘露寡糖對斷奶犢牛糞便評分、血清免疫指標(biāo)及抗氧化指標(biāo)的影響[J].飼料研究,2021,44(14):9-13.
BAI X,WU Y Y,ZHANG W J.Effect of compound probiotics and mannose-oligosaccharides on fecal score,serum immunity and antioxidant indexes of weaned calves[J].Feed Research,2021,44(14):9-13.(in Chinese)
[134] WESTLAND A,MARTIN R,WHITE R,et al.Mannan oligosaccharide prepartum supplementation:effects on dairy cow colostrum quality and quantity[J].Animal,2017,11(10):1779-1782.
[135] 梁金逢,賈銀海,熊敏芬,等.復(fù)合益生菌配合功能性寡糖在早期斷奶犢牛上的應(yīng)用效果[J].飼料工業(yè),2023,44(18):47-50.
LIANG J F,JIA Y H,XIONG M F,et al.Effects of compound probiotics and functional oligosaccharides on early weaned calves[J].Feed Industry,2023,44(18):47-50.(in Chinese)
[136] WAN J,ZHANG J,XU Q S,et al.Alginate oligosaccharide protects against enterotoxigenic Escherichia coli-induced porcine intestinal barrier injury[J].Carbohydr Polym,2021,270:118316.
(編輯 范子娟)