[摘要]"急性髓系白血病(acute"myeloid"leukemia,AML)是一種預(yù)后不良的血液系統(tǒng)惡性腫瘤。研究證實(shí)黏連蛋白突變可增強(qiáng)造血干細(xì)胞/祖細(xì)胞的自我更新能力并抑制其分化,進(jìn)而驅(qū)動(dòng)髓系惡性腫瘤的發(fā)生與發(fā)展。本文旨在系統(tǒng)梳理黏連蛋白突變?cè)贏ML中的臨床意義及其促進(jìn)疾病進(jìn)展的作用機(jī)制,并以此為基礎(chǔ),探討其潛在靶向治療前景。
[關(guān)鍵詞]"急性髓系白血??;黏連蛋白;突變;作用機(jī)制
[中圖分類號(hào)]"R733.71""""""[文獻(xiàn)標(biāo)識(shí)碼]"A""""""[DOI]"10.3969/j.issn.1673-9701.2025.05.027
急性髓系白血病(acute"myeloid"leukemia,AML)是一種最常見(jiàn)的血液系統(tǒng)惡性腫瘤。AML起源于造血干細(xì)胞/祖細(xì)胞的克隆性增殖和分化成熟障礙,具有高度異質(zhì)性、進(jìn)展迅速、預(yù)后不良的特點(diǎn)[1]。目前,治療AML的標(biāo)準(zhǔn)誘導(dǎo)方案是阿糖胞苷聯(lián)合柔紅霉素。不同年齡段AML患者的5年總生存率存在顯著差異;年輕AML患者的5年總生存率為50%,而60歲及以上AML患者的5年總生存率則不足10%[2-3]。分子遺傳學(xué)的最新突破加深人們對(duì)AML發(fā)病機(jī)制的認(rèn)識(shí),同時(shí)明晰AML患者相較于健康人群患病風(fēng)險(xiǎn)升高的內(nèi)在機(jī)制[4]。
在眾多類型腫瘤中,黏連蛋白被視為常見(jiàn)的突變蛋白復(fù)合體之一[5]。髓系腫瘤、膠質(zhì)母細(xì)胞瘤、乳腺癌、膀胱癌、黑色素瘤及尤因肉瘤等的多種惡性腫瘤中均已鑒定出黏連蛋白環(huán)亞基及其調(diào)節(jié)因子突變[6-7]。研究表明黏連蛋白的核心亞基(STAG2、SMC1、SMC3和RAD21)及其關(guān)鍵調(diào)節(jié)因子(PDS5、NIPBL)在13%的初診AML患者、21%的繼發(fā)性AML患者中發(fā)生突變[8]。全基因組測(cè)序結(jié)果揭示AML患者存在黏連蛋白復(fù)合體突變現(xiàn)象,攜帶t(8;21)(q22;q22.1)染色體易位的AML表現(xiàn)出顯著的臨床與生物學(xué)異質(zhì)性特征,導(dǎo)致約40%的AML患者疾病復(fù)發(fā)[9-11]。在唐氏綜合征相關(guān)急性巨核細(xì)胞白血?。╝cute"megakaryoblastic"leukemia"with"Down"syndrome,DS-AMKL)中,高達(dá)50%的患者檢測(cè)出黏連蛋白基因突變[12-13]。本文就黏連蛋白突變?cè)贏ML發(fā)病中的作用機(jī)制、臨床意義研究進(jìn)展作一綜述。
1""黏連蛋白的結(jié)構(gòu)及生物學(xué)功能
黏連蛋白由SMC1、SMC3、RAD21、STAG1/2"""4個(gè)核心亞基組成。SMC1和SMC3各自折疊,分別形成反向平行的卷曲螺旋,其中具有鉸鏈結(jié)構(gòu)域的一端緊密結(jié)合形成異二聚體;另一端通過(guò)球狀A(yù)TP酶的“頭部”與RAD21相連,形成黏連蛋白環(huán)狀結(jié)構(gòu)[14]。SMC1與SMC3通過(guò)構(gòu)建環(huán)狀結(jié)構(gòu)緊密環(huán)繞姐妹染色單體,精密調(diào)控染色體的結(jié)構(gòu)、拓?fù)鋵W(xué)特性及姐妹染色單體間的黏連狀態(tài)[15-16]。STAG1與STAG2作為高度保守的黏連蛋白亞基,在促進(jìn)黏連蛋白與DNA有效結(jié)合的過(guò)程中發(fā)揮不可或缺的作用。STAG1/2與黏連蛋白復(fù)合物其他核心亞基間存在功能上的相似性。敲除STAG1和STAG2的小鼠可迅速出現(xiàn)骨髓再生障礙和全血細(xì)胞減少癥[17]。
黏連蛋白還包括調(diào)節(jié)亞基,如NIPBL、MAU2、WAPL、PDS5A和PDS5B[18-20]。RAD21除在黏連蛋白環(huán)形成中發(fā)揮作用外,還可為其他調(diào)節(jié)亞基提供結(jié)合平臺(tái)。PDS5結(jié)合RAD21的N端部分,PDS5A和PDS5B蛋白表現(xiàn)出很強(qiáng)的序列保守性,且是互斥的黏連蛋白輔助亞基,在阻止黏連蛋白介導(dǎo)的環(huán)擠出中發(fā)揮作用。PDS5的翻譯后修飾可調(diào)節(jié)黏連蛋白的分解[21]。WAPL不僅通過(guò)RAD21的相互作用與粘連蛋白結(jié)合,還可與SMC3、PDS5和STAG1/2結(jié)合[22]。
2""黏連蛋白突變?cè)贏ML預(yù)后中的意義
目前人們對(duì)黏連蛋白突變?cè)贏ML預(yù)后中的意義仍存在爭(zhēng)議。核心亞基STAG2突變被認(rèn)為是預(yù)測(cè)患者不良預(yù)后的關(guān)鍵生物標(biāo)志物,此發(fā)現(xiàn)強(qiáng)調(diào)STAG2在腫瘤發(fā)生發(fā)展過(guò)程中發(fā)揮重要作用,并為臨床風(fēng)險(xiǎn)評(píng)估提供新視角。近期一項(xiàng)關(guān)于髓系惡性腫瘤黏連蛋白突變亞基特異性分析結(jié)果顯示,所有診斷為髓系惡性腫瘤患者的STAG2突變最常見(jiàn);72.5%的攜帶黏連蛋白突變的AML患者中,存在核心亞基STAG2突變,且STAG2突變型AML患者的總生存期顯著低于STAG2野生型AML[23]。
然而,人們對(duì)黏連蛋白復(fù)合體其他成員突變?cè)谒柘的[瘤發(fā)展中的確切作用也存在爭(zhēng)議。目前對(duì)黏連蛋白復(fù)合體其他亞基在AML中的具體作用尚未得到充分驗(yàn)證,如RAD21。一項(xiàng)回顧性隊(duì)列研究分析14例發(fā)生RAD21基因突變AML患者的基因組、形態(tài)學(xué)和免疫表型特征,觀察到RAD21突變與其他黏連蛋白復(fù)合體成員的突變是相互排斥的,這與既往研究結(jié)果一致[24-27]。關(guān)于RAD21突變?cè)贏ML預(yù)后中的意義,Eckardt等[28]研究發(fā)現(xiàn)RAD21突變型AML患者與RAD21野生型AML患者的完全緩解率和總生存期等比較差異無(wú)統(tǒng)計(jì)學(xué)意義;該研究證實(shí)與野生型AML患者相比,SMC1A突變患者和SMC3突變患者的完全緩解率比較差異亦無(wú)統(tǒng)計(jì)學(xué)意義。然而,較低的SMC3蛋白水平與歐洲白血病網(wǎng)不良風(fēng)險(xiǎn)組別分類有顯著相關(guān)性[29]。
3""黏連蛋白突變?cè)贏ML中的作用機(jī)制
3.1""造血干細(xì)胞/祖細(xì)胞自我更新能力增強(qiáng)及分化紊亂
在不同的造血細(xì)胞群及AML細(xì)胞系中,大量研究將造血分化和表型變化與染色質(zhì)可及性的變化聯(lián)系起來(lái)。在早期造血和髓系分化中,造血干細(xì)胞/祖細(xì)胞的自我更新能力增強(qiáng),而造血干細(xì)胞/祖細(xì)胞的分化則因黏連蛋白突變或缺失受損[30]。研究認(rèn)為,STAG2的缺失可顯著影響AML及造血干細(xì)胞/祖細(xì)胞的染色質(zhì)折疊模式、啟動(dòng)子活性及基因表達(dá)調(diào)控機(jī)制。研究表明STAG2缺失的造血干細(xì)胞/祖細(xì)胞表現(xiàn)出與AML相似的轉(zhuǎn)錄失調(diào)水平[31]。下調(diào)STAG2的表達(dá)將導(dǎo)致原代人CD34+細(xì)胞中造血干細(xì)胞特異性基因增加[32]。在具有黏連蛋白突變的造血干細(xì)胞/祖細(xì)胞中,敲低造血干細(xì)胞/祖細(xì)胞調(diào)節(jié)因子ERG、GATA2或RUNX1可逆轉(zhuǎn)由黏連蛋白突變引起的分化阻滯[33]。
多梳抑制復(fù)合物(polycomb"repressive"complex,PRC)1和PRC2是促進(jìn)轉(zhuǎn)錄基因沉默保守的表觀遺傳調(diào)節(jié)因子。研究表明黏連蛋白亞基RAD21突變可促進(jìn)PRC2募集,上調(diào)PRC2靶基因HoxA7與HoxA9的表達(dá)水平,促進(jìn)造血干細(xì)胞的自我更新[34]。研究揭示黏連蛋白調(diào)節(jié)亞基PDS5A是PRC1誘導(dǎo)基因沉默的新型調(diào)節(jié)因子[35]。黏連蛋白已被證明通過(guò)與組織特異性轉(zhuǎn)錄因子(如Etv6)相互作用,在誘導(dǎo)紅系分化中發(fā)揮作用。黏連蛋白的缺失導(dǎo)致被Etv6抑制的基因無(wú)法被激活,進(jìn)而導(dǎo)致紅細(xì)胞分化異常[30]。由于SMC3單倍體不足,造血干細(xì)胞/祖細(xì)胞的自我更新能力增強(qiáng),但SMC3與FLT3-ITD共同沉默可導(dǎo)致AML進(jìn)展[36]。另有研究表明僅黏連蛋白的缺失不足以完全誘導(dǎo)AML,黏連蛋白雜合突變可能依賴與其他蛋白突變的協(xié)同作用引發(fā)AML。
3.2""黏連蛋白復(fù)合體突變對(duì)轉(zhuǎn)錄調(diào)控的影響
黏連蛋白與增強(qiáng)子或啟動(dòng)子的相互作用可調(diào)控TAL1和ERG等特定造血轉(zhuǎn)錄因子的表達(dá)和功能。最新一項(xiàng)研究揭示STAG2和RUNX1在維系短程染色質(zhì)相互作用和轉(zhuǎn)錄調(diào)控過(guò)程中存在獨(dú)特相互作用,導(dǎo)致骨髓增生異常綜合征[37]。在人白血病K562細(xì)胞系的RUNX1基因座內(nèi)鑒定出保守調(diào)控元件/啟動(dòng)子區(qū)域中存在黏連蛋白亞基,推斷黏連蛋白復(fù)合體的突變可通過(guò)影響增強(qiáng)子及其靶基因的活性狀態(tài)在AML發(fā)展進(jìn)程中扮演關(guān)鍵角色。
4""粘連蛋白突變AML的治療靶點(diǎn)
既往研究證實(shí),去甲基化藥物對(duì)攜帶STAG2或RAD21基因突變的骨髓增生異常綜合征患者有效,且對(duì)伴有SMC3基因突變的CD34+細(xì)胞有不同程度的抑制作用。研究發(fā)現(xiàn)溴結(jié)構(gòu)域和超末端基序(bromodomain"and"extra-terminal"motif,BET)抑制劑JQ1可減少STAG2突變細(xì)胞中異常RUNX1和ERG的轉(zhuǎn)錄,并降低STAG2突變體的白血病干細(xì)胞特征[38]。攜帶黏連蛋白突變的成人AML患者過(guò)表達(dá)自我更新基因HoxA7/HoxA9,而2種類端粒沉默干擾體1(disruptor"of"telomeric"silencing"1-like,DOT1L)抑制劑EPZ-4777、EPZ-5676可阻斷RAD21或SMC3突變雜合子小鼠造血干細(xì)胞的異常自我更新,減少黏連蛋白突變細(xì)胞中HoxA7/HoxA9的異常表達(dá)[39]。在MLL基因重排急性淋巴細(xì)胞白血病中,DOT1L抑制劑被認(rèn)為是一種潛在的治療策略。研究表明STAG2的丟失可導(dǎo)致結(jié)構(gòu)域環(huán)的大小發(fā)生變化及基因組區(qū)室化發(fā)生改變?;蚪M變化導(dǎo)致基因表達(dá)改變,包括HoxA基因座的失調(diào),導(dǎo)致疾病進(jìn)展?;蚪M結(jié)構(gòu)的改變還可導(dǎo)致絲裂原活化蛋白激酶信號(hào)通路發(fā)生改變,這可能是治療STAG2突變AML的策略之一。多聚ADP核糖聚合酶(poly"ADP"ribose"polymerase,PARP)家族成員參與多個(gè)生物學(xué)過(guò)程,特別是DNA損傷反應(yīng)。STAG2突變可促進(jìn)AML的高水平DNA損傷,增加對(duì)PARP抑制劑的敏感度,這在體外和體內(nèi)研究中均得到證實(shí)。黏連蛋白復(fù)合體的另外2個(gè)成員SMC1和RAD21發(fā)生失活突變時(shí),U937和K562細(xì)胞表現(xiàn)出與STAG2突變細(xì)胞相似的對(duì)PARP抑制劑的反應(yīng)特性[8]。
5""小結(jié)
通過(guò)遺傳篩選技術(shù),人們首次在酵母中發(fā)現(xiàn)黏連蛋白復(fù)合體亞基結(jié)構(gòu)。自此人們?cè)诮沂攫みB蛋白復(fù)合體塑造基因組結(jié)構(gòu)、調(diào)控基因表達(dá)及維護(hù)基因組完整性方面取得長(zhǎng)足進(jìn)展。目前證據(jù)表明AML中觀察到的黏連蛋白突變可導(dǎo)致干細(xì)胞樣表型變化、造血分化受損和疾病進(jìn)展。黏連蛋白復(fù)合體在AML及其他血液系統(tǒng)惡性腫瘤中的突變頻率較高,預(yù)示其作為潛在治療靶點(diǎn)的廣闊前景。但對(duì)黏連蛋白突變?nèi)绾斡|發(fā)一系列下游效應(yīng)、這些效應(yīng)中哪些是關(guān)鍵性驅(qū)動(dòng)腫瘤轉(zhuǎn)化的因素仍是亟待解決的科學(xué)問(wèn)題。因此,深入探索粘連蛋白突變的疾病轉(zhuǎn)化機(jī)制并尋求更有效的治療策略是當(dāng)前研究的迫切需求。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻(xiàn)]
[1] POLLYEA"D"A,"ALTMAN"J"K,"ASSI"R,"et"al."Acute"myeloid"leukemia,"version"3."2023,"NCCN"clinical"practice"guidelines"in"oncology[J]."J"Natl"Compr"Canc"Netw,"2023,"21(5):"503–513.
[2] SHIMONY"S,"STAHL"M,"STONE"R"M."Acute"myeloid"leukemia:"2023"update"on"diagnosis,"risk-stratification,"and"management[J]."Am"J"Hematol,"2023,"98(3):"502–526.
[3] SASAKI"K,"RAVANDI"F,"KADIA"T"M,"et"al."De"novo"acute"myeloid"leukemia:"A"population-based"study"of"outcome"in"the"United"States"based"on"the"surveillance,"epidemiology,"and"end"results"(SEER)"database,"1980"to"2017[J]."Cancer,"2021,"127(12):"2049–2061.
[4] NEWELL"L"F,"COOK"R"J."Advances"in"acute"myeloid"leukemia[J]."BMJ,"2021,"375:"n2026.
[5] DI"NARDO"M,"PALLOTTA"M"M,"MUSIO"A."The"multifaceted"roles"of"cohesin"in"cancer[J]."J"Exp"Clin"Cancer"Res,"2022,"41(1):"96.
[6] JANN"J"C,"TOTHOVA"Z."Cohesin"mutations"in"myeloid"malignancies[J]."Blood,"2021,"138(8):"649–661.
[7] ANTONY"J,"CHIN"C"V,"HORSFIELD"J"A."Cohesin"mutations"in"cancer:"Emerging"therapeutic"targets[J]."Int"J"Mol"Sci,"2021,"22(13):"6788.
[8] TOTHOVA"Z,"VALTON"A"L,"GORELOV"R"A,"et"al."Cohesin"mutations"alter"DNA"damage"repair"and"chromatin"structure"and"create"therapeutic"vulnerabilities"in"MDS/AML[J]."JCI"Insight,"2021,"6(3):"e142149.
[9] JAHN"N,"TERZER"T,"STR?NG"E,"et"al."Genomic"heterogeneity"in"core-binding"factor"acute"myeloid"leukemia"and"its"clinical"implication[J]."Blood"Adv,"2020,"4(24):"6342–6352.
[10] QIN"W,"CHEN"X,"SHEN"H"J,"et"al."Comprehensive"mutation"profile"in"acute"myeloid"leukemia"patients"with"RUNX1-RUNX1T1"or"CBFB-MYH11"fusions[J]."Turk"J"Haematol,"2022,"39(2):"84–93.
[11] CHRISTEN"F,"HOYER"K,"YOSHIDA"K,"et"al."Genomic"landscape"and"clonal"evolution"of"acute"myeloid"leukemia"with"t(8;21):"An"international"study"on"331"patients[J]."Blood,"2019,"133(10):"1140–1151.
[12] BARWE"S"P,"SEBASTIAN"A,"SIDHU"I,"et"al."Modeling"down"syndrome"myeloid"leukemia"by"sequential"introduction"of"GATA1"and"STAG2"mutations"in"induced"pluripotent"stem"cells"with"trisomy"21[J]."Cells,"2022,"11(4):"628.
[13] DE"CASTRO"C"P"M,"CADEFAU"M,"CUARTERO"S."The"mutational"landscape"of"myeloid"leukaemia"in"down"syndrome[J]."Cancers"(Basel),"2021,"13(16):"4144.
[14] RITTENHOUSE"N"L,"DOWEN"J"M."Cohesin"regulation"and"roles"in"chromosome"structure"and"function[J]."Curr"Opin"Genet"Dev,nbsp;2024,"85:"102159.
[15] COLLIER"J"E,"NASMYTH"K"A."DNA"passes"through"cohesin’s"hinge"as"well"as"its"Smc3-kleisin"interface[J]."Elife,"2022,"11:"e80310.
[16] HASEEB"M"A,"WENG"K"A,"BICKEL"S"E."Chromatin-"associated"cohesin"turns"over"extensively"and"forms"new"cohesive"linkages"in"Drosophila"oocytes"during"meiotic"prophase[J]."Curr"Biol,"2024,"34(13):"2868–2879.
[17] VINY"A"D,"BOWMAN"R"L,"LIU"Y,"et"al."Cohesin"members"STAG1"and"STAG2"display"distinct"roles"in"chromatin"accessibility"and"topological"control"of"HSC"self-renewal"and"differentiation[J]."Cell"Stem"Cell,"2019,"25(5):"682–696.
[18] LOSADA"A."Cohesin"innbsp;cancer:"Chromosome"segregation"and"beyond[J]."Nat"Rev"Cancer,"2014,"14(6):"389–393.
[19] LITWIN"I,"WYSOCKI"R."New"insights"into"cohesin"loading[J]."Curr"Genet,"2018,"64(1):"53–61.
[20] DAUBAN"L,"MONTAGNE"R,"THIERRY"A,"et"al."Regulation"of"cohesin-mediated"chromosome"folding"by"Eco1"and"other"partners[J]."Mol"Cell,"2020,"77(6):"1279–1293.
[21] PSAKHYE"I,"BRANZEI"D."SMC"complexes"are"guarded"by"the"SUMO"protease"Ulp2"against"SUMO-chain-"mediated"turnover[J]."Cell"Rep,"2021,"36(5):"109485.
[22] YUAN"X,"YAN"L,"CHEN"Q,"et"al."Molecular"mechanism"and"functional"significance"of"Wapl"interaction"with"the"cohesin"complex[J]."Proc"Natl"Acad"Sci"U"S"A,"2024,"121(33):"e2405177121.
[23] JANN"J"C,"HERGOTT"C"B,"WINKLER"M,"et"al."Subunit-specific"analysis"of"cohesin-mutant"myeloid"malignancies"reveals"distinct"ontogeny"and"outcomes[J]."Leukemia,"2024,"38(9):"1992–2002.
[24] LACZKO"D,"POVEDA-ROGERS"C,"MATTHEWS"A"H,"et"al."RAD21"mutations"in"acute"myeloid"leukemia[J]."Leuk"Lymphoma,"2024,"65(7):"958–964.
[25] KON"A,"SHIH"L"Y,"MINAMINO"M,"et"al."Recurrent"mutations"in"multiple"components"of"the"cohesin"complex"in"myeloid"neoplasms[J]."Nat"Genet,"2013,"45(10):"1232–1237.
[26] THOL"F,"BOLLIN"R,"GEHLHAAR"M,"et"al."Mutations"in"the"cohesin"complex"in"acute"myeloid"leukemia:"Clinical"and"prognostic"implications[J]."Blood,"2014,"123(6):"914–920.
[27] HAN"C,"GAO"X,"LI"Y,"et"al."Characteristics"of"cohesin"mutation"in"acute"myeloid"leukemia"and"its"clinical"significance[J]."Front"Oncol,"2021,"11:"579881.
[28] ECKARDT"J"N,"STASIK"S,"R?LLIG"C,"et"al."Alterations"of"cohesin"complex"genes"in"acute"myeloid"leukemia:"Differential"co-mutations,"clinical"presentation"and"impact"on"outcome[J]."Blood"Cancer"J,"2023,"13(1):"18.
[29] KRAFT"B,"LOMBARD"J,"KIRSCH"M,"et"al."SMC3"protein"levels"impact"on"karyotype"and"outcome"in"acute"myeloid"leukemia[J]."Leukemia,"2019,"33(3):"795–799.
[30] SASCA"D,"YUN"H,"GIOTOPOULOS"G,"et"al."Cohesin-dependent"regulation"of"gene"expression"during"differentiation"is"lost"in"cohesin-mutated"myeloid"malignancies[J]."Blood,"2019,"134(24):"2195–2208.
[31] FISCHER"A,"HERNáNDEZ-RODRíGUEZ"B,"MULET-"LAZARO"R,"et"al."STAG2"mutations"reshape"the"cohesin-structured"spatial"chromatin"architecture"to"drive"gene"regulation"in"acute"myeloid"leukemia[J]."Cell"Rep,"2024,"43(8):"114498.
[32] GALEEV"R,"BAUDET"A,"KUMAR"P,"et"al."Genome-"wide"RNAi"screen"identifies"cohesin"genes"as"modifiers"of"renewal"and"differentiation"in"human"HSCs[J]."Cell"Rep,"2016,"14(12):"2988–3000.
[33] MAZUMDAR"C,"SHEN"Y,"XAVY"S,"et"al."Leukemia-"associated"cohesin"mutants"dominantly"enforce"stem"cell"programs"and"impair"human"hematopoietic"progenitor"differentiation[J]."Cell"Stem"Cell,"2015,"17(6):"675–688.
[34] FISHER"J"B,"PETERSON"J,"REIMER"M,"et"al."The"cohesin"subunit"Rad21"is"a"negative"regulator"of"hematopoietic"self-renewal"through"epigenetic"repression"of"HoxA7"and"HoxA9[J]."Leukemia,"2017,"31(3):"712–719.
[35] BSTEH"D,"MOUSSA"H"F,"MICHLITS"G,"et"al."Loss"of"cohesin"regulator"PDS5A"reveals"repressive"role"of"polycomb"loops[J]."Nat"Commun,"2023,"14(1):"8160.
[36] VINY"A"D,"OTT"C"J,"SPITZER"B,"et"al."Dose-dependent"role"of"the"cohesin"complex"in"normal"and"malignant"hematopoiesis[J]."J"Exp"Med,"2015,"212(11):"1819–1832.
[37] OCHI"Y,"KON"A,"SAKATA"T,"et"al."Combined"cohesin-"RUNX1"deficiency"synergistically"perturbs"chromatin"looping"and"causes"myelodysplastic"syndromes[J]."Cancer"Discov,"2020,"10(6):"836–853.
[38] ANTONY"J,"GIMENEZ"G,"TAYLOR"T,"et"al."BET"inhibition"prevents"aberrant"RUNX1"and"ERG"transcription"in"STAG2"mutant"leukaemia"cells[J]."J"Mol"Cell"Biol,"2020,"12(5):"397–399.
[39] HEIMBRUCH"K"E,"FISHER"J"B,"STELLOH"C"T,"et"al."DOT1L"inhibitors"block"abnormal"self-renewal"induced"by"cohesin"loss[J]."Sci"Rep,"2021,"11(1):"7288.
(收稿日期:2024–10–28)
(修回日期:2024–12–15)
(上接第98頁(yè))
[17] MENG"K,"XIN"Y,"TAN"Z,"et"al."Key"points"of"surgical"anatomy"for"endoscopic"thyroidectomy"via"a"gasless"unilateral"axillary"approach[J]."Langenbecks"Arch"Surg,"2024,"409(1):"294.
[18] LI"X,"DING"W,"ZHANG"H."Surgical"outcomes"of"endoscopic"thyroidectomy"approaches"for"thyroid"cancer:"A"systematic"review"and"network"Meta-analysis[J]."Front"Endocrinol"(Lausanne),"2023,"14:"1256209.
[19] LIU"C,"HUANG"T,"WU"C"W,"et"al."New"developments"in"anterior"laryngeal"recording"technique"during"neuro-"monitored"thyroid"and"parathyroid"surgery[J]."Front"Endocrinol"(Lausanne),"2021,"12:"763170.
[20] WU"C"W,"RANDOLPH"G"W,"LU"I"C,"et"al."Intraoperative"neural"monitoring"in"thyroid"surgery:"Lessons"learned"from"animal"studies[J]."Gland"Surg,"2016,"5(5):"473–480.
[21] VELAYUTHAM"P,"THIAGARAJAN"S,"DHAR"H,"et"al."A"nationwide"survey"to"assess"the"practices"and"patterns"of"use"of"intraoperative"nerve"monitoring"during"thyroid"surgery"among"surgeons"in"india[J]."Indian"J"Surg"Oncol,"2024,"15(1):"18–24.
(收稿日期:2024–11–09)
(修回日期:2024–12–10)