【摘要】 腸道微生物群由多種微生物組成,包括雙歧桿菌(Bifidobacteriales)、乳桿菌(Lactobacillus)等益生菌,參與維持腸道微環(huán)境的動態(tài)平衡、正常腸道功能及免疫炎癥反應等過程。但在病理狀態(tài)下,腸道微生物群的組成或豐度會發(fā)生變化,從而導致腸道功能的紊亂、各種疾病的發(fā)生等。腸道微生物群可通過介導機體炎癥反應、免疫反應、特異性蛋白活化、產(chǎn)生某些致癌化合物等途徑參與腫瘤的發(fā)生。胃腸道腫瘤是目前癌癥死亡的主要原因之一,病例數(shù)量眾多,病變部位廣泛,現(xiàn)研究發(fā)現(xiàn)腸道微生物群紊亂與消化道腫瘤相關,故本文對近年來腸道微生物群與消化道腫瘤的相關研究做一綜述。
【關鍵詞】 腸道微生物群 消化道腫瘤 食管癌 胃癌 胰腺癌
Research Progress on the Relationship between Gut Microbiota and Gastrointestinal Tumors/WAN Lu, TONG Qiang, LIU Xiaobo. //Medical Innovation of China, 2025, 22(01): -183
[Abstract] The gut microbiota is composed of a variety of various microorganisms, including probiotics such as Bifidobacteriales and Lactobacillus, which participate in the process of maintaining the dynamic balance of the gut microenvironment, normal intestinal function, and immune inflammatory response. However, in the pathological state, the composition or abundance of gut microbiota will change, leading to intestinal dysfunction and the occurrence of various diseases. The gut microbiota can participate in the occurrence of tumors by mediating inflammation, immune response, specific protein activation and the production of some carcinogenic compounds. Gastrointestinal tumors is one of the main causes of cancer death at present, with a large number of cases and a wide range of lesions. It is found that the disorder of gut microbiota is related to gastrointestinal tumors, so this paper reviews the related research on gut microbiota and gastrointestinal tumors in recent years.
[Key words] Gut microbiota Gastrointestinal tumors Esophageal cancer Gastric cancer Pancreatic cancer
First-author's address: Hubei University of Medicine, Shiyan 442000, China
doi:10.3969/j.issn.1674-4985.2025.01.040
人類腸道菌群被稱為人類的“第二基因組”,在腸道內(nèi)龐大的微生物群中,細菌占比超過99%,這些細菌大致可分為有益菌、有害菌和中性菌三大類,以多種方式與宿主細胞相互作用[1]。人體腸道微生物群是一個極其復雜的生態(tài)系統(tǒng),和腫瘤發(fā)生發(fā)展的關系密切。早在20世紀末人們即已認識到幽門螺桿菌(Helicobacter pylori,Hp)與胃癌(gastric cancer,GC)的內(nèi)在聯(lián)系,還發(fā)現(xiàn)某些類型細菌會直接誘發(fā)腸癌。除此之外,腸道細菌還能夠經(jīng)胰腺導管進入胰腺,而胰腺癌(pancreatic cancer,PC)患者體內(nèi)致病細菌數(shù)量是非PC人群的1 000倍,且存在的大量細菌會削弱胰腺癌化療藥物的效果[2]。下面,筆者就近年來腸道微生物群與消化道腫瘤相關研究進行盤點綜述。
1 微生物群與食管癌(esophagus carcinoma,EC)
EC是全球排名前十的惡性腫瘤之一,也是消化道常見的惡性腫瘤之一。據(jù)國際癌癥研究中心(international agency for research on cancer,IARC)全球統(tǒng)計的數(shù)據(jù)顯示,2020年全球EC新發(fā)病例60.4萬例,死亡病例54.4萬例[3],超過50%的病例都在中國[4]。EC的早期癥狀不明顯,多數(shù)確診時即為中晚期,一般預后較差。不同組織學分型EC的危險因素不同,食管鱗狀細胞癌的主要危險因素有吸煙、飲酒、食用腌制食品、過燙飲食等,食管腺癌的主要危險因素有胃食管反流、Barrett食管、超重等[3]。近年來,有研究表明,食管菌群在EC的發(fā)生發(fā)展中起著重要作用。Hu等[5]的研究發(fā)現(xiàn),食管鱗狀細胞癌組織和正常組織在門和屬水平的優(yōu)勢菌群組成不同,且在不同病理類型和有無淋巴結轉移的EC組織中菌群豐度有明顯差異。還有研究也發(fā)現(xiàn),EC術后復發(fā)組和未復發(fā)組患者的腸道菌群組成和豐度有顯著差異,雙歧桿菌(Bifidobacteriales)和乳桿菌(Lactobacillus)豐度增加可能會降低EC根治術后復發(fā)的風險[1]。文獻[6]中發(fā)現(xiàn),在屬水平上有6種微生物群在癌組織中的相對比例高于癌旁組織,癌旁組織的微生物相互作用主要涉及厚壁菌門(Firmicutes)、變形菌門(Proteobacteria)和擬桿菌門(Bacteroidetes),而腫瘤組織則為厚壁菌門和變形菌門,這種癌組織中菌群相互作用的減弱與Lin等[7]的研究一致。一項研究發(fā)現(xiàn),核梭桿菌(Fusobacterium nucleatum)在癌組織中的含量高于癌旁正常組織,且豐富與腫瘤浸潤深度、淋巴結轉移、腫瘤分期呈正相關,并證實核梭桿菌通過激活DNA損傷反應途徑增強化療誘導的衰老相關分泌表型的分泌,從而促進食管鱗癌的化療耐藥[8]。以上研究表明腸道微生物群的紊亂可能導致腫瘤的發(fā)生、進展,且與不良預后及治療相關。
2 微生物群與GC
GC是一種具有高度侵襲性和異質(zhì)性的惡性腫瘤,涉及多因素、多過程。據(jù)統(tǒng)計,2020年全球GC超100萬新發(fā)病例,全球發(fā)病率排名第五,死亡率排名第四[3]。GC與家族史、飲食、吸煙、飲酒、Hp和EB病毒感染有關[9]。慢性Hp感染導致慢性萎縮性胃炎,進而可能發(fā)展為GC[3]。Hp產(chǎn)生的外膜蛋白、空泡細胞毒素A及細胞毒素相關基因A可激活細胞信號通路,如JAK/STAT、PI3/Akt等,可調(diào)控腫瘤發(fā)生[10]。一項隨機對照前瞻性研究發(fā)現(xiàn),在長期隨訪時間中,三聯(lián)抗Hp治療的人群GC發(fā)生率較安慰劑治療組低,但根除Hp并不能完全預防GC的發(fā)生,僅在無癌前病變和無消化不良癥狀的人群更為明顯[11]。一項前瞻性研究發(fā)現(xiàn),根除Hp治療可逆轉胃內(nèi)微生物群改變,且Hp與梭桿菌屬、奈瑟菌屬、普雷沃菌屬等9種菌群之間的相互排斥可能與慢性萎縮性胃炎、腸上皮化生、異型增生等進展性胃黏膜病變相關[12]。現(xiàn)有研究表明,非Hp胃微生物群也參與EC的發(fā)生。研究發(fā)現(xiàn),GC患者的組織中海洋桿菌、甲基桿菌、合養(yǎng)單胞菌相對豐度高于慢性胃炎患者;而在糞便樣本中,與慢性胃炎患者相比,GC患者乳酸菌、鏈球菌和一種未分類的腸桿菌科細菌的相對豐度高,表明菌群組成的差異可作為鑒別二者的依據(jù)[13]。他們的研究還發(fā)現(xiàn),高甲基桿菌GC患者的生存期明顯低于低甲基桿菌組,且甲基桿菌與CD8+ 腫瘤浸潤淋巴細胞(tumor infiltrating lymphocyte,TIL)呈負相關,表明高甲基桿菌可能降低腫瘤微環(huán)境中CD8+ TIL細胞的密度,從而影響患者的預后。以上研究表明,細菌菌群的失衡參與GC的發(fā)生發(fā)展,且與預后相關。現(xiàn)有研究表明,體內(nèi)的非細菌成分也參與GC的發(fā)生。研究發(fā)現(xiàn),與癌旁組織相比,白色念珠菌在GC組織中的物種豐度占22%,可作為區(qū)分GC的真菌生物學標志物和治療靶點[14]。有學者發(fā)現(xiàn),GC患者的癌和癌旁組織真菌菌群的豐度不同,還發(fā)現(xiàn)Ⅰ期和無神經(jīng)侵犯的GC患者體內(nèi)的Solicoccozyma豐度明顯高于Ⅱ~Ⅳ期及有神經(jīng)侵犯的患者[15],提示Solicoccozyma可能為GC發(fā)展中的保護因素。
3 微生物群與PC
PC是一種早期發(fā)現(xiàn)困難、預后差的高致死率胃腸道腫瘤,被稱為“癌中之王”。在全球范圍內(nèi),PC在癌癥死亡原因中排名第七[3],吸煙、飲酒、肥胖、糖尿病、遺傳易感性、PC家族史等是PC的高危因素,其5年生存率為5%~9%[16-17]。最常見的PC是胰腺導管腺癌(pancreatic ductal adenocarcinoma,PDAC),占90%[17]?,F(xiàn)有的研究顯示,Hp感染與PC存在著互相矛盾的關系。Hp血清陽性與PC的發(fā)展有明顯的相關性[AOR 1.38, 95%CI(1.08,1.75),P=0.009][18];一病例對照研究發(fā)現(xiàn),Hp抗體陽性的PC患者的CagA-Hp陽性率(38.88%)明顯高于健康對照組(21.53%)[19]。而另一項研究則表明,Hp感染和CagA陽性與PC和壺腹周圍癌無明顯關系[20]。一項病例對照研究使用基于16s RNA基因測序的方法來比較PDAC患者與健康人群的唾液微生物,結果顯示兩組之間的菌群豐度存在顯著差異。他們還發(fā)現(xiàn)不同癥狀的PDAC患者的口腔菌群不同,例如無黃疸的患者普雷沃菌屬(Prevotella)含量增加,而腹脹患者的卟啉單胞菌(Porphyromnas)豐度更高[21]。牙齦卟啉單胞菌感染會導致牙周炎[22],而牙周炎患者的PC患病率和死亡率增加[22-24],牙齦卟啉單胞菌可能通過誘導中性粒細胞的聚集和去甲腎上腺素(norepinephrine)的分泌來促進PC的發(fā)生發(fā)展[22]。2019年發(fā)表在Nature上的一項研究表明,馬色拉菌(Malassezia spp)參與PC的進展,可能通過激活甘露糖結合凝集素(mannose binding lectin,MBL)介導的補體級聯(lián)反應來調(diào)控腫瘤的進展[25]。以上研究表明,體內(nèi)菌群失調(diào),無論是真菌還是細菌,均可導致PC的發(fā)生發(fā)展,綜合不同的癥狀和微生物群的差異可能有助于早期PC的發(fā)現(xiàn),為PC的治療提供新的靶點。
4 微生物群與肝細胞癌(hepatocellular carcinoma,HCC)
原發(fā)性肝癌死亡率高,生存期短[3],HCC是其最常見類型,約占全部病例的90%[26]。慢性丙型肝炎病毒(hepatitis C virus,HCV)和乙型肝炎病毒(hepatitis B virus ,HBV)感染是HCC的主要危險因素,此外還包括長期大量飲酒、非酒精性脂肪性肝炎(NASH)、糖尿病、肥胖等其他因素[26-27],大多數(shù)肝癌患者有肝硬化病史[28]?,F(xiàn)有越來越多的證據(jù)表明體內(nèi)菌群紊亂會參與HCC的發(fā)生和進展。研究發(fā)現(xiàn),HCC患者糞便中的厚壁菌門明顯低于健康對照組,并且厚壁菌門與擬桿菌門的比值明顯降低[29]。有證據(jù)表明,HCC患者的唾液中藍藻菌(Cyanobacteria)的檢出率高于健康對照人群[30]。此外,研究發(fā)現(xiàn),HCC患者組織中的厚壁菌門、乳酸桿菌明顯高于癌旁組織[31]。以上研究表明,體內(nèi)微生物群的紊亂參與HCC的發(fā)生。雖然肝臟與腸道菌群無直接聯(lián)系,但可通過“腸-肝軸”與肝臟相互作用,菌群可能通過微生物相關分子模式(microbe-associated molecular pattern,MAMP)、Toll樣受體(toll-like receptor, TLR)及菌群的代謝物來參與肝臟炎癥、纖維化和再生,促進肝癌的發(fā)生[28]。有學者發(fā)現(xiàn),在糞便富集的瘤胃球菌科(Ruminococcaceae)、擬桿菌科(Bacteroidaceae)在HCC和肝硬化患者的血液和肝臟組織中明顯高于非肝硬化性非酒精性脂肪性肝?。∟AFLD)患者[32],表明腸道屏障的破壞可能會導致糞便菌群易位到血液和組織中,參與肝臟疾病的進展。腫瘤組織中含有較為豐富的嗜麥芽窄食單胞菌(S.maltophiia),S.maltophiia與Phyllobacterium和Romboutsia聯(lián)合檢測HCC的ROC曲線下面積為0.8,表明菌群可作為檢測肝癌的有效生物學標志物[31]?,F(xiàn)有證據(jù)表明,腸道微生物群可通過影響體內(nèi)代謝物質(zhì)從而參與肝癌的發(fā)生發(fā)展。研究發(fā)現(xiàn),腸道微生物群紊亂可導致血清?;悄懰嵩黾雍?-吲哚丙酸降低,從而促進細胞的增殖和脂質(zhì)物質(zhì)的增加,導致NAFLD相關HCC[33]。革蘭陽性菌細胞壁的脂聯(lián)素與脫氧膽酸結合,通過腸-肝軸中細菌驅動COX-2通路,促進NASH相關的HCC發(fā)展[34]。益生菌可通過激活細胞凋亡通路、增強免疫反應、調(diào)節(jié)各種細胞成分和分子、調(diào)節(jié)腸道菌群的組成,從而發(fā)揮預防腫瘤和抗腫瘤的作用[35]。有學者對二乙基亞硝胺誘導的NAFLD-HCC小鼠模型進行研究,發(fā)現(xiàn)假雙歧桿菌不僅可以通過調(diào)節(jié)腸道微生物組成改善腸道屏障功能,其關鍵代謝產(chǎn)物乙酸可通過腸肝循環(huán)進入肝臟,并與肝細胞上的G蛋白偶聯(lián)受體43(GPR43)結合,抑制IL-6/JAK1/STAT3信號通路,從而預防NAFLD相關HCC的進展[36]。
5 微生物群與結直腸癌(colorectal cancer,CRC)
CRC是全球第三大常見惡性腫瘤,死亡率排名第二[3]。CRC的發(fā)生是多因素參與的結果,肥胖是CRC的危險因素,根據(jù)IARC的數(shù)據(jù),體重指數(shù)為≥30 kg/m2的人群患CRC的風險增加1.3倍。其他危險因素還包括吸煙、飲酒、食用紅肉或加工肉、基因突變、炎癥性腸病等,而補鈣、增加膳食纖維和乳制品的攝入可降低患CRC的風險[3,37]。
CRC患者的預后較差,遠處轉移后5年生存率低于10%[38]?,F(xiàn)已證實CRC與腸道菌群密切相關,其直接或代謝物質(zhì)間接作用促進CRC的發(fā)生發(fā)展[35]。Hp感染是GC的主要危險因素,體外動物實驗表明Hp感染誘導了相關的特異性的促炎反應,可將Treg細胞(調(diào)節(jié)性T細胞)重新編程為潛在的致病性Foxp3+ IL-17A+ T細胞,誘導激活STAT和NF-κB信號通路,參與CRC的起始、發(fā)生、發(fā)展[39]。既往研究表明,核梭桿菌(Fusobacterium nucleatum,F(xiàn)n)在CRC癌組織中的豐度明顯高于正常癌旁組織,并參與CRC的轉移[40]。一項隊列研究有同樣的發(fā)現(xiàn),CRC患者Fn數(shù)量增加,研究還表明CRC患者的某些真菌如念珠菌、古菌和病毒與對照組之間有明顯差異[41]。Fn可通過不同的機制參與CRC的發(fā)生及轉移[40,42],表明對Fn誘導的CRC通路的深入研究和干預可能為CRC的靶向治療和預防提供新的方向。闌尾通過共生細菌和IgA提供理想的生態(tài)環(huán)境,從而維持腸道微生物的穩(wěn)態(tài)及生物多樣性。有學者發(fā)現(xiàn),闌尾切除術后患CRC的風險較未切除闌尾患者高,且闌尾切除組患者糞便中Fn數(shù)量明顯較未切除組增加[43],表明闌尾的缺失可能會導致體內(nèi)菌群紊亂,從而導致CRC的發(fā)生。
6 總結與展望
隨著現(xiàn)代測序技術(16 s RNA、18 s RNA、ITS)的發(fā)展,微生態(tài)與腫瘤的關系研究是當前腫瘤學研究熱點。腸道微生物的紊亂參與常見消化道惡性腫瘤的發(fā)生發(fā)展,許多腫瘤的發(fā)病機制尚不清楚,需通過有創(chuàng)檢查明確診斷,且存在發(fā)現(xiàn)即為晚期而喪失治療的風險。本文以腸道微生物群與EC、GC、PC、HCC及CRC的關系做一綜述,了解腸道微生物群的具體作用,為惡性腫瘤提供新的診斷方法、新的治療靶點。
參考文獻
[1] LV J,GUO L,LIU J J,et al.Alteration of the esophageal microbiota in Barrett's esophagus and esophageal adenocarcinoma[J].World Journal of Gastroenterology,2019,25(18):2149-2161.
[2] CHEN C,CHEN L,LIN L,et al.Research progress on gut microbiota in patients with gastric cancer, esophageal cancer, and small intestine cancer[J].Applied Microbiology and Biotechnology,2021,105(11):4415-4425.
[3] SUNG H,F(xiàn)ERLAY J,SIEGEL R L,et al.Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin,2021,71(3):209-249.
[4] ZHU H C,MA X,YE T,et al.Esophageal cancer in China: practice and research in the new era[J].International Journal of Cancer,2023,152(9):1741-1751.
[5] HU M C,BAI W,ZHAO C,et al.Distribution of esophagus flora in esophageal squamous cell carcinoma and its correlation with clinicopathological characteristics[J].Translational Cancer Research,2020,9(6):3973-3985.
[6] SHEN W T,TANG D R,WAN P,et al.Identification of tissue-specific microbial profile of esophageal squamous cell carcinoma by full-length 16S rDNA sequencing[J].Applied Microbiology and Biotechnology,2022,106(8):3215-3229.
[7] LIN Z L,RAO W Q,XIANG Z S,et al.Characteristics and interplay of esophageal microbiota in esophageal squamous cell carcinoma[J].BMC Cancer,2022,22(1):696.
[8] ZHANG J W,ZHANG D,YIN H S,et al.Fusobacterium nucleatum promotes esophageal squamous cell carcinoma progression and chemoresistance by enhancing the secretion of chemotherapy-induced senescence-associated secretory phenotype via activation of DNA damage response pathway[J].Gut Microbes,2023,15(1):2197836.
[9] MACHLOWSKA J,BAJ J,SITARZ M,et al.Gastric cancer: epidemiology, risk factors, classification, genomic characteristics and treatment strategies[J].International Journal of Molecular Sciences,2020,21(11):4012.
[10] ALIPOUR M.Molecular mechanism of Helicobacter pylori-induced gastric cancer[J].Journal of Gastrointestinal Cancer,2021,52(1):23-30.
[11] YAN L J,CHEN Y,CHEN F,et al.Effect of Helicobacter pylori eradication on gastric cancer prevention: updated report from a randomized controlled trial with 26.5 years of follow-up[J/OL]. Gastroenterology,2022,163(1):154-162,e3(2022-03-29)[2024-04-19].https://pubmed.ncbi.nlm.nih.gov/35364066/.DOI:10.1053/j.gastro.2022.03.039.
[12] GUO Y,ZHANG Y,GERHARD M,et al.Effect of Helicobacter pylori on gastrointestinal microbiota: a population-based study in Linqu, a high-risk area of gastric cancer[J].Gut,2020,69(9):1598-1607.
[13] PENG R,LIU S,YOU W H,et al.Gastric microbiome alterations are associated with decreased CD8+ tissue-resident memory T cells in the tumor microenvironment of gastric cancer[J].Cancer Immunology Research,2022,10(10):1224-1240.
[14] ZHONG M Y,XIONG Y B,ZHAO J B,et al.Candida albicans disorder is associated with gastric carcinogenesis[J].Theranostics,2021,11(10):4945-4956.
[15] ZHANG Z Z,F(xiàn)ENG H,QIU Y P,et al.Dysbiosis of gastric mucosal fungal microbiota in the gastric cancer microenvironment[J].Journal of Immunology Research,2022,2022:6011632.
[16] KLEIN A P.Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors[J].Nature Reviews Gastroenterology Hepatology,2021,18(7):493-502.
[17] STOFFEL E M,BRAND R E,GOGGINS M.Pancreatic cancer:changing epidemiology and new approaches to risk assessment,early detection,and prevention[J].Gastroenterology,2023,164(5):752-765.
[18] TRIKUDANATHAN G,PHILIP A,DASANU C A,et al.
Association between Helicobacter pylori infection and pancreatic cancer. A cumulative meta-analysis[J].JOP,2011,12(1):26-31.
[19] AI F L,HUA X D,LIU Y F,et al.Preliminary study of pancreatic cancer associated with Helicobacter pylori infection[J].Cell Biochemistry and Biophysics,2015,71(1):397-400.
[20] LAYA G B,ANANDHI A,GURUSHANKARI B et al.Association between Helicobacter pylori and periampullary and pancreatic cancer: a case-control study[J].Journal of Gastrointestinal Cancer,2022,53(4):902-907.
[21] WEI A L,LI M,LI G Q,et al.Oral microbiome and pancreatic cancer[J].World Journal of Gastroenterology,2020,26(48):7679-7692.
[22] TAN Q,MA X,YANG B,et al.Periodontitis pathogen Porphyromonas gingivalis promotes pancreatic tumorigenesis via neutrophil elastase from tumor-associated neutrophils[J].Gut Microbes,2022,14(1):2073785.
[23] MAISONNEUVE P,AMAR S,LOWENFELS A B.Periodontal disease, edentulism, and pancreatic cancer: a meta-analysis[J].Annals of Oncology,2017,28(5):985-995.
[24] HEIKKILA P,BUT A,SORSA T,et al.Periodontitis and cancer mortality: register‐based cohort study of 68, 273 adults in 10-year follow-up[J].International Journal of Cancer,2018,142(11):2244-2253.
[25] AYKUT B,PUSHALKAR S,CHEN R,et al.The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL[J].Nature,2019,574(7777):264-267.
[26] LLOVET J M,CASTET F,HEIKENWALDER M,et al.
Immunotherapies for hepatocellular carcinoma[J].Nature reviews Clinical Oncology,2022,19(3):151-172.
[27] KULIK L,EL-SERAG H B.Epidemiology and management of hepatocellular carcinoma[J].Gastroenterology,2019,156(2):477-491.
[28] SCHWABE R F,GRETEN T F.Gut microbiome in HCC-mechanisms, diagnosis and therapy[J].Journal of Hepatology,2020,72(2):230-238.
[29] ZHANG L,WU Y N,CHEN T,et al.Relationship between intestinal microbial dysbiosis and p1rimary liver cancer[J].Hepatobiliary Pancreatic Diseases International,2019,18(2):149-157.
[30] HERNANDEZ B Y,ZHU X M,RISCH H A,et al.Oral Cyanobacteria and hepatocellular carcinoma[J].Cancer Epidemiol Biomarkers Prev,2022,31(1):221-229.
[31] LIU B Y,ZHOU Z W,JIN Y,et al.Hepatic stellate cell activation and senescence induced by intrahepatic microbiota disturbances drive progression of liver cirrhosis toward hepatocellular carcinoma[J].Journal for Immunotherapy of Cancer,2022,10(1):3069.
[32] EFFENBERGER M,WASCHINA S,BRONOWSKI C,et al.
A gut bacterial signature in blood and liver tissue characterizes cirrhosis and hepatocellular carcinoma[J].Hepatology Communications,2023,7(7):182.
[33] ZHANG X,COKER O O,CHU E S H,et al.Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites[J].Gut,2021,70(4):761-774.
[34] LOO T M,KAMACHI F,WATANABE Y,et al.Gut microbiota promotes obesity-associated liver cancer through PGE2-mediated suppression of antitumor immunity[J].Cancer Discovery,2017,7(5):522-538.
[35] QIN H,YUAN B W,HUANG W,et al.Utilizing gut microbiota to improve hepatobiliary tumor treatments: recent advances[J].Frontiers in Oncology,2022,12:924696.
[36] SONG Q,ZHANG X,LIU W X,et al.Bifidobacterium pseudolongum-generated acetate suppresses non-alcoholic fatty liver disease-associated hepatocellular carcinoma[J].Journal of Hepatology,2023,79(6):1352-1365.
[37] BAIDOUN F,ELSHIWY K,ELKERAIE Y,et al.Colorectal cancer epidemiology:recent trends and impact on outcomes[J].Current Drug Targets,2021,22(9):998-1009.
[38] LI R,SHEN J,XU Y.Fusobacterium nucleatum and colorectal cancer[J].Infection and Drug Resistance,2022,15:1115-1120.
[39] RALSER A,DIETL A,JAROSCH S,et al.Helicobacter pylori promotes colorectal carcinogenesis by deregulating intestinal immunity and inducing a mucus-degrading microbiota signature[J].Gut,2023,72(7):1258-1270.
[40] CHEN S J,SU T T,ZHANG Y,et al.Fusobacterium nucleatum promotes colorectal cancer metastasis by modulating KRT7-AS/KRT7[J].Gut Microbes,2020,11(3):511-525.
[41] LIU N N,JIAO N,TAN J C,et al.Multi-kingdom microbiota analyses identify bacterial–fungal interactions and biomarkers of colorectal cancer across cohorts[J].Nature Microbiology,2022,7(2):238-250.
[42] XU C C,F(xiàn)AN L N,LIN Y F,et al.Fusobacterium nucleatum promotes colorectal cancer metastasis through miR-1322/CCL20 axis and M2 polarization[J].Gut Microbes,2021,13(1):1-17.
[43] SHI F Y,LIU G X,LIN Y F,et al.Altered gut microbiome composition by appendectomy contributes to colorectal cancer[J].Oncogene,2023,42(7):530-540.
(收稿日期:2024-05-13) (本文編輯:陳韻)