摘要: 復對稱算子是指Hilbert空間上具有對稱矩陣表示的線性算子. 綜述近年來復對稱算子的主要研究進展及若干公開問題, 包括特殊復對稱算子、 約化子空間、 范數閉包問題和代數性質等.
關鍵詞: 復對稱算子; 斜對稱算子; Toeplitz算子; 截斷Toeplitz算子; 加權移位; 部分等距; 約化子空間
中圖分類號: O177.1" 文獻標志碼: A" 文章編號: 1671-5489(2025)01-0047-13
Research Progress of Complex Symmetric Operatorsand Related Operator Classes
ZHAO Jiayin1, ZHU Sen2
(1. School of Mathematics and Statistics, Changchun University of Science and Technology, Changchun 130022, China;
2. College of Mathematics, Jilin University, Changchun 130012, China)
Abstract: A complex symmetric" operator refers to a linear operator with a symmetric matrix representation" on a" Hilbert space.
We review the main research" advances" and" several open problems of complex symmetric operators in recent years, involving special complex symmetric operators, reducing subspaces,
the norm closure problem, and algebraic properties" and so on.
Keywords: complex symmetric operator; skew symmetric operator; Toeplitz operator; truncated Toeplitz operator; weighted shift; partial isometry; reducing subspace
收稿日期: 2024-11-26.
第一作者簡介: 趙佳音(1991—), 女, 漢族, 博士, 副教授, 從事算子理論與算子代數的研究, E-mail: zhaojiayin2014@163.com.
通信作者簡介: 朱 森(1981—), 男, 漢族, 博士, 教授, 博士生導師, 從事算子理論與算子代數的研究, E-mail: zhusen@jlu.edu.cn.
基金項目: 國家自然科學基金(批準號: 12171195; 12101077).
0 引 言
本文用H表示具有內積〈·,·〉的可分無窮維復Hilbert空間, 用B(H)表示
H上全體有界線性算子構成的代數, K(H)表示B(H)的緊算子理想.
對于T∈B(H)和C∈Bc(H), 可否利用T和C給出W(CT)的具體刻畫.
參考文獻
[1] GARCIA S R, PUTINAR M. Complex Symmetric Operators and Applications [J]. Trans Amer Math Soc, 2006, 358(3): 1285-1315.
[2] GARCIA S R, PUTINAR M. Complex Symmetric Operators and Applications.Ⅱ [J]. Trans Amer Math Soc, 2007, 359(8): 3913-3931.
[3] HUA L K. On the Theory of Automorphic Functions of a Matrix Level.Ⅰ.Geometrical Basis [J]. Amer J Math, 1944, 66: 470-488.
[4] JACOBSON N. Normal Semi-linear Transformations [J]. Amer J Math, 1939, 61(1): 45-48.
[5] SCHUR I. Ein Satz Ueber Quadratische Formen Mit Komplexen Koeffizienten [J]. Amer J Math, 1945, 67: 472-480.
[6] SIEGEL C L. Symplectic Geometry [J]. Amer J Math, 1943, 65: 1-86.
[7] TAKAGI T. On an Algebraic Problem Related to an Analyt
ic Theorem of Carathéodory and Fejér and on an Allied Theorem of Landau [J]. Japanese J Math, 1925, 1: 83-93.
[8] GLAZMAN I M. An Analogue of the Extension Theory of Hermitian Operators and a Non-symmetric One-Dimensional Boundary Problem on a Ha
lf-Axis [J]. Dokl Akad Nauk SSSR, 1957, 115: 214-216.
[9] GLAZMAN I M. Direct Methods of Qualitative Spectral Analysis of Sing
ular Differential Operators [M]. New York: Daniel Davey amp; Co., Inc., 1966: 1-234.
[10] ZAGORODNYUK S M. On a J-Polar Decomposition of a Bounded Operato
r and Matrices of J-Symmetric and J-Skew-Symmetric Operators [J]. Banach J Math Anal, 2010, 4(2): 11-36.
[11] SARASON D. Algebraic Properties of Truncated Toeplitz Operators [J]. Oper Matrices, 2007, 1(4): 491-526.
[12] GARCIA S R. Conjugation and Clark Operators [M]//Recent Advances in
Operator-Related Function Theory, Contemporary Mathematics: Vol.393. Providence, RI: American Mathematical Society, 2000: 67-111.
[13] GARCIA S R. Means of Unitaries, Conjugations, and the Friedrichs Operator [J]. J Math Anal Appl, 2007, 335(2): 941-947.
[14] GARCIA S R. The Norm and Modulus of a Foguel Operator [J]. Indiana Univ Math J, 2009, 58(5): 2305-2315.
[15] GARCIA S R, PRODAN E, PUTINAR M. Mathematical and Physical Aspects o
f Complex Symmetric Operators [J]. J Phys A: Math Theor, 2014, 47(35): 353001-1-353001-54.
[16] HAI P V, PUTINAR M. Complex Symmetric Evolution Equations [J]. Anal Math Phys, 2020, 10(1): 14-1-14-36.
[17] PRODAN E, GARCIA S R, PUTINAR M. Norm Estimates of Complex Symmetric
Operators Applied to Quantum Systems [J]. J Phys A: Math Gen, 2006, 39(2): 389-400.
[18] GARCIA S R, WOGEN W R. Complex Symmetric Partial Isometries [J]. J Funct Anal, 2009, 257(4): 1251-1260.
[19] ZHU S, LI C G. Complex Symmetric Weighted Shifts [J]. Trans Amer Math Soc, 2013, 365(1): 511-530.
[20] BARANOV A, CHALENDAR I, FRICAIN E, et al.
Bounded Symbols and Reproducing Kernel Thesis for Truncated Toeplitz Operators [J]. J Funct Anal, 2010, 259(10): 2673-2701.
[21] BARANOV A, BESSONOV R, KAPUSTIN V. Symbols of Truncated Toeplitz Operators [J]. J Funct Anal, 2011, 261(12): 3437-3456.
[22] BESSONOV R. Truncated Toeplitz Operators of Finite Rank [J]. Proc Amer Math Soc, 2014, 142(4): 1301-1313.
[23] CHU C. Normal Truncated Toeplitz Operators [J]. Complex Anal Oper Theory, 2018, 12(4): 849-857.
[24] GARCIA S R, ROSS W T, WOGEN W R. C*-Algebras Generated by Truncat
ed Toeplitz Operators [M]. Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation, 236. Basel: Birkhuser, 2014: 181-192.
[25] SEDLOCK N A. Algebras of Truncated Toeplitz Operators [J]. Oper Matrices, 2011, 5(2): 309-326.
[26] KO E, LEE J E. Normal Truncated Toeplitz Operators on Finite-Dimensional Spaces [J]. Linear Multilinear Algebra, 2015, 63(10): 1947-1971.
[27] MA P, ZHENG D C. Compact Truncated Toeplitz Operators [J]. J Funct Anal, 2016, 270(11): 4256-4279.
[28] BERCOVICI H, TIMOTIN D. Truncated Toeplitz Operators and Complex Symmetries [J]. Proc Amer Math Soc, 2018, 146(1): 261-266.
[29] CIMA J A, GARCIA S R, ROSS W T, et al.
Truncated Toeplitz Operators: Spatial Isomorphism, Unitary Equivalence, and Similarity [J]. Indiana Univ Math J, 2010, 59(2): 595-620.
[30] STROUSE E, TIMOTIN D, ZARRABI M. Unitary Equivalence to Truncated Toeplitz Operators [J]. Indiana Univ Math J, 2012, 61(2): 525-538.
[31] GARCIA S R, LUTZ B, TIMOTIN D. Two Remarks about Nilpot
ent Operators of Order Two [J]. Proc Amer Math Soc, 2014, 142(5): 1749-1756.
[32] GARCIA S R, MASHREGHI J, ROSS W T. Introduction to Mo
del Spaces and Their Operators [M]//Cambridge Studies in Advanced Mathematics, 148. Cambridge: Cambridge University Press, 2016: 1-542.
[33] GUO K Y, ZHU S. A Canonical Decomposition of Complex Symmetric Operators [J]. J Operator Theory, 2014, 72(2): 529-547.
[34] BU Q G, CHEN Y, ZHU S. Complex Symmetric Toeplitz Operators [J]. Integral Equations Operator Theory, 2021, 93(2): 15-1-15-19.
[35] KO E, LEE J E. On Complex Symmetric Toeplitz Operators [J]. J Math Anal Appl, 2016, 434(1): 20-34.
[36] HAN K K, WANG M F, WU Q. Unbounded Complex Symmetric Toeplitz Operators [J]. Acta Math Sci: Ser B (Engl Ed), 2022, 42(1): 420-428.
[37] WALEED NOOR S. Complex Symmetry of Toeplitz Operators with Continuous Symbols [J]. Arch Math (Basel), 2017, 109(5): 455-460.
[38] HU X H, DONG X T, ZHOU Z H. Complex Symmetric Monomia
l Toeplitz Operators on the Unit Ball [J]. J Math Anal Appl, 2020, 492(2): 124490-1-124490-16.
[39] GARCIA S R, HAMMOND C. Which Weighted Composition Operators Are Complex Symmetric? [M].
Operator Theory: Advances and Applications, 236. Basel: Birkhuser, 2014: 171-179.
[40] JUNG S, KIM Y, KO E, et al. Complex Symmetric Weigh
ted Composition Operators on H2(D) [J]. J Funct Anal,2014, 267(2): 323-351.
[41] WALEED NOOR S. On an Example of a Complex Symmetric C
omposition Operator on H2(D) [J]. J Funct Anal, 2015, 269(6): 1899-1901.
[42] WANG M F, YAO X X. Complex Symmetry of Weighted Compo
sition Operators in Several Variables [J]. Internat J Math, 2016, 27(2): 1650017-1-1650017-14.
[43] GAO Y X, ZHOU Z H. Complex Symmetric Composition Operators Induced by Linear Fractional Maps [J]. Indiana Univ Math J, 2020, 69(2): 367-384.
[44] COWEN C C. The Commutant of an Analytic Toeplitz Operator [J]. Trans Amer Math Soc, 1978, 239: 1-31.
[45] THOMSON J. The Commutant of a Class of Analytic Toeplitz Operators.Ⅱ. [J]. Indiana Univ Math J, 1976, 25(8): 793-800.
[46] THOMSON J. The Commutant of a Class of Analytic Toeplitz Operators [J]. Amer J Math, 1977, 99(3): 522-529.
[47] DOUGLAS R G, PUTINAR M, WANG K. Reducing Subspaces for Analytic Multipliers of the Bergman Space [J]. J Funct Anal, 2012, 263(6): 1744-1765.
[48] GUO K Y, HUANG H S. Geometric Constructions of Thin Blaschke Products and Reducing Subspace Problem [J]. Proc Lond Math Soc, 2014, 109(4): 1050-1091.
[49] ZHU S. Approximation of Complex Symmetric Operators [J]. Math Ann, 2016, 364(1/2): 373-399.
[50] HALMOS P R. Irreducible Operators [J]. Michigan Math J, 1968, 15: 215-223.
[51] LIU T, ZHAO J Y, ZHU S. Reducible and Irreducible A
pproximation of Complex Symmetric Operators [J]. J London Math Soc, 2019, 100(1): 341-360.
[52] VOICULESCU D. A Non-commutative Weyl-von Neumann Theorem[J]. Rev Roumaine Math Pures Appl, 1976, 21(1):" 97-113.
[53] WANG C, ZHU S. Reducing Subspaces of Complex Symmetric Operators [J]. Complex Anal Oper Theory, 2020, 14(4): 45-1-45-9.
[54] HALMOS P R. Ten Problems in Hilbert Space [J]. Bull Amer Math Soc, 1970, 76: 887-933.
[55] APOSTOL C, FIALKOW L A, HERRERO D A, et al. Approximation of Hilbert
Space Operators: Vol.Ⅱ [M]. Research Notes in Mathematics, 102. Boston, MA: Pitman (Advanced Publishing Program), 1984: 1-524.
[56] HERRERO D A. Approximation of Hilbert Space Operators: Vol.1 [M]. Pitman Re
search Notes in Mathematics Series, Vol.224. 2nd ed. New York: John Wiley amp; Sons, Inc, 1989: 1-332.
[57] ZHU S, LI C G, JI Y Q. The Class of Complex Symmetric Operators Is Not Norm Closed [J]. Proc Amer Math Soc, 2012, 140(5): 1705-1708.
[58] GARCIA S R, POORE D E. On the Norm Closure Problem for Complex
Symmetric Operators [J]. Proc Amer Math Soc, 2013, 141(2): 549.
[59] GARCIA S R, POORE D E. On the Norm Closure of the Complex Symmetric Op
erators: Compact Operators and Weighted Shifts [J]. J Funct Anal, 2013, 264(3): 691-712.
[60] GUO K Y, JI Y Q, ZHU S. A C*-Algebra Approach to Complex Symmetric Op
erators [J]. Trans Amer Math Soc, 2015, 367(10): 6903-6942.
[61] DANCIGER J, GARCIA S R, PUTINAR M. Variational Principl
es for Symmetric Bilinear Forms [J]. Math Nachr, 2008, 281(6): 786-802.
[62] KLIS'-GARLICKA K, PTAK M. C-Symmetric
Operators and Reflexivity [J]. Oper Matrices, 2015, 9(1): 225-232.
[63] CARTAN é. Sur Les Domaines Bornés Homogènes de L’espace de
n Variables Complexes [J]. Abh Math Semin Univ Hamburg, 1935, 11: 116-162.
[64] FRIEDMAN Y, RUSSO B. The Gelfand-Naimark Theorem for JB*-Triples [J]. Duke Math J, 1986, 53(1): 139-148.
[65] WANG C, ZHU S. The Jordan Algebra of Complex Symmetric Operators
[J/OL]. Chinese Ann Math (Ser B), (2023-11-21)[2024-11-01]. https://arxiv.org/pdf/1912.10391.
[66] FONG C K, MIERS C R, SOUROUR A R. Lie and Jordan Ideals of Operators
on Hilbert Space [J]. Proc Amer Math Soc, 1982, 84(4): 516-520.
[67] KADISON R V. Isometries of Operator Algebras [J]. Ann of Math, 1951, 54(2): 325-338.
[68] KURODA S T. On a Theorem of Weyl-von Neumann [J]. Proc Japan Acad, 1958, 34: 11-15.
[69] WANG C, ZHAO J Y, ZHU S. Range Inclusion and Diagonal
ization of Complex Symmetric Operators [J/OL]. Canad J Math, (2024-04-04)\70] BERG I D. An Extension of the Weyl-von Neumann Theorem
to Normal Operators [J]. Trans Amer Math Soc, 1971, 160: 365-371.
[71] SIKONIA W G. Essential, Singular, and Absolutely Continuous Spectra [D]. Colorado, USA: University of Colorado at Boulder, 1970.
[72] HALMOS P R. Continuous Functions of Hermitian Operators [J]. Proc Amer Math Soc, 1972, 31: 130-132.
[73] VOICULESCU D. Some Results on Norm-Ideal Perturbations
of Hilbert Space Operators [J]. J Operator Theory, 1979, 2(1): 3-37.
[74] DOUGLAS R G. On Majorization, Factorization, and Range Inclusion of Op
erators on Hilbert Space [J]. Proc Amer Math Soc, 1966, 17: 413-415.
[75] EMBRY M R. Factorization of Operators on Banach Space [J]. Proc Amer Math Soc, 1973, 38: 587-590.
[76] LI C G, ZHU S. Skew Symmetric Normal Operators [J]. Proc Amer Math Soc, 2013, 141(8): 2755-2762.
[77] ZHU S, ZHAO J Y. The Riesz Decomposition Theorem for Skew Symmetric Operators [J]. J Korean Math Soc, 2015, 52(2): 403-416.
[78] ZHU S. Skew Symmetric Weighted Shifts [J]. Banach J Math Anal, 2015, 9(1): 253-272.
[79] ZHU S. Complex Symmetric Operators, Skew Symmetric Operators and Reflexivity [J]. Oper Matrices, 2017, 11(4): 941-951.
[80] DE LA HARPE P. Classical Banach-Lie Algebras and Banach-Lie Groups o
f Operators in Hilbert Space [M]. Lecture Notes in Mathematics, Vol.285. Berlin: Springer-Verlag, 1972: 1-160.
[81] BU Q G, ZHU S. The Orthogonal Lie Algebra of Operators: Ideals and Derivations [J]. J Math Anal Appl, 2020, 489(1): 124-134.
[82] BU Q G, ZHU S. The Weyl-von Neumann Theorem for Skew-Symmetric Operators [J]. Ann Funct Anal, 2023, 14(2): 43-1-43-12.
[83] PTAK M, SIMIK K, WICHER A. C-Normal Operators [J]. Electron J Linear Algebra, 2020, 36: 67-79.
[84] WANG C, ZHAO J Y, ZHU S. Remarks on the Structure of C-Normal Operators [J]. Linear Multilinear Algebra, 2022, 70(9): 1682-1696.
[85] LIU T, SHI L Y, WANG C, et al. An Interpolation Problem for Conjugatio
ns [J]. J Math Anal Appl, 2021, 500(1): 125118-1-125118-11.
[86] LIU T, XIE X Y, ZHU S. An Interpolation Problem for Conjugations Ⅱ [J]. Mediterr J Math, 2022, 19(4): 153-1-153-13.
[87] RAMESH G, SUDIP RANJAN B, VENKU NAIDU D. A Representation of Compact C-
Normal Operators [J]. Linear Multilinear Algebra, 2023, 71(9): 1565-1577.
[88] BHUIA S R. A Note on C-Normal Weighted Composition Operators on th
e Fock Space in Several Variables [J]. Monatsh Math, 2023, 201(1): 53-64.
[89] AMARA Z, OUDGHIRI M. Linear Maps Preserving C-Normal Operators [J]. Mediterr J Math, 2022, 19(3): 123-1-123-13.
[90] KOLACZEK D, MüLLER V. Numerical Ranges of Antilinear Operators [J].
Integral Equations Operator Theory, 2024, 96(2): 17-1-17-15.
(責任編輯: 趙立芹)