收稿日期: 2024-11-26.
第一作者簡介: 胡朝龍(1994—), 男, 漢族, 博士研究生, 從事算子理論與算子代數(shù)的研究, E-mail: huzl21@mails.jlu.edu.cn.
通信作者簡介: 紀(jì)友清(1969—), 男, 漢族, 博士, 教授, 博士生導(dǎo)師, 從事算子理論與算子代數(shù)的研究, E-mail: jiyq@jlu.edu.cn.
基金項(xiàng)目: 國家自然科學(xué)基金(批準(zhǔn)號(hào): 12271202; 12031002).
0 引 言
設(shè)X是無窮維復(fù)Banach空間, L(X)是X上有界線性算子全體. 對(duì)T∈L(X), 記σ(T)為T的譜. 若σ(T)={0}, 則稱T是
擬冪零算子. 對(duì)X的子空間M, 若T(M)M, 則M稱為T的不變子空間. 不變子空間問題是算子理論中的一個(gè)基本問題, 即考慮是否每個(gè)T∈L(X)都有非平凡的(異于0和X
者)不變子空間. Read[1]在l1上構(gòu)造了一個(gè)有界線性算子, 它沒有非平凡的不變子空間. 但對(duì)X為自反空間, 尤其是Hilbert空間, 關(guān)于不變子空間問題
的研究目前尚未見文獻(xiàn)報(bào)道. 特別地, 對(duì)于Banach空間上的擬冪零算子, 它的譜雖然簡單, 但其不變子空間問題也極為困難. 文獻(xiàn)[2-5]給出了不變子空間問題的相關(guān)介紹.
參考文獻(xiàn)
[1] READ C J. A Solution to the Invariant Subspaces Problem [J]. Bull London Math Soc, 1984, 16(4): 337-401.
[2] FOIAS C, JUNG Ⅱ B, KO E, et al. On Quasinilpotent Operators (Ⅲ) [J]. J Operator Theory, 2005, 54(2): 401-414.
[3] RADJAVI H, ROSENTHAL P. Invariant Subspaces [M]. 2nd ed. Mineola, NY: Dover Publications, Inc., 2003: 1-231.
[4] READ C J. Quasinilpotent Operators and the Invariant Subspace Problem [J]. J London Math Soc (2), 1997, 56(3): 595-606.
[5] SARASON D, PEARCY C. Invariant Subspaces [M]. Mathematical Surveys, 13. Provindence, RI: American Mathematical Society, 1974: 1-47.
[6] DOUGLAS R G, YANG R W. Hermitian Geometry on Resolvent Set [J]. Oper Theory Adv Appl, 2018, 267: 167-183.
[7] DOUGLAS R G, YANG R W. Hermitian Geometry on Resolvent Set (Ⅱ) [J]. Sci China: Math, 2021, 64(2): 385-398.
[8] JI Y Q, ZHANG Y H. On the Power Set of Quasinilpotent Operators [J]. Integral Equational Operator Theory, 2023, 95(4): 25-1-25-22.
[9] HU C L, JI Y Q. Power Set of Some Quasinilpotent Weighted Shifts on lp[J]. Linear Algebra Appl, 2024, 686: 111-133.
[10] HE W, ZHU G L. Power Set and Invariant Subspaces of Cyclic Quasinilpotent Oper
ators [J]. J Math Anal Appl, 2022, 508(1): 125855-1-125855-13.
[11] JI Y Q, LIU L. Power Set of Some Quasinilpotent Weighted Shifts [J]. Integral Equational Operator Theory, 2021, 93(3): 25-1-25-22.
[12] LIANG Y X, YANG R W. Quasinilpotent Operators and Non-Euclidean Metrics [J]. J Math Anal Appl, 2018, 468(2): 939-958.
[13] CAROTHERS N L. A Short Course on Banach Space Theory [M]//London Mathemati
cal Society, Student Texts, 64. Cambridge: Cambridge University Press, 2005: 1-184.
[14] BANACH S. Theory of Linear Operations[M]//North-Holland Mathematical Library: Vol.38. Amsterdam: North-Holland Publishing Co.," 1987: 1-233.
(責(zé)任編輯: 趙立芹)