• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于組學技術探討生物標記物在抑郁癥中的研究進展

    2025-01-14 00:00:00劉洽程俊香劉娜楊國芳馬辰婧趙奕雯朱瑞芳韓世范
    護理研究 2025年1期
    關鍵詞:抑郁癥綜述氧化應激

    摘要" 基于組學技術綜述神經(jīng)遞質、神經(jīng)內分泌系統(tǒng)、精神神經(jīng)免疫系統(tǒng)、神經(jīng)營養(yǎng)因子系統(tǒng)、代謝及神經(jīng)影像學六大潛在抑郁癥生物學標志物在抑郁癥診斷、治療、干預效果觀察、預后及護理中的作用,以期對后續(xù)抑郁癥的研究臨床診治及護理工作提供支持。

    關鍵詞" 抑郁癥;生物學標志物;炎癥;氧化應激;綜述

    doi:10.12102/j.issn.1009-6493.2025.01.026

    基金項目 2023—2024年度山西省大健康產(chǎn)業(yè)高質量發(fā)展科研專項項目,編號:DJKZXKT2023002;山西省食療和農產(chǎn)品處方產(chǎn)業(yè)技術創(chuàng)新戰(zhàn)略聯(lián)盟項目基金

    作者簡介 劉洽,護士,碩士研究生在讀

    通訊作者 韓世范,E?mail:shifan.han@sxmu.edu.cn;朱瑞芳,E?mail: ruifang.zhu@sxmu.edu.cn

    引用信息 劉洽,程俊香,劉娜,等.基于組學技術探討生物標記物在抑郁癥中的研究進展[J].護理研究,2025,39(1):151?159.

    Research progress on biomarkers in depression based on omics technologies

    LIU Qia1, CHENG Junxiang1,2,LIU Na2,YANG Guofang1, MA Chenjing1, ZHAO Yiwen3, ZHU Ruifang1,2,3*, HAN Shifan1,2,4,5,6*

    1.Nursing College, Shanxi Medical University, Shanxi 030001 China;2.First Hospital of Shanxi Medical University;3.Shanxi Medical Periodical Press Co.,Ltd.;4.Shanxi Province Food Therapy and Agricultural Products Prescription Industry Technology Innovation Strategic Alliance;5.Major Platform Carrier and Training Base for the Integration of Health Industry and Education in Shanxi Province;6.Dietotherapy Science and Technology Research Center, Shanxi Medical University

    *Corresponding Author" HAN Shifan, E?mail: shifan.han@sxmu.edu.cn; ZHU Ruifang, E?mail: ruifang.zhu@sxmu.edu.cn

    Abstract""" It summarizes the roles of six potential biological markers of depression based on omics technologies, including neurotransmitters, the neuroendocrine system,the psychoneuroimmune system,neurotrophic factor systems,metabolism?related factors, and neuroimaging, in the diagnosis,treatment,observation of intervention effects, and prognosis of depression. The aim is to provide support for subsequent research clinical diagnosis and treatment and nursing work on depression.

    Keywords""" depression; biological markers; inflammation; oxidative stress; review

    抑郁癥(MDD)是一種常見的精神障礙,以持續(xù)的情緒低落、興趣減退、意志力降低為主要臨床表現(xiàn),其終身患病率約為17%,全球約有3.5億人受其影響。世界衛(wèi)生組織報告,到2030年抑郁癥在全球疾病總負擔中將升至第1位[1]。該病常反復發(fā)作,自殺率高達15%~25%,已成為困擾人類身心健康的重大精神疾患,而抑郁癥更是青少年發(fā)病和死亡的主要原因[2]。研究顯示,抑郁癥的患病風險自青少年早期開始上升并在整個青春期繼續(xù)以線性方式上升,到青春期后期,終生患病率估計在15%~25%[3?4]。然而,與如此龐大的患病人群和疾病負擔形成對比的是,迄今為止對這一疾病還缺乏行之有效、簡便可靠的客觀診斷及療效預測方法。青少年抑郁發(fā)作或復發(fā)可能會持續(xù)到成年,對其生理、心理及社會功能產(chǎn)生負面影響。更好地了解抑郁癥的病因、病理生理將有助于制定和實施更有效的一級和二級預防策略,從而降低抑郁的發(fā)病率[5]。目前普遍認為,抑郁癥是由多種遺傳和環(huán)境因素之間的復雜相互作用引起,而目前抑郁癥的診斷還是基于自我經(jīng)歷、行為或家屬、親人基于對病人觀察的報告,因此疾病診斷的不確定性高。Freedman等[6]采用Kappa 統(tǒng)計分析對精神疾病診斷與統(tǒng)計手冊(DSM?Ⅴ)的診斷一致性進行測試,結果顯示重度抑郁癥的可靠性評估僅為28%。內表型或生物標志物有助于靶向分析潛在的機制,還可用于加強臨床表型的分類,或區(qū)分可能的生物亞型,這些標志物反過來可能具有不同的臨床或治療特征,對臨床診斷、治療、干預效果觀察、預后及護理提供支持[7]。近年來,隨著各組學技術的不斷發(fā)展,對抑郁癥的生物學標志物的探索也有了新的突破,本研究基于組學技術在各系統(tǒng)假說的基礎上對潛在的抑郁癥標志物進行探討,為未來研究、臨床診治及護理工作提供參考。

    1" 神經(jīng)遞質生物學標志物

    單胺假說是目前為止臨床認識抑郁癥的主要依據(jù),它假設抑郁癥病人神經(jīng)回路中呈現(xiàn)出較低的血清素、多巴胺和去甲腎上腺素水平,臨床抗抑郁藥物的作用是增加他們在突觸間隙的生物利用度。5?羥色胺轉運體(5?HTT)是一種負責從突觸向突觸前神經(jīng)元再攝取5?羥色胺的蛋白質,是目前首選的抗抑郁藥物的主要目標。在5?羥色胺轉運基因(SLC6A4)的啟動子內,有一個5?羥色胺轉運基因連接的多態(tài)性區(qū)域5?HTTLPR,該區(qū)域有一個長(l)或短(s)的等位基因,分別導致SLC6A4基因活性的升高和降低[8]。研究表明,童年期遭受壓力應激的青少年攜帶5?HTTLPR的S等位基因會增加抑郁的發(fā)生風險[9?11]。此外,色氨酸羥化酶(TPH2)基因多態(tài)性也被發(fā)現(xiàn)與青少年抑郁相關聯(lián),且多數(shù)研究結果顯示其可預測SSRIs類抗抑郁藥物的應答 [12]。表觀遺傳研究發(fā)現(xiàn),SLC6A4基因近端啟動子甲基化水平升高可作為預測青春期應激下杏仁核反應性及后期抑郁癥狀表現(xiàn)的潛在標記物。盡管如此,關于這些標記物是否可以作為診斷及預測抑郁的標準仍存有爭議,Porcelli 等[13]人在控制人種等因素后進行的Meta分析中證實5?HTTLPR與抑郁及治療存在關聯(lián),但Taylor等[14]的工作卻否定了這一論斷。因此,仍需對此進一步深入觀察和研究。

    臨床多項研究證實了多巴胺在抑郁癥病理生理過程中特別是在快感缺失中的作用,這種觀點也在抗精神病藥輔助治療抑郁癥的有效性中得到印證[15?17]。多巴胺受體D3、D4、D5在外周循環(huán)中的表達均有報道,特別是D4,有研究顯示,抑郁患者杏仁核中D4 mRNA的表達增加,然而,其他研究卻發(fā)現(xiàn),抑郁組與健康對照組之間在D4 表達水平上無差異,且無抽搐電休克治療和異氟醚麻醉可降低D4 的表達水平[18?21]。

    γ?胺基丁酸(GABA)是一種重要的抑制性神經(jīng)遞質,它參與多種代謝活動并具有很高的生理活性,免疫學研究表明其濃度最高的區(qū)域為中腦中黑質。越來越多的證據(jù)表明它不僅在抑郁癥的病理生理學中起作用,而且是抗抑郁藥治療的目標[22?24]。大多數(shù)研究報告了抑郁癥病人腦脊液中GABA水平降低[25],血漿中也報告了類似的減少[26],盡管這不一定是抑郁癥特有的,但GABA的缺陷,通過增強細胞突觸后α5?GABA?A受體活性可改善認知及情緒[27]以及氯胺酮可快速逆轉抑郁情緒,從另一方面也證實了GABA可以成為預測抑郁發(fā)作及治療的潛在生物學標志物[28]。此外,較高的血漿GABA基線水平已被證明可以預測電休克治療應答[29]。然而,尸體檢查研究中關于谷氨酸脫羧酶(GAD)在抑郁癥病人中的表達數(shù)據(jù)尚不足以支持GABA作為可靠的抑郁預測標志物[30]。

    2" 神經(jīng)內分泌系統(tǒng)的生物學標志物

    有證據(jù)證明下丘腦?垂體?腎上腺軸(HPA)的功能失調或受損在抑郁發(fā)作的機制中起重要作用,而該機制與成長過程的壓力應激等相關。在地塞米松抑制試驗(DST)中,抑郁癥患者表現(xiàn)為持續(xù)性高皮質醇水平和對抑制不敏感。此外,研究表明,抑郁癥患者在進行DST時,表現(xiàn)出皮質醇反應異常升高的現(xiàn)象,這種升高通常與癥狀的嚴重程度成正相關,因此,它可能作為一個臨床抑郁癥狀嚴重程度的指標[31]。青春期HPA軸功能亢進引起的高皮質醇節(jié)律以及反應性增高比成人更敏感,且在女性中表現(xiàn)更明顯。一項囊括17項研究的Meta分析顯示,與對照組相比,抑郁表現(xiàn)的青少年HPA軸系統(tǒng)往往有功能失調的表現(xiàn),可以從對DST的非典型反應、較高的基線皮質醇值以及對心理應激源的過度反應中得到證明[32]。另一項研究報告指出,與對照組相比,在抑郁癥病人的下丘腦以及抑郁男性自殺病人的藍斑核和中縫核中促腎上腺皮質激素釋放素(CRF)和CRF的mRNA表達增加[33]。糖皮質激素受體(GR)mRNA在抑郁癥病人下額葉回、額葉皮層Ⅲ?Ⅵ層和顳葉皮層Ⅳ層中的表達降低[34?36]。相比之下,另一項研究報告稱,抑郁病人和對照組在幾個大腦區(qū)域的GR mRNA水平?jīng)]有差異,但扣帶回和杏仁核中GR亞型GRα的mRNA表達減少[37?38]。

    基于組學技術的研究顯示,早期的壓力會改變HPA軸調節(jié),并通過對糖皮質激素受體基因(NR3C1)的表觀遺傳修飾增加抑郁癥的發(fā)生風險[39]。一項前瞻性研究表明,NR3C1基因中的甲基化水平可預測青春期及成年早期抑郁的發(fā)病,另一項研究在控制了抑郁的遺傳變異后關聯(lián)仍然顯著,而NR3C1的外周表達水平降低,這些證據(jù)表明NR3C1的甲基化可以獨立作為抑郁癥非遺傳性生物學標志物。一些研究還表明,NR3C1基因中的高甲基化與兒童和青少年的壓力史和抑郁癥狀的出現(xiàn)有關[39?42]。

    FKBP51是糖皮質激素受體的有效抑制劑,是HPA軸應激反應的重要調節(jié)劑,涉及成人及青少年兒童的研究均表明,F(xiàn)KBP5基因的單核苷酸多態(tài)性(SNP)的次要等位基因會增加抑郁的風險,特別是rs1360780,rs9470080,rs3800373;成人組的研究表明,F(xiàn)KBP5 rs1360780和rs3800373基因型的非顯著趨勢與抗抑郁藥低反應率相關,證明FKBP5的表達調節(jié)了成人對抗抑郁藥物的反應[43?46]。但青少年組的研究并未顯示該相關性[47],因此,需要對青少年群體進行更多研究,以驗證FKBP5表達改變與青少年抑郁癥治療結果之間的關系。

    3" 精神神經(jīng)免疫系統(tǒng)生物學標志物

    自提出抑郁癥炎癥病因假說以來,越來越多的研究表明抑郁癥通常伴隨著免疫反應,其表現(xiàn)為促炎細胞因子分泌增加,例如腫瘤壞死因子α(TNF?α)、白細胞介素(IL)和干擾素γ(IFN?γ)[48]。慢性應激以及持續(xù)的神經(jīng)炎性反應一方面誘導糖皮質激素受體脫敏和糖皮質激素抵抗,導致HPA軸反應系統(tǒng)發(fā)生雙向改變,從而損害糖皮質激素的抗炎活性;另一方面,促炎細胞因子可以增加吲哚胺2,3?雙加氧酶(IDO)的活性,導致色氨酸(一種血清素前體)的生物利用度降低。此外,氧化應激反應會損害幾乎所有已知的與抑郁癥相關單胺的合成[49]。神經(jīng)系統(tǒng)慢性炎癥反應引發(fā)神經(jīng)元興奮性毒性并阻礙腦源性神經(jīng)營養(yǎng)因子(BDNF)的產(chǎn)生,導致與情緒調節(jié)相關的神經(jīng)元回路變性[50]。

    抑郁與促炎細胞因子和抗炎細胞因子例如IL?1β、IL?6、IFN?γ、TNF?α、c ?反應蛋白(CRP)水平升高有關。細胞因子是由淋巴細胞、巨噬細胞和自然殺傷細胞(NK)產(chǎn)生的一組多種生化化合物[51]。細胞因子通常根據(jù)其對炎癥的影響分為刺激炎癥發(fā)展的促炎因子(例如IFN?γ、TNF、IL?1、IL?2,IL?5、IL?8)和抗炎因子(例如IL?1β、IL?6、TNF?α、IL?10、IL?19、IL?20、IL?22、IL?24、IL?26、IL?28、IL?29),其中有一部分根據(jù)情況不同其角色會發(fā)生改變(如IL?6、TGF?β、INF?α)[52?53]。一些研究報告顯示,抑郁癥患者外周血中的促炎細胞因子 IL?1ɑ、IL?1β、IL?6、IL?8、IL?10、IFN?γ、MIF和TNF?α的mRNA 表達升高[54?57]。一項以前瞻性研究為基礎的Meta分析證實了IL?6和CRP與抑郁癥呈正相關,兩者可以很好地預測抑郁的發(fā)作,但該研究顯示TNF?α與抑郁的發(fā)作并沒有預測關系[58],關于TNF?α的這一結果與相關研究得出的結論[59]相矛盾。炎性標記物相關研究顯示IL?6和CRP被證實是最具有潛力預測抑郁發(fā)作的標記物,多項Meta分析結果顯示IL?6和CRP是抑郁癥發(fā)作的顯著預測因子,同時可以評估抗抑郁藥的應答[60?62]。炎癥性標志物在未來有可能作為抑郁癥發(fā)作或抗抑郁藥物治療應答的生物學指標,盡管目前仍需要更多研究進一步探索。

    微生物?腸?腦軸理論在多數(shù)研究中得以印證,明顯的微生物生態(tài)失調可能導致抑郁發(fā)作。Fernstrom等[63]利用血液微生物組將抑郁癥病人與健康對照組相比,抑郁病人紫色桿菌屬比例較高而奈瑟菌水平較低。在腸道菌群的研究中發(fā)現(xiàn)抑郁癥病人中微生物多樣性減少,在門水平上厚壁菌、擬桿菌和變形桿菌的豐度不一致,抑郁癥病人放線菌和梭菌門的豐度很高[64]。也有研究報告抑郁患者厚壁菌門及梭桿菌屬豐度低,類桿菌科、腸桿菌科等的豐度高[65]。還有研究指出抑郁癥病人乳酸桿菌、另枝菌屬、副擬桿菌屬、鏈球菌屬水平較高,而糞球菌屬、普氏菌屬和瘤胃球菌屬則呈現(xiàn)低水平狀態(tài)[66]。Szczesniak等[67]發(fā)現(xiàn),糞便桿菌、阿利司提普桿菌和瘤胃球菌與抑郁癥相關。總之,抑郁癥病人糞便微生物群檢測結果所呈現(xiàn)出來的是潛在有害和炎癥性細菌(如放線菌和腸桿菌科)過多,而有益細菌(厚壁菌)總體上減少[68?69],但聚焦于哪一特定菌屬,目前研究結論存在矛盾。有學者認為,這些矛盾是由于診斷標準、分組標準、糞便微生物群檢測方法等研究方法之間的不同所導致的。此外,腸道是一個復雜的生態(tài)系統(tǒng),其環(huán)境受人種、遺傳、地理環(huán)境、飲食習慣等多重因素影響,未來研究應在人種、地區(qū)等人口統(tǒng)計學和臨床特征一致的受試者中進行,以獲得更具可比性和推廣性的結果[70]。

    4" 神經(jīng)營養(yǎng)因子系統(tǒng)標志物

    腦源性神經(jīng)營養(yǎng)因子(brain?derived neurotrophic factor, BDNF)是神經(jīng)營養(yǎng)因子家族中的一種蛋白,通過促進神經(jīng)元增殖和突觸發(fā)生在神經(jīng)發(fā)育中發(fā)揮重要作用。它還刺激成熟大腦中的神經(jīng)可塑性過程,包括新細胞的形成和神經(jīng)元的消除。抑郁癥的神經(jīng)營養(yǎng)理論認為環(huán)境應激因素和突變會降低大腦中的BDNF合成,導致突觸可塑性降低、突觸傳遞減少和神經(jīng)元變性增加。這些改變可能導致已知的參與認知和情緒調節(jié)的大腦區(qū)域的特定結構發(fā)生變化,例如前額葉皮層萎縮和海馬收縮。研究顯示,抑郁癥病人外周BDNF表達水平降低,有研究將漢密爾頓抑郁量表評分與BDNF外周表達相結合發(fā)現(xiàn),BDNF可用于判斷疾病嚴重程度[56]。但是也有學者對此提出質疑,且研究結果表明全血中BDNF mRNA的表達在抑郁癥病人組和對照組中無差異,Gururajan 等[71]認為造成這種研究結果不同的原因可能是研究所采用的方法不同。

    大腦中BDNF的生物利用度受BDNF基因的單核苷酸多態(tài)性(Val66Met)的影響,研究發(fā)現(xiàn)抑郁與BDNF Met 等位基因相關,特別是在青少年女性中更為顯著[72?74]。此外,BDNF表觀遺傳的研究發(fā)現(xiàn)抑郁受試者BDNF基因啟動子甲基化與健康對照組不同,Bakusic等[75]的研究顯示抑郁癥病人BDNF啟動子I甲基化水平低,Val66Met多態(tài)性和啟動子I的DNA甲基化與抑郁癥狀相關,但兩者沒有交互作用。另一方面,BDNF外顯子Ⅸ的甲基化對抑郁病人的執(zhí)行功能有負面影響,并介導了Val66Met對抑郁癥病人這一結局的影響。然而,F(xiàn)roud等[76]的橫斷面研究(探討飲食模式、BDNF水平、Val66Met與抑郁癥的相關性)顯示,Val66Met多態(tài)性與抑郁發(fā)作無關。未來還應開展關于這一標志物的大樣本縱向研究來進一步驗證其有效性。

    5" 代謝標志物

    代謝組學聚焦于代謝的底物和產(chǎn)物,如脂質、脂肪酸、氨基酸、同型半胱氨酸、腺苷以及線粒體功能障礙等。研究表明,抑郁癥狀與代謝組學中的一些特異性改變之間存在聯(lián)系。有人提出,血清膽固醇可能直接影響腦脂和細胞膜的流動性,而對5?羥色胺能神經(jīng)傳遞具有繼發(fā)性效應。此外,高濃度的膽固醇促發(fā)炎癥反應并增加了IL?6和TNF?α的釋放,這與抑郁癥的炎癥理論相關聯(lián)。研究表明代謝綜合征與抑郁呈雙向關系,納入183項研究的系統(tǒng)綜述報告了體質指數(shù)(BMI)過高和過低都會增加抑郁的風險[77],而在肥胖人群中腹型肥胖的人抑郁的發(fā)生風險會更高[78]。Meta分析證明成人抑郁癥與特征性脂質水平有關,主要與血液中甘油三酯(TG)水平升高、極低密度脂蛋白(VLDL)和高密度脂蛋白(HDL)膽固醇水平降低有關[79]。有證據(jù)表明,TG與自殺及自殘行為有相對一致的關聯(lián),HDL和抑郁呈現(xiàn)中等水平因果關聯(lián),LDL和總膽固醇(TC)沒有顯示出與抑郁表型的強相關[80]。但由于以上代謝指標與多種臨床疾病以及癥狀相關聯(lián),其作為抑郁癥特異性靶標的可靠性仍需進一步驗證。

    同型半胱氨酸是蛋氨酸代謝過程中的一種含硫氨基酸,該產(chǎn)物在外周的升高被證實與抑郁癥相關,其主要原因是同型半胱氨酸代謝通路的甲基化過程在合成神經(jīng)遞質、蛋白質和膜磷脂中至關重要,任何干擾都可能影響神經(jīng)功能和情緒調節(jié)。各年齡段的研究結果一致顯示,高水平的同型半胱氨酸與抑郁癥密切相關[81?83]。同時,葉酸在同型半胱氨酸的代謝中起關鍵作用,Khosravi 等[84]發(fā)現(xiàn)通過調整飲食模式(增加葉酸的攝入)可以降低抑郁的發(fā)病率。

    有證據(jù)表明,各大腦區(qū)域的線粒體功能障礙與抑郁癥有關。最近的發(fā)現(xiàn)引發(fā)了人們對線粒體在許多細胞內的作用以及突觸可塑性和細胞彈性的重新認識。神經(jīng)可塑性損害是抑郁癥病理生理機制的一種基礎假說。線粒體在三磷酸腺苷(ATP)的產(chǎn)生過程中有重要作用,包括細胞內Ca2+信號傳導,以建立膜穩(wěn)定性、活性氧(ROS)平衡以及執(zhí)行神經(jīng)傳遞和可塑性等作用[85]。因此,理解抑郁癥發(fā)病機制中線粒體功能障礙的各種概念無疑有助于為抑郁癥治療提供更具針對性的治療方法。研究發(fā)現(xiàn)線粒體功能的改變,如氧化磷酸化(OXPHOS)和膜極性增加了氧化應激和細胞凋亡,這些改變可能早于抑郁癥狀的出現(xiàn)[86]。神經(jīng)炎性病變會對線粒體健康產(chǎn)生負面影響,導致興奮性毒性、氧化應激、能量不足,最終導致神經(jīng)元死亡。而另一方面,受損的線粒體又會釋放各種與損傷相關的分子,這些分子是炎癥反應的有效激活劑,在氧化應激、線粒體損傷、炎癥和神經(jīng)元功能障礙之間形成前饋循環(huán)[87?88]。Cai等[89]通過對血液及唾液樣本的分析發(fā)現(xiàn)重度抑郁癥病人的線粒體DNA(mtDNA)比對照組多,同時mtDNA的量與生活中的壓力應激暴露相關聯(lián),而Kageyama等[90]的研究發(fā)現(xiàn)卻與之相反,抑郁癥病人的mtDNA水平較正常人群低。

    6" 神經(jīng)影像學標志物

    隨著神經(jīng)成像技術的發(fā)展,神經(jīng)影像學生物標志物在精神疾病領域的研究也越來越多。神經(jīng)成像技術包括腦容量MRI、功能性 MRI(fMRI)、腦電圖(EEG)、彌散張量成像(DTI)、磁共振波譜(MRS)、近紅外光譜(NIRS)等[91]。近年來,這些技術已被用來研究抑郁癥發(fā)病或各種治療應答的效應預測。

    海馬體在抑郁病因病理中很重要。研究發(fā)現(xiàn),抑郁病人糖皮質激素水平升高與海馬體損傷有關,海馬體是參與記憶和學習的大腦區(qū)域,相關研究發(fā)現(xiàn)抑郁病人的左海馬體積通常比健康對照組小19%[92],且在治療前后對比抑郁癥受試者和對照組受試者海馬體和杏仁核體積的MRI掃描中發(fā)現(xiàn),與抑郁癥狀緩解者相比,未緩解者的雙側海馬體容量顯著減少[93]。有學者將該方法用于預測病人應用抗抑郁藥物氟西汀的治療應答,結果顯示準確率為88.9%,同時,癥狀緩解者額葉、枕葉和扣帶皮層的灰質體積大于未緩解者[94]。一項神經(jīng)影像學研究的系統(tǒng)評價報告了電休克治療(ECT)對腦結構的影響,應答者在顳葉和皮質下結構的體積有所增加,并且扣帶回皮質體積與抗抑郁藥、ECT和認知行為治療(CBT)治療應答存在正相關[95]。

    fMRI測量與神經(jīng)活動相關的大腦血流變化引起的信號,反映靜息狀態(tài)或任務執(zhí)行期間激活的大腦區(qū)域,其優(yōu)點是無創(chuàng)、無輻射暴露[96?98]。研究表明,無論是青少年還是成人,靜息態(tài)功能磁共振成像(fMRI)檢測到的杏仁核、中額葉、右后扣帶皮層和右前楔體的靜息態(tài)功能連接(RSFC)水平與抗抑郁藥物的治療反應有關。但相關研究結果不一致,這種情況可能與研究區(qū)域以及研究變量不同有關?;谌蝿盏膄MRI研究顯示,雙側下額葉皮層、背外側前額葉皮層、島葉、伏隔核、喙前扣帶和左杏仁核的激活與治療效果或預后相關[99?100];在關于耐藥抑郁病人的fMRI研究中發(fā)現(xiàn),重復經(jīng)顱磁刺激治療(r?TMS)任務中對低頻rTMS刺激有反應的病人額葉回的雙側激活減少[101]。睡眠異常是抑郁癥病人的常見主訴,腦電圖在抑郁診療中的應用研究發(fā)現(xiàn)與正常對照組相比,抑郁青少年的睡眠腦電圖顯示睡眠效率降低,快動眼睡眠(REM)潛伏期縮短,REM密度升高,而癥狀緩解后沒有發(fā)現(xiàn)睡眠質量的變化,這種腦電圖變化可能代表生物痕跡[102],Ghiasi等[103]研究證實皮質連接在θ波段中對早期抑郁癥識別具有核心作用。

    近紅外光譜(near?infrared spectroscopy,NIRS)是用于測量生物組織中含氧血紅蛋白或脫氧血紅蛋白濃度變化的一種神經(jīng)成像技術,該方法簡便且是一種非侵入性方法,為大多數(shù)病人接受,臨床上常用于評價治療效果。臨床研究發(fā)現(xiàn)受試者前、中顳葉、額葉區(qū)含氧血紅蛋白的值和血流動力學可預測反映相關治療效果[99, 104?105]。相對外周生物學標志物而言,神經(jīng)影像學生物標志物更穩(wěn)定,且不易受機體內環(huán)境影響,然而,由于抑郁癥本身的特點難以從單個研究區(qū)域獲得足夠的樣本量,未來應聚焦抑郁臨床亞型著力發(fā)掘相應標志物。

    7" 小結與展望

    綜上所述,盡管在抑郁癥生物學標志物領域各國學者們做了大量的研究且技術手段日趨先進,但目前為止尚無抑郁癥生物學診斷的金標準,這可能與抑郁癥病因病理的異質性相關,某一區(qū)域、人種、文化背景、生物樣本無法概括整個人類群體,且受疾病亞型、分期、嚴重程度影響無法用單一的指標去評估,因此,對該領域的研究是一大挑戰(zhàn)。但基于多種組學技術(如基因組學、轉錄組學、代謝組學和蛋白質組學)及神經(jīng)影像學技術的研究逐漸揭示了抑郁癥潛在的生物學標志物,如單胺假說和GABA系統(tǒng)的異常在抑郁癥的發(fā)病機制中起關鍵作用,5?HTT、TPH2的基因多態(tài)性和多巴胺受體被認為是潛在的生物標志物;HPA軸功能失調(如皮質醇水平升高)已被廣泛證明與抑郁癥的發(fā)病機制及病情嚴重程度密切相關;FKBP5基因及其多態(tài)性與應激反應及抗抑郁藥物的療效相關;抑郁癥患者常伴有促炎細胞因子升高(如IL?6、TNF?α),且炎癥標志物與抗抑郁藥物的療效相關;微生物組學研究發(fā)現(xiàn)抑郁癥患者常表現(xiàn)出微生物生態(tài)失調,腸道菌群的多樣性及特定菌屬的豐度與抑郁發(fā)作密切相關;BDNF在神經(jīng)發(fā)育和可塑性中發(fā)揮重要作用,其表達水平的降低與抑郁癥的發(fā)病有關;代謝相關產(chǎn)物、底物(如膽固醇、BMI、三酰甘油等)和線粒體功能障礙與抑郁癥的病理生理機制相關;通過MRI、fMRI和NIRS等技術發(fā)現(xiàn),抑郁癥患者大腦特定區(qū)域(如海馬體、額葉皮層等)體積和功能的變化與抑郁癥的癥狀表現(xiàn)及治療反應密切相關等。這些生物學指標的確立將對抑郁癥疾病的診斷、治療及預后提供強有力的支撐,也為早期疾病識別,降低疾病總體負擔提供保障。在上述研究中,大多數(shù)研究的樣本量相對較小,難以得出廣泛適用的結論,未來應開展大樣本、多中心、長期隨訪的研究,以提高結果的穩(wěn)定性和可重復性;不同研究方法和檢測技術的標準化程度不高導致了研究結果的差異性,所以未來應制定統(tǒng)一的檢測標準和流程,減少技術偏差,提高不同研究之間結果的可比性。同時,抑郁癥的多因素病因使得單一標志物難以全面反映其病理生理過程,亟需整合多種生物標志物及組學數(shù)據(jù),以實現(xiàn)更精準的疾病分類和個性化治療策略。同時大量文獻已經(jīng)表明,生物標志物有可能改善抑郁癥患者的治療,除了幾十年來一直被廣泛研究的神經(jīng)遞質和神經(jīng)內分泌標志物外,慢性炎癥反應是近年來頗受關注的話題,且有可能成為有效的治療靶點,但也有可能局限于抑郁癥的亞組。盡管目前尚無統(tǒng)一的生物標志物標準,但通過整合多種生物指標和組學技術從疾病不同層次、階段進行研究,有望在未來實現(xiàn)更精準的抑郁癥的診斷、治療及個性化護理。

    參考文獻:

    [1]" MALHI G S,MANN J J.Course and prognosis[J].Lancet,2018,392(10161):2299-2312.

    [2]" 季建林.中國抑郁障礙防治指南修訂與抑郁障礙的規(guī)范治療[J].中華行為醫(yī)學與腦科學雜志,2015,24(4):292-293.

    [3]" ZWOLI?SKA W,DMITRZAK-W?GLARZ M,S?OPIE? A.Biomarkers in child and adolescent depression[J].Child Psychiatry amp; Human Development,2023,54(1):266-281.

    [4]" RAO U.Biomarkers in pediatric depression[J].Depression and Anxiety,2013,30(9):787-791.

    [5]" ZISOOK S,LESSER I,STEWART J W,et al.Effect of age at onset on the course of major depressive disorder[J].The American Journal of Psychiatry,2007,164(10):1539-1546.

    [6]" FREEDMAN R,LEWIS D A,MICHELS R,et al.The initial field trials of DSM-5:new blooms and old thorns[J].The American Journal of Psychiatry,2013,170(1):1-5.

    [7]" NONE.BEST (Biomarkers,endpoints,and other tools)resource[M].Silver Spring:Food and Drug Administration,2016:1.

    [8]" LESCH K P,BENGEL D,HEILS A,et al.Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region[J].Science,1996,274(5292):1527-1531.

    [9]" PRIESS-GROBEN H A,HYDE J S.5-HTTLPR X stress in adolescent depression:moderation by MAOA and gender[J].Journal of Abnormal Child Psychology,2013,41(2):281-294.

    [10]" KOHEN R,MYAING M T,RICHARDS J,et al.Depression persistence and serotonin transporter genotype in adolescents under usual care conditions[J].Journal of Child and Adolescent Psychopharmacology,2013,23(4):290-294.

    [11]" KANG H J,KIM J M,STEWART R,et al.Association of SLC6A4 methylation with early adversity,characteristics and outcomes in depression[J].Progress in Neuro-Psychopharmacology amp; Biological Psychiatry,2013,44:23-28.

    [12] "ROTBERG B,KRONENBERG S,CARMEL M,et al.Additive effects of 5-HTTLPR (serotonin transporter) and tryptophan hydroxylase 2 G-703T gene polymorphisms on the clinical response to citalopram among children and adolescents with depression and anxiety disorders[J].Journal of Child and Adolescent Psychopharmacology,2013,23(2):117-122.

    [13]" PORCELLI S,F(xiàn)ABBRI C,SERRETTI A.Meta-analysis of serotonin transporter gene promoter polymorphism(5-HTTLPR) association with antidepressant efficacy[J].European Neuropsychopharmacology,2012,22(4):239-258.

    [14]" TAYLOR M J,SEN S,BHAGWAGAR Z.Antidepressant response and the serotonin transporter gene-linked polymorphic region[J].Biological Psychiatry,2010,68(6):536-543.

    [15]" DUNLOP B W,NEMEROFF C B.The role of dopamine in the pathophysiology of depression[J].Archives of General Psychiatry,2007,64(3):327.

    [16]" FRISCH A,POSTILNICK D,ROCKAH R,et al.Association of unipolar major depressive disorder with genes of the serotonergic and dopaminergic pathways[J].Molecular Psychiatry,1999,4(4):389-392.

    [17]" LóPEZ LEóN S,CROES E A,SAYED-TABATABAEI F A,et al.The dopamine D4 receptor gene 48-base-pair-repeat polymorphism and mood disorders:a meta-analysis[J].Biological Psychiatry,2005,57(9):999-1003.

    [18]" ERSCHE K D,ROISER J P,LUCAS M,et al.Peripheral biomarkers of cognitive response to dopamine receptor agonist treatment[J].Psychopharmacology,2011,214(4):779-789.

    [19]" IACOB E,TADLER S C,LIGHT K C,et al.Leukocyte gene expression in patients with medication refractory depression before and after treatment with ECT or isoflurane anesthesia:a pilot study[J].Depression Research and Treatment,2014,2014:582380.

    [20]" ROCC P,LEO C D,EVA C,et al.Decrease of the D4 dopamine receptor messenger RNA expression in lymphocytes from patients with major depression[J].Progress in Neuro-Psychopharmacology amp; Biological Psychiatry,2002,26(6):1155-1160.

    [21]" XIANG L B,SZEBENI K,SZEBENI A,et al.Dopamine receptor gene expression in human amygdaloid nuclei:elevated D4 receptor mRNA in major depression[J].Brain Research,2008,1207:214-224.

    [22]" KALUEFF A V,NUTT D J.Role of GABA in anxiety and depression[J].Depression and Anxiety,2007,24(7):495-517.

    [23]" PAYNE J L,MAGUIRE J.Pathophysiological mechanisms implicated in postpartum depression[J].Frontiers in Neuroendocrinology,2019,52:165-180.

    [24]" DUMAN R S,SANACORA G,KRYSTAL J H.Altered connectivity in depression:GABA and glutamate neurotransmitter deficits and reversal by novel treatments[J].Neuron,2019,102(1):75-90.

    [25]" ROY A,DEJONG J,F(xiàn)ERRARO T.CSF GABA in depressed patients and normal controls[J].Psychological Medicine,1991,21(3):613-618.

    [26]" PETTY F,KRAMER G L,GULLION C M,et al.Low plasma gamma-aminobutyric acid levels in male patients with depression[J].Biological Psychiatry,1992,32(4):354-363.

    [27]" PRéVOT T,SIBILLE E.Altered GABA-mediated information processing and cognitive dysfunctions in depression and other brain disorders[J].Molecular Psychiatry,2021,26(1):151-167.

    [28]" LENER M S,NICIU M J,BALLARD E D,et al.Glutamate and gamma-aminobutyric acid systems in the pathophysiology of major depression and antidepressant response to ketamine[J].Biological Psychiatry,2017,81(10):886-897.

    [29]" DEVANAND D P,SHAPIRA B,PETTY F,et al.Effects of electroconvulsive therapy on plasma GABA[J].Convulsive Therapy,1995,11(1):3-13.

    [30]" PEHRSON A L,SANCHEZ C.Altered γ-aminobutyric acid neurotransmission in major depressive disorder:a critical review of the supporting evidence and the influence of serotonergic antidepressants[J].Drug Design,Development and Therapy,2015,9:603-624.

    [31]" NONE.The dexamethasone suppression test:an overview of its current status in psychiatry.The APA Task Force on Laboratory Tests in Psychiatry[J].The American Journal of Psychiatry,1987,144(10):1253-1262.

    [32]" LOPEZ-DURAN N L,KOVACS M,GEORGE C J.Hypothalamic-pituitary-adrenal axis dysregulation in depressed children and adolescents:a meta-analysis[J].Psychoneuroendocrinology,2009,34(9):1272-1283.

    [33]" AUSTIN M C,JANOSKY J E,MURPHY H A.Increased corticotropin-releasing hormone immunoreactivity in monoamine-containing pontine nuclei of depressed suicide men[J].Molecular Psychiatry,2003,8(3):324-332.

    [34]" KLOK M D,ALT S R,IRURZUN LAFITTE A J,et al.Decreased expression of mineralocorticoid receptor mRNA and its splice variants in postmortem brain regions of patients with major depressive disorder[J].Journal of Psychiatric Research,2011,45(7):871-878.

    [35]" WEBSTER M J,KNABLE M B,O'GRADY J,et al.Regional specificity of brain glucocorticoid receptor mRNA alterations in subjects with schizophrenia and mood disorders[J].Molecular Psychiatry,2002,7(9):985-994.

    [36]" PANDEY G N,RIZAVI H S,REN X G,et al.Region-specific alterations in glucocorticoid receptor expression in the postmortem brain of teenage suicide victims[J].Psychoneuroendocrinology,2013,38(11):2628-2639.

    [37]" ALT S R,TURNER J D,KLOK M D,et al.Differential expression of glucocorticoid receptor transcripts in major depressive disorder is not epigenetically programmed[J].Psychoneuroendocrinology,2010,35(4):544-556.

    [38]" HUMPHREYS K L,MOORE S R,DAVIS E G,et al.DNA methylation of HPA-axis genes and the onset of major depressive disorder in adolescent girls:a prospective analysis[J].Translational Psychiatry,2019,9(1):245.

    [39]" EFSTATHOPOULOS P,ANDERSSON F,MELAS P A,et al.NR3C1 hypermethylation in depressed and bullied adolescents[J].Translational Psychiatry,2018,8(1):121.

    [40]" CICCHETTI D,HANDLEY E D.Methylation of the glucocorticoid receptor gene,nuclear receptor subfamily 3,group C,member 1 (NR3C1),in maltreated and nonmaltreated children:associations with behavioral under control,emotional lability/negativity,and externalizing and internalizing symptoms[J].Development and Psychopathology,2017,29(5):1795-1806.

    [41]" GARDINI E S,SCHAUB S,NEUHAUSER A,et al.Methylation of the glucocorticoid receptor promoter in children:links with parents as teachers,early life stress,and behavior problems[J].Development and Psychopathology,2022,34(3):810-822.

    [42]" WANG Q Z,SHELTON R C,DWIVEDI Y.Interaction between early-life stress and FKBP5 gene variants in major depressive disorder and post-traumatic stress disorder:a systematic review and meta-analysis[J].Journal of Affective Disorders,2018,225:422-428.

    [43]" PIECHACZEK C E,GREIMEL E,F(xiàn)ELDMANN L,et al.Interactions between FKBP5 variation and environmental stressors in adolescent major depression[J].Psychoneuroendocrinology,2019,106:28-37.

    [44]" BINDER E B,SALYAKINA D,LICHTNER P,et al.Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment[J].Nature Genetics,2004,36(12):1319-1325.

    [45]" ISING M,MACCARRONE G,BRüCKL T,et al.FKBP5 gene expression predicts antidepressant treatment outcome in depression[J].International Journal of Molecular Sciences,2019,20(3):485.

    [46]" BRENT D,MELHEM N,F(xiàn)ERRELL R,et al.Association of FKBP5 polymorphisms with suicidal events in the Treatment of Resistant Depression in Adolescents (TORDIA) study[J].The American Journal of Psychiatry,2010,167(2):190-197.

    [47]" JIA Y,LIU L L,SHENG C Q,et al.Increased serum levels of cortisol and inflammatory cytokines in people with depression[J].The Journal of Nervous and Mental Disease,2019,207(4):271-276.

    [48]" NEURAUTER G,SCHR?CKSNADEL K,SCHOLL-BüRGI S,et al.Chronic immune stimulation correlates with reduced phenylalanine turnover[J].Current Drug Metabolism,2008,9(7):622-627.

    [49]" LEONARD B E.Inflammation and depression:a causal or coincidental link to the pathophysiology?[J].Acta Neuropsychiatrica,2018,30(1):1-16.

    [50]" MOSIO?EK A,PI?TA A,JAKIMA S,et al.Effects of antidepressant treatment on peripheral biomarkers in patients with major depressive disorder (MDD)[J].Journal of Clinical Medicine,2021,10(8):1706.

    [51]" GRUDZIEN M,RAPAK A.Effect of natural compounds on NK cell activation[J].Journal of Immunology Research,2018,2018(1):4868417.

    [52]" LIU J J,WEI Y B,STRAWBRIDGE R,et al.Peripheral cytokine levels and response to antidepressant treatment in depression:a systematic review and meta-analysis[J].Molecular Psychiatry,2020,25(2):339-350.

    [53]" IACOB E,LIGHT K C,TADLER S C,et al.Dysregulation of leukocyte gene expression in women with medication-refractory depression versus healthy non-depressed controls[J].BMC Psychiatry,2013,13:273.

    [54]" MILLER A H,MALETIC V,RAISON C L.Inflammation and its discontents:the role of cytokines in the pathophysiology of major depression[J].Biological Psychiatry,2009,65(9):732-741.

    [55]" CATTANEO A,GENNARELLI M,UHER R,et al.Candidate genes expression profile associated with antidepressants response in the GENDEP study:differentiating between baseline 'predictors' and longitudinal 'targets'[J].Neuropsychopharmacology,2013,38(3):377-385.

    [56]" MILLER G E,COLE S W.Clustering of depression and inflammation in adolescents previously exposed to childhood adversity[J].Biological Psychiatry,2012,72(1):34-40.

    [57]" MAC GIOLLABHUI N,NG T H,ELLMAN L M,et al.The longitudinal associations of inflammatory biomarkers and depression revisited:systematic review,meta-analysis,and meta-regression[J].Molecular Psychiatry,2021,26(7):3302-3314.

    [58]" RAISON C L,RUTHERFORD R E,WOOLWINE B J,et al.A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression:the role of baseline inflammatory biomarkers[J].JAMA Psychiatry,2013,70(1):31-41.

    [59]" COLASANTO M,MADIGAN S,KORCZAK D J.Depression and inflammation among children and adolescents:a meta-analysis[J].Journal of Affective Disorders,2020,277:940-948.

    [60]" STRAWBRIDGE R,ARNONE D,DANESE A,et al.Inflammation and clinical response to treatment in depression:a meta-analysis[J].European Neuropsychopharmacology,2015,25(10):1532-1543.

    [61]" OSIMO E F,PILLINGER T,RODRIGUEZ I M,et al.Inflammatory markers in depression:a meta-analysis of mean differences and variability in 5,166 patients and 5,083 controls[J].Brain,Behavior,and Immunity,2020,87:901-909.

    [62]" BRYDGES C R,BHATTACHARYYA S,DEHKORDI S M,et al.Metabolomic and inflammatory signatures of symptom dimensions in major depression[J].Brain,Behavior,and Immunity,2022,102:42-52.

    [63]" FERNSTR?M J,MELLON S H,MCGILL M A,et al.Blood-based mitochondrial respiratory chain function in major depression[J].Translational Psychiatry,2021,11(1):593.

    [64]" BARANDOUZI Z A,STARKWEATHER A R,HENDERSON W A,et al.Altered composition of gut microbiota in depression:a systematic review[J].Frontiers in Psychiatry,2020,11:541.

    [65]" JIANG H Y,LING Z X,ZHANG Y H,et al.Altered fecal microbiota composition in patients with major depressive disorder[J].Brain,Behavior,and Immunity,2015,48:186-194.

    [66]" LIU Y X,ZHANG L,WANG X Q,et al.Similar fecal microbiota signatures in patients with diarrhea-predominant irritable bowel syndrome and patients with depression[J].Clinical Gastroenterology and Hepatology,2016,14(11):1602-1611.

    [67]" SZCZESNIAK O,HESTAD K A,HANSSEN J F,et al.Isovaleric acid in stool correlates with human depression[J].Nutritional Neuroscience,2016,19(7):279-283.

    [68]" HUANG T T,LAI J B,DU Y L,et al.Current understanding of gut microbiota in mood disorders:an update of human studies[J].Frontiers in Genetics,2019,10:98.

    [69]" HUANG Y C,SHI X,LI Z Y,et al.Possible association of Firmicutes in the gut microbiota of patients with major depressive disorder[J].Neuropsychiatric Disease and Treatment,2018,14:3329-3337.

    [70]" AVERINA O V,ZORKINA Y A,YUNES R A,et al.Bacterial metabolites of human gut microbiota correlating with depression[J].International Journal of Molecular Sciences,2020,21(23):9234.

    [71]" GURURAJAN A,CLARKE G,DINAN T G,et al.Molecular biomarkers of depression[J].Neuroscience and Biobehavioral Reviews,2016,64:101-133.

    [72]nbsp; STONE L B,MCGEARY J E,PALMER R H,et al.Identifying genetic predictors of depression risk:5-HTTLPR and BDNF Val66Met polymorphisms are associated with rumination and corumination in adolescents[J].Frontiers in Genetics,2013,4:246.

    [73]" CHEN J,LI X Y,MCGUE M.The interacting effect of the BDNF Val66Met polymorphism and stressful life events on adolescent depression is not an artifact of gene-environment correlation:evidence from a longitudinal twin study[J].Journal of Child Psychology and Psychiatry,and Allied Disciplines,2013,54(10):1066-1073.

    [74]" HILT L M,SANDER L C,NOLEN-HOEKSEMA S,et al.The BDNF Val66Met polymorphism predicts rumination and depression differently in young adolescent girls and their mothers[J].Neuroscience Letters,2007,429(1):12-16.

    [75]" BAKUSIC J,VRIEZE E,GHOSH M,et al.Interplay of Val66Met and BDNF methylation:effect on reward learning and cognitive performance in major depression[J].Clinical Epigenetics,2021,13(1):149.

    [76]" FROUD A,MURPHY J,CRIBB L,et al.The relationship between dietary quality,serum brain-derived neurotrophic factor (BDNF) level,and the Val66met polymorphism in predicting depression[J].Nutritional Neuroscience,2019,22(7):513-521.

    [77]" JUNG S J,WOO H T,CHO S,et al.Association between body size,weight change and depression:systematic review and meta-analysis[J].The British Journal of Psychiatry,2017,211(1):14-21.

    [78]" DOLATIAN A,ARZAGHI S M,QORBANI M,et al.The relationship between body mass index (BMI) and depression according to the rs16139NPY gene[J].Iranian Journal of Psychiatry,2017,12(3):201-205.

    [79]" BOT M,MILANESCHI Y,AL-SHEHRI T,et al.Metabolomics profile in depression:a pooled analysis of 230 metabolic markers in 5 283 cases with depression and 10 145 controls[J].Biological Psychiatry,2020,87(5):409-418.

    [80]" SO H C,CHAU C K,CHENG Y Y,et al.Causal relationships between blood lipids and depression phenotypes:a Mendelian randomisation analysis[J].Psychological Medicine,2021,51(14):2357-2369.

    [81]" CHUNG K H,CHIOU H Y,CHEN Y H.Associations between serum homocysteine levels and anxiety and depression among children and adolescents in China[J].Scientific Reports,2017,7:8330.

    [82]" NARAYAN S K,VERMAN A,KATTIMANI S,et al.Plasma homocysteine levels in depression and schizophrenia in south Indian Tamilian population[J].Indian Journal of Psychiatry,2014,56(1):46-53.

    [83]" FORTI P,RIETTI E,PISACANE N,et al.Blood homocysteine and risk of depression in the elderly[J].Archives of Gerontology and Geriatrics,2010,51(1):21-25.

    [84]" KHOSRAVI M,SOTOUDEH G,AMINI M,et al.The relationship between dietary patterns and depression mediated by serum levels of Folate and vitamin B12[J].BMC Psychiatry,2020,20(1):63.

    [85]" BANSAL Y,KUHAD A.Mitochondrial dysfunction in depression[J].Current Neuropharmacology,2016,14(6):610-618.

    [86]" ALLEN J,ROMAY-TALLON R,BRYMER K J,et al.Mitochondria and mood:mitochondrial dysfunction as a key player in the manifestation of depression[J].Frontiers in Neuroscience,2018,12:386.

    [87]" CASARIL A M,DANTZER R,BAS-ORTH C.Neuronal mitochondrial dysfunction and bioenergetic failure in inflammation-associated depression[J].Frontiers in Neuroscience,2021,15:725547.

    [88]" RAPPENEAU V,WILMES L,TOUMA.Molecular correlates of mitochondrial dysfunctions in major depression:evidence from clinical and rodent studies[J].Molecular and Cellular Neurosciences,2020,109:103555.

    [89]" CAI N,CHANG S,LI Y H,et al.Molecular signatures of major depression[J].Current Biology:CB,2015,25(9):1146-1156.

    [90]" KAGEYAMA Y,KASAHARA T,KATO M,et al.The relationship between circulating mitochondrial DNA and inflammatory cytokines in patients with major depression[J].Journal of Affective Disorders,2018,233:15-20.

    [91]" KANG S G,CHO S E.Neuroimaging biomarkers for predicting treatment response and recurrence of major depressive disorder[J].International Journal of Molecular Sciences,2020,21(6):2148.

    [92]" BREMNER J D,NARAYAN M,ANDERSON E R,et al.Hippocampal volume reduction in major depression[J].The American Journal of Psychiatry,2000,157(1):115-118.

    [93]" FRODL T,MEISENZAHL E M,ZETZSCHE T,et al.Hippocampal and amygdala changes in patients with major depressive disorder and healthy controls during a 1-year follow-up[J].The Journal of Clinical Psychiatry,2004,65(4):492-499.

    [94]" COSTAFREDA S G,CHU C,ASHBURNER J,et al.Prognostic and diagnostic potential of the structural neuroanatomy of depression[J].PLoS One,2009,4(7):e6353.

    [95]" ENNEKING V,LEEHR E J,DANNLOWSKI U,et al.Brain structural effects of treatments for depression and biomarkers of response:a systematic review of neuroimaging studies[J].Psychological Medicine,2020,50(2):187-209.

    [96]" CULLEN K R,KLIMES-DOUGAN B,VU D P,et al.Neural correlates of antidepressant treatment response in adolescents with major depressive disorder[J].Journal of Child and Adolescent Psychopharmacology,2016,26(8):705-712.

    [97]" ANDREESCU C,TUDORASCU D L,BUTTERS M A,et al.Resting state functional connectivity and treatment response in late-life depression[J].Psychiatry Research,2013,214(3):313-321.

    [98]" ROSENBAUM D,HAGEN K,DEPPERMANN S,et al.State-dependent altered connectivity in late-life depression:a functional near-infrared spectroscopy study[J].Neurobiology of Aging,2016,39:57-68.

    [99]" LANGENECKER S A,KENNEDY S E,GUIDOTTI L M,et al.Frontal and limbic activation during inhibitory control predicts treatment response in major depressive disorder[J].Biological Psychiatry,2007,62(11):1272-1280.

    [100]" GYURAK A,PATENAUDE B,KORGAONKAR M S,et al.Frontoparietal activation during response inhibition predicts remission to antidepressants in patients with major depression[J].Biological Psychiatry,2016,79(4):274-281.

    [101]" FITZGERALD P B,SRITHARAN A,DASKALAKIS Z J,et al.A functional magnetic resonance imaging study of the effects of low frequency right prefrontal transcranial magnetic stimulation in depression[J].Journal of Clinical Psychopharmacology,2007,27(5):488-492.

    [102]" RAO U,POLAND R E.Electroencephalographic sleep and hypothalamic-pituitary-adrenal changes from episode to recovery in depressed adolescents[J].Journal of Child and Adolescent Psychopharmacology,2008,18(6):607-613.

    [103]" GHIASI S,DELL'ACQUA C,BENVENUTI S M,et al.Classifying subclinical depression using EEG spectral and connectivity measures[J].IEEE Engineering in Medicine and Biology Society,2021,2021:2050-2053.

    [104]" YAMAGATA B,YAMANAKA K,TAKEI Y,et al.Brain functional alterations observed 4-weekly in major depressive disorder following antidepressant treatment[J].Journal of Affective Disorders,2019,252:25-31.

    [105]" TOMIOKA H,YAMAGATA B,KAWASAKI S,et al.A longitudinal functional neuroimaging study in medication-na?ve depression after antidepressant treatment[J].PLoS One,2015,10(3):e0123.

    (收稿日期:2024-07-23;修回日期:2024-12-15)

    (本文編輯 崔曉芳)

    猜你喜歡
    抑郁癥綜述氧化應激
    基于炎癥-氧化應激角度探討中藥對新型冠狀病毒肺炎的干預作用
    SEBS改性瀝青綜述
    石油瀝青(2018年6期)2018-12-29 12:07:04
    NBA新賽季綜述
    NBA特刊(2018年21期)2018-11-24 02:47:52
    對一例因抑郁癥有自殺傾向的案例分析
    人間(2016年26期)2016-11-03 16:11:24
    文拉法辛聯(lián)合米氮平治療老年抑郁癥的效果及安全性
    西酞普蘭治療抑郁癥的療效及安全性
    JOURNAL OF FUNCTIONAL POLYMERS
    抑郁癥患者腦電圖檢查的臨床應用
    氧化應激與糖尿病視網(wǎng)膜病變
    氧化應激與結直腸癌的關系
    石阡县| 土默特右旗| 阿坝| 平昌县| 孟州市| 蓝山县| 康平县| 怀安县| 柳林县| 婺源县| 兖州市| 施秉县| 石狮市| 黔西县| 株洲县| 株洲市| 霍林郭勒市| 卓尼县| 和龙市| 拉孜县| 延川县| 定结县| 宿州市| 巴塘县| 灵寿县| 荆门市| 武川县| 卓尼县| 上栗县| 卢湾区| 故城县| 临漳县| 临夏市| 神木县| 汪清县| 丰台区| 和政县| 紫金县| 内丘县| 绥阳县| 博爱县|