摘" " 要:【目的】鑒定山荊子抗腐爛病類受體激酶基因,為抗病分子育種提供參考。【方法】對(duì)MbCCR4的結(jié)構(gòu)域組成、啟動(dòng)子區(qū)域的順式作用元件(cis-elements)和進(jìn)化關(guān)系進(jìn)行分析。結(jié)合蘋果和梨果實(shí)瞬時(shí)表達(dá)和杜梨懸浮細(xì)胞穩(wěn)定表達(dá),分析MbCCR4過表達(dá)前后各組織腐爛病抗性的差異。利用qRT-PCR分析該基因過表達(dá)對(duì)免疫反應(yīng)相關(guān)基因表達(dá)的影響?!窘Y(jié)果】系統(tǒng)發(fā)育關(guān)系和結(jié)構(gòu)域組成分析表明,MbCCR4為典型的CRINKLY4(CR4)家族成員,與蘋果MD08G1217500的同源率最高,其在山荊子懸浮細(xì)胞中的表達(dá)量顯著受腐爛病信號(hào)誘導(dǎo),最高上調(diào)至對(duì)照的456倍。與對(duì)照相比,MbCCR4的過表達(dá)顯著降低了煙富3號(hào)蘋果和黃冠梨接種腐爛病病菌(Vm和Vp)84 h后病斑的擴(kuò)散率,病斑大小分別減少了25%和16.9%,即該基因瞬時(shí)表達(dá)可顯著提高煙富3號(hào)蘋果和黃冠梨果實(shí)的腐爛病抗性。將其轉(zhuǎn)入杜梨-G03中并獲得3個(gè)過表達(dá)細(xì)胞系。與野生型細(xì)胞系相比,過表達(dá)MbCCR4可顯著增強(qiáng)懸浮細(xì)胞對(duì)腐爛病菌和腐爛病病菌代謝物的抗性?;虮磉_(dá)分析結(jié)果表明,過表達(dá)MbCCR4可顯著誘導(dǎo)杜梨-G03細(xì)胞響應(yīng)腐爛病信號(hào)過程中水楊酸、茉莉酸等免疫信號(hào)相關(guān)基因的表達(dá)?!窘Y(jié)論】CR4基因家族成員MbCCR4在腐爛病菌誘導(dǎo)下顯著表達(dá)且過表達(dá)能夠增強(qiáng)蘋果和梨果實(shí)及杜梨懸浮細(xì)胞對(duì)腐爛病的抗性,水楊酸等多種免疫信號(hào)參與了其調(diào)控的免疫反應(yīng)。研究結(jié)果對(duì)深入理解腐爛病抗性機(jī)制具有重要的學(xué)術(shù)價(jià)值。
關(guān)鍵詞:黑腐皮殼屬;類受體激酶;腐爛病抗性;水楊酸;免疫反應(yīng)
中圖分類號(hào):S661.1 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2024)09-1746-10
Involvement of salicylic acid signalling in the positive regulation of Valsa canker resistance via the Malus baccata MbCCR4
CAI Minrui, JIANG Daji, SUN E, ZHENG Yan, YU Hongqiang, DU Chenglong, XING Ping, ZUO Cunwu*
(Department of Horticulture, Gansu Agricultural University, Lanzhou 730070, Gansu, China)
Abstract: 【Objective】 Valsa canker, caused by necrotrophic fungi in Valsa species, is a destructive disease attacking apple and pear trees in China and even in East Asia. It is difficult to control the disease through traditional practices due to the extension of mycelium into the xylem. For a long time, resistance breeding has been a widely approved approach but is largely limited by delayed progress. At present, it is urgent to identify key genes regulating resistance and related molecular mechanisms. Plants have evolved innate immune systems, including horizontal and vertical resistance. Plant cell membrane-localized pattern recognition receptors (PRRs), responsible for recognizing the signals from pathogens and initiating downstream immune responses, are crucial for plant resistance against the infection of various pathogens. Receptor-like kinases (RLKs) are one of the most important PRRs and play vital roles in plant immunity. CRINKLY4 (CR4), a subfamily of RLK, has been confirmed as a key regulator for plant resistance. Shanjingzi (Malus baccata) is widely used as the rootstock of apples in China due to its strong tolerance against both biotic and abiotic stresses. In the current investigation, we identified a CR4 member, MbCCR4, which positively regulates Valsa canker resistance. We further analyzed potential signals involved in MbCCR4-regulated immune response. 【Methods】 The domain composition and cis-elements in the promoter region of MbCCR4 were detected by using the online software SMART and Plant CARE, respectively. The phylogenetic relationships between MbCCR4 and the homologous gene in other plant species were analyzed using multiple sequence alignment and phylogenetic tree construction. In order to identify potential roles in Valsa canker resistance, the expression patterns of MbCCR4 were assayed while the Shanjingzi suspension cells responded to Valsa canker signals. The CDS of MbCCR4 was cloned into the expression vector pFGC5941. By using the Freeze-thaw method, the recombined plasmids were transformed into Agrobacterium tumefaciens GV3101. To analyze the roles of MbCCR4 in improving Valsa canker resistance, the A. tumefaciens carrying empty vector and recombined plasmids were transiently expressed in fruits of Yanfu-3 (Malus × domestica) and Huangguan (Pyrus bretschneideri) and overexpressed into suspension cells of Duli-G-03 (P. betulifolia). The resistance was evaluated by the test of fruits and suspension cells challenged to both pathogens (Valsa mali or V. pyri) and V. mali or V. pyri metabolisms (VmM or VpM). The immunity-related genes, including the genes involved in the signals of pattern-triggered immunity (PTI), reactive oxygen species (ROS), salicylic acid (SA) and jasmonic acid (JA), were detected in wild type and over-expressed cells during VpM exposure. 【Results】 Sequence BLAST assays revealed that the target gene was homologous with CCR4 (AT5G47850.1) in Arabidopsis and was then named MbCCR4. Based on the phylogenetic tree of 30 homologous genes from 17 plant species, MbCCR4 showed the highest homologousity with MD08G1217500 in Apple. MbCCR4 is a typical member of the CR4 family, which contains an N-terminal signal peptide, a regulator of chromosome condensation 1 (RCC1) domain and a C-terminal kinase domain. Cis-acting regulatory elements (cis-elements) prediction exhibited that MbCCR4 possessed the cis-elements respond to multiple signals such as methyl jasmonate (MeJA), abscisic acid (ABA), and stresses. During Dongbei Shanjingzi (M. baccata) suspension cells responding to signals from Vm, the expression of MbCCR4 was robustly induced at 1 h. Transient expression showed that up-regulation of MbCCR4 significantly enhanced the Valsa canker resistance of both apple and pear fruits compared to the control (empty vector). Expressional assays exhibited that the target gene was successfully expressed in both apple and pear fruits. Furthermore, MbCCR4 was successfully over-expressed in Duli-G03 suspension cells. For the three overexpression cell lines MbCCR4-OE1, MbCCR4-OE2 and MbCCR4-OE6, the expression of MbCCR4 increased to 11.1, 6.8 and 5.8 folds of that in wild type cells. Consistent with transient expression, over-expression of MbCCR4 significantly promoted the tolerance of suspension cells against both Vp and VpM. Compared to the wild type, over-expression of MbCCR4 significantly inhibited the growth ratio of Vp mycelium on suspension cells. At 1 h, 3 h and 6 h of VpM (20%) exposure, the over-expressed cells displayed higher viability than that of wild type cells. We further detected the expression of marker genes that related to multiple immune signals in wild type and over-expressed cell lines that responded to VpM signals. The results displayed that the expression of marker genes associated with multiple signals, such as PTI, ROS, SA and JA, was obviously induced in overexpressed cells. Among these, the expression of SA related gene pathogenesis related protein 1 (PR1) and 4 (PR4) were robustly up-regulated at all time points, indicating the involvement of SA signals in MbCCR4 induced immunity. 【Conclusion】 The above results indicated that MbCCR4 was a key gene that contributed to the Valsa canker resistance of both apples and pears. Moreover, SA was involved in MbCCR4 mediated immune responses. These investigations supplied a valuable gene for further resistant breeding and a theoretical basis for carrying out comprehensive measures to effectively control the occurrence of Valsa canker in apples and pears.
Key words: Valsa; Receptor-like kinases; Valsa canker resistance; Salicylic acid; Immune responses
腐爛病由黑腐皮殼屬(Valsa)致病腐生真菌引起,是蘋果和梨產(chǎn)業(yè)的重大真菌病害[1-2]。其病原菌主要侵染主干韌皮組織,也可對(duì)新梢和果實(shí)致病[2]。目前,主要通過刮除病斑并涂抹藥劑對(duì)其進(jìn)行防控,但該措施用工量大且復(fù)發(fā)率較高。此外,由于病原菌菌絲可深入到木質(zhì)部深處,增加了有效防控的難度[3]??共∮N是持久、有效且環(huán)保的措施,但育種進(jìn)程緩慢,育成的兼具果實(shí)優(yōu)質(zhì)和抗病性強(qiáng)的品種極為罕見。當(dāng)下,鑒定關(guān)鍵抗病基因并系統(tǒng)研究其抗病機(jī)制,是加快抗病育種進(jìn)程的重要基礎(chǔ)。
在與病原菌長期共進(jìn)化的過程中,植物形成了復(fù)雜且有序的免疫系統(tǒng),主要包括水平抗性和垂直抗性[4]。植物的水平抗性常由位于細(xì)胞膜的模式識(shí)別受體(pattern recognition receptor,PRR)激發(fā),在植物對(duì)腐生病害的抗性中起至關(guān)重要的作用[5]。作為重要的PRRs,類受體激酶(receptor-like kinases,RLKs)在識(shí)別病原信號(hào)和激發(fā)免疫反應(yīng)中起重要的調(diào)控作用[6]。CRINKLY4(CR4)是獨(dú)立的RLKs亞家族,N末端存在至少1個(gè)染色體聚集調(diào)控因子1(regulator of chromosome condensation 1,RCC1)結(jié)構(gòu)域,在擬南芥和蘋果中分別發(fā)現(xiàn)5個(gè)和8個(gè)成員[7-8]。功能分析發(fā)現(xiàn),該基因家族成員在植物生長發(fā)育和病原菌抗性中都具有重要作用。對(duì)蘋果CR4基因家族進(jìn)行鑒定和分析,發(fā)現(xiàn)部分成員在蘋果響應(yīng)腐爛病菌信號(hào)過程中顯著上調(diào)表達(dá)[8]。
山荊子(Malus baccata)是中國北方蘋果產(chǎn)區(qū)的重要砧木,對(duì)多種生物逆境和非生物逆境都具有較強(qiáng)的適應(yīng)能力。腐爛病抗性評(píng)價(jià)表明,東北山荊子為抗腐爛病材料,是進(jìn)行抗病基因挖掘的優(yōu)良材料[9]。筆者在本研究中從東北山荊子中鑒定出一個(gè)正調(diào)控腐爛病抗性的CR4家族成員,命名為MbCCR4,并發(fā)現(xiàn)水楊酸和茉莉酸信號(hào)參與了該基因的功能。
1 材料和方法
1.1 植物材料
東北山荊子(M. baccata)一年生枝條由國家果樹種質(zhì)興城梨、蘋果圃友情提供。煙富3號(hào)蘋果和黃冠梨果實(shí)分別采自甘肅省靜寧縣果樹研究所和景泰縣條山農(nóng)場(chǎng)。東北山荊子和杜梨-G03(Duli-G03,Pyrus betulifolia)懸浮細(xì)胞由筆者課題組誘導(dǎo)獲得。
1.2 病原菌和病原菌代謝物獲得
蘋果腐爛病菌(Valsa mali,Vm)菌株Vm-A-003和梨腐爛病菌(Valsa pyri,Vp)菌株Vp-P-007由筆者課題組保存。將菌株在馬鈴薯葡萄糖瓊脂培養(yǎng)基(potato dextrose agar,PDA)中培養(yǎng)3 d后用于后續(xù)試驗(yàn)。Vp代謝物(Vp metabolism,VpM)或Vm代謝物(Vm metabolism,VmM)為10塊直徑為5 mm的Vp-P-007或Vm-A-003菌餅在100 mL馬鈴薯葡萄糖液體培養(yǎng)基(Potato Dextrose Broth,PDB)中培養(yǎng)3 d后過濾獲得濾液,經(jīng)去離子水稀釋后獲得的不同濃度的代謝物[10]。
1.3 載體構(gòu)建
設(shè)計(jì)上游引物F1(CGC GGA TCC ATG GCA ATC AGC AGA AGG,含AscⅠ酶切位點(diǎn))和下游引物R1(TGC TCT AGA CGG ACA TAC CGT TGG GTT G,含AvrⅡ酶切位點(diǎn)),克隆MbCCR4全長序列,并經(jīng)雙酶切和連接導(dǎo)入表達(dá)載體pFGC5941,將重組質(zhì)粒轉(zhuǎn)入大腸桿菌DH5α。提取重組質(zhì)粒和pFGC5941空載體質(zhì)粒,并利用凍融法轉(zhuǎn)入農(nóng)桿菌GV3101,經(jīng)PCR驗(yàn)證獲得攜帶目標(biāo)基因和空載體的農(nóng)桿菌轉(zhuǎn)化子。
1.4 果實(shí)瞬時(shí)表達(dá)
將攜帶目標(biāo)基因和空載體(對(duì)照)的農(nóng)桿菌活化,并大量擴(kuò)繁至OD600為0.6~1.0時(shí),離心并重懸于MES-KOH溶液,4 ℃靜置4 h后,吸取0.2 mL重懸液注射至果實(shí),25 ℃培養(yǎng)3 d后用于病原菌接種和注射部位目標(biāo)基因的表達(dá)量分析。將Vm和Vp菌餅分別接種至蘋果和梨果實(shí)注射部位,并在發(fā)病后36、48、60、72和84 h測(cè)量各處理的病斑大小。以上試驗(yàn)設(shè)5次生物學(xué)重復(fù)。
1.5 杜梨-G03懸浮細(xì)胞遺傳轉(zhuǎn)化和抗病性分析
用細(xì)胞過濾器(孔徑40目)過濾并收集杜梨-G03懸浮細(xì)胞小細(xì)胞團(tuán),黑暗、110 r·min-1振蕩培養(yǎng)3 d備用。攜帶目標(biāo)基因的農(nóng)桿菌的活化、擴(kuò)繁和重懸方法同上。將農(nóng)桿菌懸浮液和杜梨懸浮細(xì)胞以體積比1∶10混合,靜置5 min后除去多余的農(nóng)桿菌,黑暗靜置培養(yǎng)48 h后用頭孢菌素殺滅農(nóng)桿菌,并轉(zhuǎn)移至含有抗生素的MS培養(yǎng)基中培養(yǎng)約20 d,挑取新長出的細(xì)胞團(tuán)進(jìn)行繼代擴(kuò)繁并利用PCR和實(shí)時(shí)熒光定量PCR(quantitative real time polymerase chain reaction,qRT-PCR)篩選轉(zhuǎn)化細(xì)胞系[11]。
選取過表達(dá)效果理想的3個(gè)細(xì)胞系,對(duì)其進(jìn)行Vp和VpM的抗性分析。懸浮細(xì)胞對(duì)Vp的抗性分析:取野生型和過表達(dá)細(xì)胞系的細(xì)胞團(tuán)1 mL(密實(shí)體積)平鋪至MS平板,并在中心位置接種Vp菌餅,分別于接種后36、48、60和72 h測(cè)量病斑大小。在接種72 h時(shí),利用MTT染料對(duì)接種的細(xì)胞進(jìn)行染色并觀察細(xì)胞活性[12]。懸浮細(xì)胞對(duì)VpM的抗性分析:用上述方法過濾收集各細(xì)胞系小細(xì)胞團(tuán)并將濃度(φ)調(diào)整至20 μL(密實(shí)體積)·mL-1,接種不同濃度的VpM,并于處理后1、3和6 h用于免疫反應(yīng)相關(guān)基因的表達(dá)分析和細(xì)胞活性測(cè)定。各細(xì)胞系的細(xì)胞活性采用MTT染色法測(cè)定。
1.6 基因表達(dá)分析
蘋果、梨果實(shí)和杜梨-G03懸浮細(xì)胞總RNA提取、cDNA反轉(zhuǎn)錄和qRT-PCR檢測(cè)參考田丹等[13]的方法。根據(jù)孫娥等[14]的結(jié)果,選取模式觸發(fā)免疫(PTI)、活性氧(ROS)、茉莉酸(JA)和水楊酸(SA)等免疫反應(yīng)信號(hào)相關(guān)的基因共7個(gè),基因名稱和引物序列等信息詳見表1。內(nèi)參基因Actin序列和引物選取根據(jù)Sun等[12]的方法?;虻南鄬?duì)表達(dá)量采用2-ΔΔCT法計(jì)算[15]。
1.7 生物信息學(xué)分析
從美國國家生物技術(shù)信息中心(National Center for Biotechnology Information,NCBI;https://www.ncbi.nlm.nih.gov/)、擬南芥基因組數(shù)據(jù)庫(Arabidopsis information resource,TAIR;http://www.arabidopsis.org)和薔薇科數(shù)據(jù)庫(Genome Database for Rosaceae,GDR;https://www.rosaceae.org/)下載所需基因組信息,使用Mafft v7.505[16]對(duì)17個(gè)物種的部分CR4L家族成員氨基酸全長序列進(jìn)行多序列比對(duì)。采用Fast Tree[17]最大似然法構(gòu)建系統(tǒng)發(fā)育樹,利用JTT模型(1000次bootstrap重復(fù))估算遺傳距離。系統(tǒng)發(fā)育樹的顯示、操作和注釋使用Interactive Tree of Life(iTOL,http://itol.embl.de/)。利用SMART(http://smart.embl.de/)進(jìn)行結(jié)構(gòu)域預(yù)測(cè)[18]。使用TBtools提取MbCCR4基因上游2000 bp序列,使用在線工具PlantCARE(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/)預(yù)測(cè)其啟動(dòng)子區(qū)域的順式作用元件[19]。
1.8 統(tǒng)計(jì)分析
采用Microsoft Excel(2016)軟件進(jìn)行數(shù)據(jù)的初步整理,采用t-test進(jìn)行差異顯著性檢測(cè)(* p<0.05;** p<0.01)。
2 結(jié)果與分析
2.1 MbCCR4是CR4L亞家族成員
將MbCCR4的蛋白序列提交至擬南芥基因組網(wǎng)站,發(fā)現(xiàn)其與CCR4(AT5G47850.1)同源,故將其命名為MbCCR4。進(jìn)一步通過序列比對(duì)獲得該基因在17個(gè)物種中的30個(gè)同源基因,并構(gòu)建了系統(tǒng)發(fā)育樹,發(fā)現(xiàn)其與蘋果中MD08G1217500的同源性最高(圖1-A)。結(jié)構(gòu)域分析表明,MbCCR4蛋白在N端含有1個(gè)信號(hào)肽,1個(gè)RCC1_2結(jié)構(gòu)域,1個(gè)跨膜區(qū)和1個(gè)C端的激酶結(jié)構(gòu)域,為典型的CR4L家族成員(圖1-B)。順式作用元件預(yù)測(cè)分析發(fā)現(xiàn),MbCCR4啟動(dòng)子區(qū)域含有與MeJA、ABA以及信號(hào)傳導(dǎo)、脅迫響應(yīng)相關(guān)的元件(圖1-C)。如上所述,MbCCR4是典型的CR4L的家族成員,其表達(dá)可能響應(yīng)多種激素和逆境信號(hào)。
2.2 MbCCR4響應(yīng)腐爛病信號(hào)
根據(jù)20% VmM處理山荊子懸浮細(xì)胞后的轉(zhuǎn)錄組數(shù)據(jù),篩選出MbCCR4基因的表達(dá)量(圖2)[20]。與對(duì)照相比,20% VmM處理1 h后,MbCCR4的FPKM值由對(duì)照的47.37上升至237.08。利用qRT-PCR分析了20% VmM處理后1 h、3 h和6 h山荊子野生型細(xì)胞中MbCCR4的表達(dá)模式。結(jié)果顯示,VmM處理后MbCCR4的表達(dá)被顯著激活,處理1、3和6 h后MbCCR4的表達(dá)上調(diào)至對(duì)照的456、202和155倍。以上結(jié)果表明,在山荊子響應(yīng)腐爛病信號(hào)過程中,MbCCR4的表達(dá)被顯著誘導(dǎo)。
2.3 MbCCR4正調(diào)控蘋果和梨果實(shí)的腐爛病抗性
利用農(nóng)桿菌介導(dǎo)的瞬時(shí)表達(dá)檢測(cè)山荊子基因MbCCR4對(duì)蘋果和梨腐爛病的抗性(圖3)。結(jié)果表明,接種病原菌36 h時(shí),煙富3號(hào)蘋果和黃冠梨果實(shí)接種部位逐漸發(fā)病,60、72和84 h時(shí),過表達(dá)蘋果和梨果實(shí)(A-pFGC5941-MbCCR4和P-pFGC5941-MbCCR4)的病斑直徑都顯著小于空載體(A-pFGC5941和P-pFGC5941)(圖3-C)。qRT-PCR檢測(cè)證實(shí),與空載體相比,MbCCR4在過表達(dá)后其表達(dá)量顯著上調(diào)(圖3-B)。因此,MbCCR4基因的過表達(dá)顯著增強(qiáng)了蘋果和梨果實(shí)的腐爛病抗性。
2.4 MbCCR4正調(diào)控杜梨懸浮細(xì)胞對(duì)腐爛病菌的抗性
利用農(nóng)桿菌介導(dǎo)的遺傳轉(zhuǎn)化,將MbCCR4轉(zhuǎn)入杜梨-G03懸浮細(xì)胞,并獲得3個(gè)過表達(dá)細(xì)胞系,分別命名為MbCCR4-OE1、MbCCR4-OE2和MbCCR4-OE6。與野生型細(xì)胞相比,接種Vp 72 h時(shí),過表達(dá)細(xì)胞的菌落直徑顯著小于野生型細(xì)胞(WT),MTT染色獲得了相似的結(jié)果(圖4-A)。經(jīng)病斑統(tǒng)計(jì)發(fā)現(xiàn),在接種病原菌48 h時(shí),WT細(xì)胞上病斑直徑已達(dá)1.48 cm,而過表達(dá)細(xì)胞系MbCCR4-OE1、MbCCR4-OE2和MbCCR4-OE6的病斑大小分別為0.48、0.25和0.76 cm,且在72 h時(shí)病斑差異最為明顯(圖4-B)。qRT-PCR分析發(fā)現(xiàn),過表達(dá)細(xì)胞系MbCCR4-OE1、MbCCR4-OE2和MbCCR4-OE6中MbCCR4的表達(dá)量分別上調(diào)至野生型細(xì)胞的11.1、6.8和5.8倍(圖4-C)。綜上,過表達(dá)MbCCR4顯著提高了杜梨懸浮細(xì)胞對(duì)Vp的抗性。
2.5 MbCCR4正調(diào)控杜梨懸浮細(xì)胞對(duì)腐爛病菌代謝物的抗性
通過使用細(xì)胞活力跟蹤檢測(cè)MbCCR4-OE2和WT細(xì)胞對(duì)VpM的耐受性(圖5),結(jié)果表明,與野生型相比,當(dāng)用20%的VpM處理1、3和6 h時(shí),MbCCR4-OE2的細(xì)胞活力顯著高于野生型細(xì)胞,分別比對(duì)照高出了1.1、1.09和1.21倍。這些結(jié)果表明,MbCCR4的過表達(dá)顯著增強(qiáng)了杜梨-G03懸浮細(xì)胞對(duì)VpM的耐受性。
2.6 MbCCR4過表達(dá)誘導(dǎo)杜梨懸浮細(xì)胞響應(yīng)腐爛病信號(hào)過程中免疫反應(yīng)相關(guān)基因的表達(dá)
為了研究MbCCR4激活的信號(hào)通路,分析了與植物免疫直接相關(guān)的PTI、ROS、JA和SA信號(hào)相關(guān)的關(guān)鍵基因的表達(dá)(圖6)。與野生型相比,MbCCR4的過表達(dá)導(dǎo)致PTI相關(guān)基因WRKY22、ROS相關(guān)基因OXI1、SA相關(guān)基因PR1和PR4以及JA相關(guān)基因CHN50和LOX1的上調(diào)表達(dá)。其中,在VpM處理后,SA相關(guān)基因PR1和PR4的表達(dá)在所有時(shí)間點(diǎn)都高于野生型細(xì)胞。因此,多種免疫信號(hào),包括PTI、ROS、SA和JA參與了MbCCR4調(diào)節(jié)的防御反應(yīng)。
3 討 論
通過對(duì)山荊子的CR4基因進(jìn)行生物信息學(xué)分析、表達(dá)分析及關(guān)鍵基因MbCCR4的功能分析,結(jié)果表明,MbCCR4與MD08G1217500親緣關(guān)系較近,推測(cè)他們可能發(fā)揮類似的功能。啟動(dòng)子區(qū)域多種脅迫相關(guān)順式調(diào)控元件的分布表明,MbCCR4基因的調(diào)控與表達(dá)可能受到多種激素共同調(diào)控,其中茉莉酸、脫落酸與水楊酸可能在誘導(dǎo)MbCCR4基因表達(dá)過程中扮演重要角色,這與之前李婉瑩等[21]的研究結(jié)果一致。結(jié)構(gòu)域分析表明,MbCCR4是典型的CR4家族成員。
RLKs作為模式識(shí)別受體的重要組成部分,在信號(hào)傳導(dǎo)網(wǎng)絡(luò)中扮演著關(guān)鍵角色,是植物感知環(huán)境信號(hào)的關(guān)鍵蛋白激酶,也是植物中最大的受體蛋白家族,對(duì)植物適應(yīng)環(huán)境變化具有重要意義[22-23]。突出的例子是鞭毛蛋白傳感2(Flagellin sensitive 2,F(xiàn)LS2)和延伸因子Tu(elongation factor Tu,EF-Tu)受體(EFR),分別識(shí)別細(xì)菌鞭毛蛋白和EF-Tu啟動(dòng)植物的防御[24]。此外,凝集素類受體激酶LecRK-I.9或LecRK-IX.1可以提高煙草對(duì)疫霉菌病原體的抗性[25]。CRINKLY4(CR4)是RLK亞家族中的一個(gè)分支,在擬南芥中主要調(diào)控葉片細(xì)胞分化、花器官發(fā)育和細(xì)胞壁發(fā)育等過程。其成員ACR4能夠感知分泌肽CLE40調(diào)節(jié)遠(yuǎn)端根分生組織中的干性穩(wěn)態(tài)[26]。而本研究中的結(jié)果表明MbCCR4在調(diào)控腐生病原菌的抗性中起著重要的作用,但對(duì)其感知的配體還未進(jìn)行研究,未來可對(duì)其配體及共受體展開更深入的研究,這對(duì)明確MbCCR4調(diào)控腐爛病抗性的分子機(jī)制具有重要的意義。
植物不斷受到有害微生物病原體的攻擊,為了保護(hù)自己免受這些不同的脅迫,植物進(jìn)化出了高度受調(diào)控的防御系統(tǒng),主要由SA、JA、乙烯(ET)和脫落酸(ABA)等小分子激素協(xié)調(diào)[27-29]。SA通常誘導(dǎo)植物對(duì)生物營養(yǎng)病原體的防御[30],被認(rèn)為是誘導(dǎo)植物系統(tǒng)獲得抗性(systemic acquired resistance,SAR)的關(guān)鍵信號(hào)分子[31]。此外,外施SA可以增強(qiáng)煙草對(duì)花葉病毒的抗性[32]。JA和ET是誘導(dǎo)植物防御壞死性病原體的重要激素調(diào)節(jié)因子[33-35],前期研究證實(shí),CR4在茉莉酸信號(hào)中和對(duì)灰霉病菌的抗性起著重要的作用[8]。SA對(duì)JA途徑的影響可以是拮抗、協(xié)同或中性,但在擬南芥中的研究結(jié)果表明拮抗相互作用似乎占主導(dǎo)地位[36],但筆者在本研究中發(fā)現(xiàn)20% VpM處理后,野生型和過表達(dá)系中JA信號(hào)通路基因CHN50和LOX1和SA信號(hào)通路基因PR1和PR4的表達(dá)都被顯著激活,猜測(cè)在MbCCR4調(diào)控腐爛病菌的抗性作用中SA和JA可能是協(xié)同發(fā)揮作用,但具體的影響還待筆者更深入地研究。
4 結(jié) 論
從山荊子中篩選獲得了1個(gè)響應(yīng)腐爛病信號(hào)的CR4家族成員MbCCR4。進(jìn)一步的功能分析表明其正調(diào)控腐爛病抗性,過表達(dá)MbCCR4主要激活了植物體內(nèi)的SA和JA相關(guān)信號(hào),進(jìn)而限制了腐生病原菌的進(jìn)一步入侵。這一研究結(jié)果不僅為腐爛病的抗病育種提供了理論依據(jù),也對(duì)生產(chǎn)實(shí)踐具有重要意義。
參考文獻(xiàn)References:
[1] WANG X L,WEI J L,HUANG L L,KANG Z S. Re-evaluation of pathogens causing Valsa canker on apple in China[J]. Mycologia,2011,103(2):317-324.
[2] 張美鑫,翟立峰,周玉霞,陳曉忍,賈娜娜,洪霓,王國平. 我國梨樹腐爛病菌致病力分化分析[J]. 果樹學(xué)報(bào),2013,30(4):657-664.
ZHANG Meixin,ZHAI Lifeng,ZHOU Yuxia,CHEN Xiaoren,JIA Nana,HONG Ni,WANG Guoping. Pathogenicity differentiation of Valsa mali var. pyri causing pear stem canker in China[J]. Journal of Fruit Science,2013,30(4):657-664.
[3] KE X W,HUANG L L,HAN Q M,GAO X N,KANG Z S. Histological and cytological investigations of the infection and colonization of apple bark by Valsa mali var. mali[J]. Australasian Plant Pathology,2013,42(1):85-93.
[4] DELPLACE F,HUARD-CHAUVEAU C,BERTHOMé R,ROBY D. Network organization of the plant immune system:From pathogen perception to robust defense induction[J]. The Plant Journal,2022,109(2):447-470.
[5] MONAGHAN J,ZIPFEL C. Plant pattern recognition receptor complexes at the plasma membrane[J]. Current Opinion in Plant Biology,2012,15(4):349-357.
[6] WU Y,ZHOU J M. Receptor-like kinases in plant innate immunity[J]. Journal of Integrative Plant Biology,2013,55(12):1271-1286.
[7] 呂前前,劉鈺璽,李靜軒,馬宗桓,姜雪峰,王寶林,毛娟,褚明宇,陳佰鴻,左存武. 蘋果CR4基因家族鑒定與表達(dá)分析[J]. 園藝學(xué)報(bào),2018,45(10):2019-2029.
Lü Qianqian,LIU Yuxi,LI Jingxuan,MA Zonghuan,JIANG Xuefeng,WANG Baolin,MAO Juan,CHU Mingyu,CHEN Baihong,ZUO Cunwu. Identification and expression analysis of CR4 in apple[J]. Acta Horticulturae Sinica,2018,45(10):2019-2029.
[8] E-ZEREEN J,INGRAM G. A possible involvement of ACR4,a receptor like kinase,in plant defence mechanism[J]. Bangladesh Pharmaceutical Journal,2012,15(2):127-130.
[9] 劉欣穎,呂松,王憶,王昆,李天紅,韓振海,張新忠. 蘋果種質(zhì)資源對(duì)蘋果樹腐爛病抗性評(píng)價(jià)[J]. 果樹學(xué)報(bào),2011,28(5):843-848.
LIU Xinying, Lü Song,WANG Yi,WANG Kun,LI Tianhong,HAN Zhenhai,ZHANG Xinzhong. Evaluation of resistance of Malus germplasms to apple canker (Valsa ceratosperma)[J]. Journal of Fruit Science,2011,28(5):843-848.
[10] YU H Q,SUN E,MAO X,CHEN Z J,XU T,ZUO L G,JIANG D J,CAO Y N,ZUO C W. Evolutionary and functional analysis reveals the crucial roles of receptor-like proteins in resistance to Valsa canker in Rosaceae[J]. Journal of Experimental Botany,2023,74(1):162-177.
[11] MAO X,WANG C,LV Q Q,TIAN Y Z,WANG D D,CHEN B H,MAO J,LI W F,CHU M Y,ZUO C W. Cyclic nucleotide gated channel genes (CNGCs) in Rosaceae:Genome-wide annotation,evolution and the roles on Valsa canker resistance[J]. Plant Cell Reports,2021,40(12):2369-2382.
[12] SUN E,YU H Q,CHEN Z J,CAI M R,MAO X,LI Y Y,ZUO C W. Enhanced Valsa canker resistance conferred by expression of MdLecRK-S. 4.3 in Pyrus betulifolia is largely suppressed by PbePUB36[J]. Journal of Experimental Botany,2023,74(14):3998-4013.
[13] 田丹,朵虎,劉河,呂前前,左存武. 蘋果L-LEC-RLK基因家族鑒定及響應(yīng)病原真菌信號(hào)的表達(dá)分析[J]. 園藝學(xué)報(bào),2019,46(3):421-432.
TIAN Dan,DUO Hu,LIU He,Lü Qianqian,ZUO Cunwu. Genome wide identification and expression patterns in response to signals from fungal pathogens of L-LEC-RLK gene family in apple[J]. Acta Horticulturae Sinica,2019,46(3):421-432.
[14] 孫娥,閆文萍,余宏強(qiáng),趙丹,朵虎,左存武. 蘋果和梨抗病相關(guān)基因的誘導(dǎo)與表達(dá)分析[J]. 西北植物學(xué)報(bào),2022,42(9):1468-1476.
SUN E,YAN Wenping,YU Hongqiang,ZHAO Dan,DUO Hu,ZUO Cunwu. Induction and expression analysis of the disease resistance related genes in apple and pear[J]. Acta Botanica Boreali-Occidentalia Sinica,2022,42(9):1468-1476.
[15] LIVAK K J,SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2?ΔΔCT method[J]. Methods,2001,25(4):402-408.
[16] ROZEWICKI J,LI S L,AMADA K M,STANDLEY D M,KATOH K. MAFFT-DASH:Integrated protein sequence and structural alignment[J]. Nucleic Acids Research,2019,47(W1):W5-W10.
[17] PRICE M N,DEHAL P S,ARKIN A P. FastTree:Computing large minimum evolution trees with profiles instead of a distance matrix[J]. Molecular Biology and Evolution,2009,26(7):1641-1650.
[18] LETUNIC I,KHEDKAR S,BORK P. SMART:Recent updates,new developments and status in 2020[J]. Nucleic Acids Research,2021,49(D1):D458-D460.
[19] LESCOT M,DéHAIS P,THIJS G,MARCHAL K,MOREAU Y,VAN DE PEER Y,ROUZé P,ROMBAUTS S. PlantCARE,a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research,2002,30(1):325-327.
[20] WANG C,MAO X,ZHAO D,YU H Q,DUO H,SUN E,LU Y,ZUO C W. Transcriptomic analysis reveals that cell wall- and hypersensitive response (HR)-related genes are involved in the responses of apple to Valsa mali[J]. Plant Biotechnology Reports,2022,16(5):539-551.
[21] 李婉瑩,馬乃膺,左存武,毛娟,李文芳,陳佰鴻,褚明宇. 葡萄CR4類受體激酶基因家族的鑒定及表達(dá)分析[J]. 果樹學(xué)報(bào),2022,39(4):518-531.
LI Wanying,MA Naiying,ZUO Cunwu,MAO Juan,LI Wenfang,CHEN Baihong,CHU Mingyu. Identification and bioinformatics analysis of CR4 receptor-like kinase gene family in grapevine[J]. Journal of Fruit Science,2022,39(4):518-531.
[22] TANG D Z,WANG G X,ZHOU J M. Receptor kinases in plant-pathogen interactions:More than pattern recognition[J]. The Plant Cell,2017,29(4):618-637.
[23] LI X P,ZHANG J J,SHI H Y,LI B,LI J. Rapid responses:Receptor-like kinases directly regulate the functions of membrane transport proteins in plants[J]. Journal of Integrative Plant Biology,2022,64(7):1303-1309.
[24] COUTO D,ZIPFEL C. Regulation of pattern recognition receptor signalling in plants[J]. Nature Reviews Immunology,2016,16(9):537-552.
[25] ZHU Y F,HU C,CUI Y W,ZENG L,LI S,ZHU M S,MENG F H,HUANG S T,LONG L,YI J,LI J,GOU X P. Conserved and differentiated functions of CIK receptor kinases in modulating stem cell signaling in Arabidopsis[J]. Molecular Plant,2021,14(7):1119-1134.
[26] WANG Y,NSIBO D L,JUHAR H M,GOVERS F,BOUWMEESTER K. Ectopic expression of Arabidopsis L-type lectin receptor kinase genes LecRK-I. 9 and LecRK-IX. 1 in Nicotiana benthamiana confers Phytophthora resistance[J]. Plant Cell Reports,2016,35(4):845-855.
[27] PIETERSE C M J,VAN DER DOES D,ZAMIOUDIS C,LEON-REYES A,VAN WEES S C M. Hormonal modulation of plant immunity[J]. Annual Review of Cell and Developmental Biology,2012,28:489-521.
[28] ROBERT-SEILANIANTZ A,GRANT M,JONES J D G. Hormone crosstalk in plant disease and defense:more than just jasmonate-salicylate antagonism[J]. Annual Review of Phytopathology,2011,49:317-343.
[29] VOS I A,PIETERSE C M J,VAN WEES S C M. Costs and benefits of hormone-regulated plant defences[J]. Plant Pathology,2013,62(Suppl. 1):43-55.
[30] GLAZEBROOK J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens[J]. Annual Review of Phytopathology,2005,43:205-227.
[31] MINE A,SEYFFERTH C,KRACHER B,BERENS M L,BECKER D,TSUDA K. The defense phytohormone signaling network enables rapid,high-amplitude transcriptional reprogramming during effector-triggered immunity[J]. The Plant Cell,2018,30(6):1199-1219.
[32] 李國婧,周燮. 植物防御反應(yīng)中水楊酸與茉莉酸的“對(duì)話”機(jī)制[J]. 細(xì)胞生物學(xué)雜志,2002,24(2):101-105.
LI Guojing,ZHOU Xie. The “Dialogue” mechanism of salicylic acid and jasmonic acid in plant defense responses[J]. Chinese Journal of Cell Biology,2002,24(2):101-105.
[33] 徐剛,姚銀安. 水楊酸、茉莉酸和乙烯介導(dǎo)的防衛(wèi)信號(hào)途徑相互作用的研究進(jìn)展[J]. 生物學(xué)雜志,2009,26(1):48-51.
XU Gang,YAO Yin’an. The cross-talk between salicylic acid,jasmonic acid and ethylene defense pathway[J]. Journal of Biology,2009,26(1):48-51.
[34] PROIETTI S,CAARLS L,COOLEN S,VAN PELT J A,VAN WEES S C M,PIETERSE C M J. Genome-wide association study reveals novel players in defense hormone crosstalk in Arabidopsis[J]. Plant,Cell amp; Environment,2018,41(10):2342-2356.
[35] BOUWMEESTER K,HAN M,BLANCO-PORTALES R,SONG W,WEIDE R,GUO L Y,VAN DER VOSSEN E A G,GOVERS F. The Arabidopsis lectin receptor kinase LecRK-I. 9 enhances resistance to Phytophthora infestans in Solanaceous plants[J]. Plant Biotechnology Journal,2014,12(1):10-16.
[36] TSUDA K,SATO M,STODDARD T,GLAZEBROOK J,KATAGIRI F. Network properties of robust immunity in plants[J]. PLoS Genetics,2009,5(12):e1000772.
基金項(xiàng)目:甘肅省科技重大專項(xiàng)(22ZD6NA045)
作者簡(jiǎn)介:蔡敏蕊,女,碩士,主要從事蘋果、梨腐爛病抗病機(jī)制研究。E-mail:2176029217@qq.com
*通信作者Author for correspondence. E-mail:zuocw@gsau.edu.cn