摘要: 水凝膠是由交聯(lián)網(wǎng)絡(luò)或互穿網(wǎng)絡(luò)形成的一種三維材料,具有獨(dú)特的溶脹性、生物相容性和高度交聯(lián)的空間結(jié)構(gòu),已被廣泛應(yīng)用于傷口修復(fù)、美容護(hù)膚、藥物遞送及生物傳感器等領(lǐng)域。絲膠蛋白是從蠶絲脫膠過(guò)程中提取的黏附糖蛋白,具有優(yōu)異的生物相容性、親水性、抗菌性、抗紫外活性等。文章綜述了采用物理交聯(lián)(超聲誘導(dǎo)、真空冷凍干燥、自組裝、反復(fù)凍融等)、化學(xué)交聯(lián)(單一交聯(lián)劑、復(fù)合交聯(lián)劑)、紫外光催化和轉(zhuǎn)基因功能化方式構(gòu)建絲膠蛋白水凝膠的策略,并闡明了不同技術(shù)制備的絲膠蛋白水凝膠的結(jié)構(gòu)特征和性能特點(diǎn),及其在組織工程、抗菌敷料、中風(fēng)治療等方面的應(yīng)用。
關(guān)鍵詞: 絲膠蛋白;水凝膠;交聯(lián);光催化;創(chuàng)面敷料;組織工程
中圖分類(lèi)號(hào): TS102.33; TQ427.26 文獻(xiàn)標(biāo)志碼: A
蠶絲是由絲素和絲膠蛋白(Sericin,SS)組成的天然蛋白質(zhì)纖維。絲膠覆蓋在絲素纖維的表面,起到保護(hù)和黏合的作用。絲素蛋白在紡織工業(yè)和生物醫(yī)用材料中有著廣泛的應(yīng)用,但絲膠的利用率不高,往往被當(dāng)作廢物丟棄。由于絲膠降解需氧量高,繅絲廠每年產(chǎn)生的絲膠廢水造成了很大的環(huán)境污染[1]。絲膠蛋白是水溶性球狀蛋白,因富含極性氨基酸且空間結(jié)構(gòu)疏松而具有良好的親水性、生物降解性和反應(yīng)活性,能通過(guò)多種制備技術(shù)加工成凝膠、薄膜、多孔支架、顆粒和纖維等形式的復(fù)合材料[2]。絲膠蛋白還具有抗氧化、抗凝血、降糖及促進(jìn)細(xì)胞增殖和分化等多種生物活性。因此,從廢水中回收絲膠并將其作為生物資源進(jìn)行開(kāi)發(fā)利用,將產(chǎn)生可觀的社會(huì)效益和經(jīng)濟(jì)效益[3]。
水凝膠是由物理相互作用和/或化學(xué)交聯(lián)的三維聚合物網(wǎng)絡(luò)組成的,其交聯(lián)可通過(guò)一種或多種相互作用發(fā)生,如共價(jià)鍵、離子鍵、氫鍵、范德華力或疏水作用等[4]。由于聚合物大分子鏈的親水性和獨(dú)特的多孔結(jié)構(gòu),水凝膠具有超高的保水性和溶脹率。水凝膠材料的理化性質(zhì)可隨著溫度、pH值、光照等因素變化而調(diào)節(jié),已被廣泛應(yīng)用至組織工程、生物醫(yī)藥、可穿戴設(shè)備、軟電子、制動(dòng)設(shè)備、污水處理等領(lǐng)域[5]。
絲膠蛋白性能優(yōu)異,可通過(guò)自組裝或與交聯(lián)劑交聯(lián)形成水凝膠。但因絲膠蛋白的二級(jí)結(jié)構(gòu)主要呈無(wú)規(guī)卷曲和α-螺旋構(gòu)象,內(nèi)部結(jié)晶區(qū)較少,純絲膠蛋白水凝膠的機(jī)械性能較差,應(yīng)用受限。將絲膠蛋白與其他聚合物共聚或混合形成復(fù)合水凝膠,能顯著改善絲膠蛋白的機(jī)械性能[6],并可附加其他功能,應(yīng)用領(lǐng)域更廣。本文綜述了采用物理交聯(lián)、化學(xué)交聯(lián)、光催化、轉(zhuǎn)基因功能化方式構(gòu)建的絲膠蛋白水凝膠,在傷口敷料、軟骨再生、神經(jīng)修復(fù)、藥物傳遞等方面的應(yīng)用。
1 物理交聯(lián)構(gòu)建絲膠蛋白水凝膠
物理交聯(lián)是通過(guò)離子鍵或分子間相互作用(如偶極-偶極、偶極誘導(dǎo)、氫鍵和疏水作用)形成交聯(lián)網(wǎng)絡(luò)。物理交聯(lián)具有可逆性,交聯(lián)過(guò)程對(duì)溫度、pH值或離子強(qiáng)度有響應(yīng)性。物理交聯(lián)水凝膠無(wú)需使用有毒化學(xué)交聯(lián)劑,可為醫(yī)療應(yīng)用提供更安全的解決方案,但因在生理介質(zhì)中壽命較短,通常適合于藥物釋放等短期應(yīng)用[7]。采用物理交聯(lián)制備絲膠蛋白水凝膠是通過(guò)引發(fā)絲膠蛋白分子之間聚合生成分子間作用力形成的,主要方法包括超聲波誘導(dǎo)、自組裝、反復(fù)凍融、真空冷凍干燥等。
1.1 超聲波誘導(dǎo)交聯(lián)絲膠蛋白水凝膠
超聲誘導(dǎo)交聯(lián)是一種簡(jiǎn)便的、無(wú)需添加劑的交聯(lián)方式,具有加速反應(yīng)進(jìn)程、降低反應(yīng)損耗能量等特性。該方法在時(shí)間可控的情況下加速溶膠-凝膠的轉(zhuǎn)變,通過(guò)改變蛋白質(zhì)分子鏈的疏水水合作用誘導(dǎo)物理β-折疊交聯(lián),凝膠時(shí)間可以根據(jù)超聲參數(shù)(輸出功率和持續(xù)時(shí)間)及材料濃度控制[8]。超聲波在溶液中會(huì)產(chǎn)生聲空化現(xiàn)象,作用于水溶液中的絲膠蛋白分子,使分子間發(fā)生較劇烈碰撞,重排形成更穩(wěn)定有序的空間結(jié)構(gòu),從而獲得不溶于水的穩(wěn)定凝膠網(wǎng)絡(luò)結(jié)構(gòu)。制備的絲膠水凝膠具有高光學(xué)透明度、可注射性、高彈性、pH值依賴(lài)性降解和高孔隙率等特點(diǎn)[9]。對(duì)這種凝膠模式的另一種解釋是,超聲波振動(dòng)會(huì)導(dǎo)致凝膠網(wǎng)絡(luò)中物理交聯(lián)的發(fā)展,加速蛋白質(zhì)從溶液到凝膠的轉(zhuǎn)變[10-11]。超聲誘導(dǎo)制備的絲膠蛋白水凝膠具有優(yōu)異的細(xì)胞黏附性,可有效促進(jìn)細(xì)胞附著、增殖和長(zhǎng)期存活,并能持續(xù)遞送生物活性分子,與宿主細(xì)胞和生物活性分子兼容[9]。
超聲波誘導(dǎo)既可以制備純絲膠蛋白水凝膠,也能構(gòu)建絲膠復(fù)合水凝膠。如Du等[12]將肝素溶液加入絲膠溶液中,經(jīng)過(guò)超聲處理形成絲膠/肝素復(fù)合凝膠前體溶液,再加入堿性成纖維細(xì)胞生長(zhǎng)因子(Basic Fibroblast Growth Factor,bFGF),室溫靜置后獲得裝載功能因子的絲膠/肝素復(fù)合水凝膠(圖1),更有利于促進(jìn)傷口愈合。超聲波交聯(lián)不僅可控制絲膠蛋白凝膠化時(shí)間,而且無(wú)需使用生物毒性交聯(lián)試劑,有利于提高絲膠水凝膠的生物相容性,可直接用于活細(xì)胞包埋。
1.2 真空冷凍干燥形成絲膠蛋白凝膠
真空冷凍干燥是利用升華原理使冷凍材料脫水的一種干燥技術(shù),是制備絲膠蛋白凝膠的重要方法。如瓊脂糖分子在響應(yīng)環(huán)境溫度變化時(shí)容易通過(guò)物理交聯(lián)形成穩(wěn)定而牢固的空間網(wǎng)絡(luò)結(jié)構(gòu),將絲膠蛋白與瓊脂糖混合后經(jīng)真空冷凍干燥,可以制備互穿網(wǎng)絡(luò)的絲膠復(fù)合凝膠(圖2)。絲膠/瓊脂糖復(fù)合凝膠由絲膠蛋白網(wǎng)絡(luò)、瓊脂糖分子網(wǎng)絡(luò)及氫鍵連接形成的絲膠-瓊脂糖交叉網(wǎng)絡(luò)組成。凝膠中絲膠蛋白和瓊脂糖的主鏈結(jié)構(gòu)并沒(méi)有發(fā)生變化,氫鍵作用使絲膠蛋白的結(jié)構(gòu)從無(wú)規(guī)卷曲向β-折疊轉(zhuǎn)變,凝膠具有更好的力學(xué)性能和形態(tài)穩(wěn)定性[13]。將天然抗菌劑溶菌酶裝載至絲膠/瓊脂糖凝膠中,帶正電的溶菌酶能與帶負(fù)電的絲膠蛋白發(fā)生靜電吸附,溶菌酶與絲膠蛋白之間特殊的親疏水作用也能增強(qiáng)溶菌酶的吸附。凝膠持續(xù)釋放溶菌酶,可保持優(yōu)異的抗菌活性,有望成為傷口敷料的替代品[14]。
以甘油作為增塑劑,將羧甲基纖維素(Carboxymethyl Cellulose,CMC)與絲膠蛋白溶液共混均勻并冷凍干燥,可以顯著改善水凝膠的機(jī)械性能。該復(fù)合凝膠呈三維多孔結(jié)構(gòu),具有高度膨脹性和孔隙度。將CMC-絲膠蛋白復(fù)合水凝膠用于糖尿病傷口處理的敷料時(shí),凝膠的多孔結(jié)構(gòu)不僅能吸收傷口滲出液,還能促進(jìn)血管生成,增強(qiáng)真皮細(xì)胞的黏附和增殖,顯著促進(jìn)糖尿病傷口愈合,無(wú)需胰島素治療[15]。
1.3 自組裝制備絲膠蛋白水凝膠
蠶繭粉碎后在高溫高壓下經(jīng)熱水處理,并濾去不溶物后的純絲膠蛋白溶液無(wú)需引入其他物質(zhì),通過(guò)自組裝也可形成絲膠蛋白水凝膠。膠凝時(shí)間隨著絲膠蛋白濃度的增加而減少,高濃度的絲膠水溶液會(huì)加速絲膠分子鏈的相互作用,促使絲膠蛋白展開(kāi)并快速結(jié)合,最終形成有組織的凝膠網(wǎng)絡(luò)[16]。溶液中絲膠蛋白多數(shù)呈現(xiàn)無(wú)規(guī)卷曲二級(jí)結(jié)構(gòu),能量高、穩(wěn)定性差,在較低溫度條件下,不穩(wěn)定的無(wú)規(guī)卷曲可轉(zhuǎn)變?yōu)榉€(wěn)定的β-折疊結(jié)構(gòu),因此低溫可以加速凝膠形成。此外,側(cè)鏈羧基的質(zhì)子化在決定凝膠化速率方面起主導(dǎo)作用,當(dāng)溶液pH值低于絲膠等電點(diǎn)時(shí),羧基被中和,絲膠的親水性降低,電荷斥力降低,促進(jìn)絲膠蛋白的疏水相互作用,從而產(chǎn)生更多的物理交聯(lián)和更快的凝膠化過(guò)程。自組裝制備水凝膠,與化學(xué)交聯(lián)技術(shù)相比,具有反應(yīng)條件溫和、膠凝過(guò)程可控的優(yōu)點(diǎn),并且只需將絲膠蛋白溶液保持在生物潔凈的環(huán)境下,即可獲得無(wú)菌絲膠蛋白水凝膠,無(wú)需再滅菌消毒。該類(lèi)水凝膠具有高孔隙率、高降解性和優(yōu)異的細(xì)胞黏附能力,適合作為細(xì)胞或生物活性分子的載體,可促進(jìn)細(xì)胞的生長(zhǎng)和活性藥物的持續(xù)釋放[17]。
然而,采用自組裝方式制備的絲膠水凝膠,在自然條件下多孔的特性是不可控制的。為此,Tao等[18]配合冷凍干燥技術(shù)制備了孔徑可調(diào)節(jié)的多孔凝膠材料,并通過(guò)在凝膠表面進(jìn)一步構(gòu)建交替排列的聚二甲基二烯丙基氯化銨-聚丙烯酸聚電解質(zhì)膜,促進(jìn)銀納米顆粒在絲膠凝膠表面原位高密度生長(zhǎng),實(shí)現(xiàn)長(zhǎng)效抗菌活性。
1.4 反復(fù)凍融構(gòu)建絲膠蛋白水凝膠
采用凍融工藝制備多孔水凝膠既安全有效又簡(jiǎn)單經(jīng)濟(jì)。將絲膠蛋白與聚乙烯醇(Polyvinyl Alcohol,PVA)共混后在-80 ℃下反復(fù)冷凍解凍,能形成穩(wěn)定的絲膠/PVA水凝膠。PVA具有優(yōu)異的強(qiáng)度和柔韌性,能顯著增強(qiáng)水凝膠的機(jī)械性能[19]。絲膠/PVA水凝膠不僅具有優(yōu)異的力學(xué)性能、高孔隙膨脹比、良好的親水性和熱穩(wěn)定性,同時(shí)具備裝載和釋放小分子藥物及納米顆粒的能力,可作為一種藥物傳遞載體。在裝載慶大霉素后,凝膠可通過(guò)藥物的緩慢釋放抑制細(xì)菌生長(zhǎng),預(yù)防傷口感染并促進(jìn)傷口愈合[20]。在治療糖尿病傷口時(shí),絲膠/PVA水凝膠通過(guò)與其他功能性物質(zhì)(如榕樹(shù)提取物、洋蔥提取物等)的結(jié)合,可顯著升高血清抗炎細(xì)胞因子和組織抑制劑金屬蛋白酶水平,同時(shí)降低促炎因子和基質(zhì)金屬蛋白酶水平,表現(xiàn)出良好的組織再生性能,可作為糖尿病創(chuàng)面藥物治療的有效載體[19]。
1.5 乙醇誘導(dǎo)絲膠蛋白凝膠化
純乙醇本身并不誘導(dǎo)絲膠蛋白的結(jié)晶或凝膠化,但水溶液中的乙醇會(huì)影響絲膠蛋白大分子間的氫鍵作用,進(jìn)而影響絲膠的凝膠化過(guò)程及凝膠的性質(zhì)。乙醇對(duì)絲膠蛋白的凝膠化既有積極的作用,也有消極的影響,主要取決于乙醇的質(zhì)量分?jǐn)?shù)。當(dāng)絲膠蛋白溶液中乙醇質(zhì)量分?jǐn)?shù)達(dá)到15%時(shí),絲膠蛋白凝膠化速度顯著加快,凝膠的機(jī)械強(qiáng)度也增加,但繼續(xù)增加乙醇質(zhì)量分?jǐn)?shù),絲膠蛋白的凝膠強(qiáng)度明顯降低;當(dāng)乙醇質(zhì)量分?jǐn)?shù)增加到35%(即含水量小于65%),絲膠蛋白不會(huì)發(fā)生凝膠化。適量的乙醇(15%)會(huì)與水溶液中的絲膠蛋白爭(zhēng)奪水分,促進(jìn)絲膠蛋白大分子結(jié)構(gòu)的規(guī)整化,因此有利于凝膠化過(guò)程。
但乙醇質(zhì)量分?jǐn)?shù)過(guò)高(超過(guò)35%)意味著含水量下降,絲膠蛋白分子間氫鍵作用減弱,難以形成凝膠[21]。采用乙醇促進(jìn)絲膠蛋白凝膠的方式簡(jiǎn)單易行,且不經(jīng)任何化學(xué)修飾,形成的凝膠具有片狀網(wǎng)絡(luò)結(jié)構(gòu),通過(guò)拉伸能進(jìn)一步增強(qiáng)彈性,適合用作關(guān)節(jié)等運(yùn)動(dòng)部位的傷口敷料[22]。
2 化學(xué)交聯(lián)制備絲膠蛋白水凝膠
采用物理交聯(lián)制備的絲膠蛋白水凝膠無(wú)需添加化學(xué)交聯(lián)劑,但凝膠的彈性模量低、穩(wěn)定性較差。利用化學(xué)交聯(lián)劑形成穩(wěn)定的共價(jià)鍵,不僅能使溶液中絲膠蛋白分子間形成穩(wěn)定的網(wǎng)絡(luò)結(jié)構(gòu),提高凝膠的機(jī)械性質(zhì),也能將絲膠蛋白與其他組分材料共混制成多功能復(fù)合水凝膠,應(yīng)用范圍更廣。常用于絲膠蛋白凝膠化的交聯(lián)劑有京尼平、戊二醛、過(guò)氧化物酶等。
2.1 京尼平交聯(lián)絲膠蛋白水凝膠
京尼平是從梔子干果中提取的主要生物活性化合物之一,是一種天然、有效、無(wú)毒的交聯(lián)劑[23]。京尼平分子具有獨(dú)特的隱形雙醛結(jié)構(gòu),可以與含有伯胺基殘基的氨基酸(如賴(lài)氨酸、羥賴(lài)氨酸或精氨酸等)或蛋白質(zhì)交聯(lián)。京尼平交聯(lián)絲膠蛋白形成水凝膠的反應(yīng)原理如圖3[25]所示,絲膠蛋白中含有豐富的絲氨酸、蘇氨酸、天冬氨酸和甘氨酸,這些氨基酸中的伯胺親核攻擊京尼平的雙氫吡喃環(huán),引起開(kāi)環(huán)反應(yīng),形成醛基和仲酰胺,實(shí)現(xiàn)絲膠蛋白的交聯(lián)和凝膠化。在絲膠與京尼平的交聯(lián)顯色反應(yīng)過(guò)程中,顏色由透明的黃色變?yōu)榫G色,再變?yōu)樘焖{(lán)色,最后變?yōu)樯钏{(lán)色,顏色的深淺取決于反應(yīng)時(shí)間和京尼平濃度[24]。因京尼平交聯(lián)的絲膠蛋白凝膠呈現(xiàn)較深的藍(lán)色,透光性低,不適宜用作可視化生物材料。
絲膠蛋白具有神經(jīng)營(yíng)養(yǎng)和神經(jīng)保護(hù)功能,可以促進(jìn)神經(jīng)軸突的擴(kuò)展和分支,防止神經(jīng)元因缺氧和低糖引起的死亡[25]。將絲膠蛋白溶液與京尼平共混,制備具有多孔結(jié)構(gòu)和溫和膨脹比的純絲膠蛋白水凝膠,不僅在體外支持神經(jīng)元的有效黏附和生長(zhǎng),將凝膠移植到體內(nèi)時(shí),也表現(xiàn)出高細(xì)胞存活率并促進(jìn)細(xì)胞持續(xù)增殖,證明絲膠水凝膠可作為潛在的神經(jīng)細(xì)胞輸送工具用于缺血性腦卒修復(fù)[25]。此外,Song等[26]首次報(bào)道了絲膠蛋白/京尼平混合交聯(lián)凝膠用于體內(nèi)缺血性心肌修復(fù)的有效治療,通過(guò)體內(nèi)原位構(gòu)建絲膠蛋白水凝膠注入心肌梗死區(qū),可減少瘢痕形成和梗死面積,增加壁厚和新生血管,抑制心肌梗死誘導(dǎo)的炎癥反應(yīng)和細(xì)胞凋亡,顯著改善心肌功能。
除純絲膠蛋白凝膠外,京尼平也能用于絲膠蛋白復(fù)合凝膠交聯(lián)。Sapru等[27]采用京尼平交聯(lián)絲膠蛋白/殼聚糖共混水凝膠,用于人角質(zhì)形成細(xì)胞和真皮成纖維細(xì)胞的共培養(yǎng),以形成角質(zhì)細(xì)胞(真皮上層)和成纖維細(xì)胞(真皮下層)雙層結(jié)構(gòu),模擬自然皮膚組織,創(chuàng)建人工表皮和真皮層。研究表明,絲膠/殼聚糖復(fù)合水凝膠體外能增強(qiáng)皮膚細(xì)胞的黏附、增殖和遷移,促使膠原Ⅳ和基質(zhì)金屬蛋白酶的合成;植入體內(nèi)能促使膠原蛋白密集堆積和成熟血管形成,且無(wú)炎癥,有效支持皮膚組織的再生和修復(fù)[28]。Wang等[29]制備了一種可注射、形狀記憶的碳納米管摻雜絲膠蛋白凝膠支架用于中風(fēng)治療,可將骨髓間充質(zhì)干細(xì)胞輸送到腦組織中,并功能性地促進(jìn)其神經(jīng)元分化。Sapru等[30]用京尼平交聯(lián)制備絲膠蛋白/殼聚糖/糖胺聚糖復(fù)合凝膠模擬皮膚自然結(jié)構(gòu),在水凝膠中引入血管內(nèi)
皮生長(zhǎng)因子和轉(zhuǎn)化生長(zhǎng)因子-β,為促進(jìn)皮膚組織修復(fù)提供適當(dāng)?shù)奈锢憝h(huán)境和生物線索。為進(jìn)一步增強(qiáng)絲膠蛋白水凝膠的抗菌性能,Moise等[31]以京尼平為交聯(lián)劑構(gòu)建孔隙相互聯(lián)通的絲膠/聚乙烯醇/阿奇霉素復(fù)合水凝膠,阿奇霉素的引入提高了水凝膠對(duì)金黃色葡萄球菌、銅綠假單胞菌、大腸桿菌和白色念珠菌的抗菌性能,該抗菌復(fù)合水凝膠在預(yù)防感染和促進(jìn)燒傷創(chuàng)面愈合方面具有很大的潛力。
2.2 過(guò)氧化物酶催化交聯(lián)絲膠蛋白水凝膠
過(guò)氧化物酶是一種相對(duì)無(wú)害的交聯(lián)劑,酶催化反應(yīng)處理?xiàng)l件溫和,如低溫、接近中性環(huán)境、無(wú)需添加其他有毒化學(xué)物質(zhì)等。辣根過(guò)氧化物酶(Horse Radish Peroxidase,HRP)是一種氧化還原酶,在過(guò)氧化氫(H2O2)的存在下,可以催化氧化酚類(lèi)或乙烯基單體自由基聚合。絲膠蛋白中含有酪氨酸殘基,酪氨酸作為一種含酚羥基的芳香族極性氨基酸,在HRP-H2O2體系的催化作用下,酪氨酸殘基上的酚羥基會(huì)被氧化產(chǎn)生酚氧自由基,并與附加的乙烯基單體接枝共聚,實(shí)現(xiàn)絲膠蛋白分子的交聯(lián),反應(yīng)機(jī)理如圖4[32-33]所示。
采用HRP-H2O2催化體系制備的高光學(xué)透明絲膠蛋白/聚丙烯酰胺互穿網(wǎng)絡(luò)水凝膠,具有較高的孔隙率。通過(guò)改變絲膠含量可以靈活調(diào)節(jié)凝膠的膨脹行為、降解動(dòng)力學(xué)和機(jī)械強(qiáng)度。該水凝膠體系還具有優(yōu)異的細(xì)胞黏附能力,能有效促進(jìn)細(xì)胞增殖和長(zhǎng)期存活,可作為可視化敷料實(shí)時(shí)監(jiān)測(cè)傷口[34]。在HRP和H2O2的催化下也可將聚乙二醇二甲基丙烯酸酯接枝聚合到絲膠蛋白分子鏈上,構(gòu)建聚乙二醇二甲基丙烯酸酯改性絲膠復(fù)合凝膠。改性后絲膠蛋白凝膠具有較好的成形性、優(yōu)異的力學(xué)性能、高孔隙率和膨脹率,還具有良好的細(xì)胞相容性和持續(xù)穩(wěn)定的藥物釋放行為[35]。
2.3 戊二醛交聯(lián)絲膠蛋白水凝膠
戊二醛兩端的羰基較活潑,可與絲膠中的賴(lài)氨酸、組氨酸、精氨酸殘基中的氨基或亞氨基發(fā)生反應(yīng),形成穩(wěn)定的亞胺結(jié)構(gòu),從而交聯(lián)絲膠大分子[36]。采用戊二醛共價(jià)交聯(lián)絲膠蛋白能快速凝膠,并可通過(guò)改變絲膠濃度和戊二醛用量來(lái)調(diào)控交聯(lián)度,進(jìn)而微調(diào)與交聯(lián)度相關(guān)的機(jī)械強(qiáng)度、彈性和孔隙率等
性能。戊二醛交聯(lián)的絲膠水凝膠具有良好的彈性、高孔隙率和發(fā)光特性,可用作生物成像和體內(nèi)跟蹤或作為細(xì)胞和治療藥物的遞送載體,但戊二醛本身具有一定細(xì)胞毒性,在用作組織工程材料時(shí)殘留的戊二醛不利于細(xì)胞的生長(zhǎng)[37]。除此之外,以戊二醛為交聯(lián)劑,通過(guò)浸漬法將聚N-異丙基丙烯酰胺/絲膠互穿網(wǎng)絡(luò)水凝膠用于棉織物的改性整理,能有效改善棉織物的熱穩(wěn)定性和力學(xué)性能[38]。
2.4 水合硅酸鋰鎂交聯(lián)絲膠蛋白水凝膠
水合硅酸鋰鎂可交聯(lián)絲膠蛋白和N-異丙基丙烯酰胺,形成半互穿網(wǎng)絡(luò)結(jié)構(gòu)的納米復(fù)合水凝膠。由于絲膠親水性強(qiáng),能增加凝膠內(nèi)部孔隙大小,復(fù)合凝膠的截面形態(tài)表現(xiàn)出從蜂窩到層狀結(jié)構(gòu)的轉(zhuǎn)變。該凝膠應(yīng)用于創(chuàng)面時(shí),包埋在納米復(fù)合水凝膠中的大分子絲膠可通過(guò)電荷作用吸附細(xì)菌,從水凝膠中解離出來(lái)的小分子絲膠可穿透細(xì)菌細(xì)胞膜并吸附細(xì)胞內(nèi)的陰離子物質(zhì),實(shí)現(xiàn)有效抗菌,可作為理想的創(chuàng)面敷料材料[39]。
2.5 復(fù)合交聯(lián)劑構(gòu)建絲膠蛋白復(fù)合凝膠
除以上單交聯(lián)劑外,還可利用復(fù)合交聯(lián)劑制備水凝膠以獲得應(yīng)用適配度更高的絲膠凝膠材料,如Robles等[40]用三(2,20-聯(lián)吡啶)二氯六水釕和過(guò)硫酸鈉作為光引發(fā)劑交聯(lián)聚乙烯醇-絲膠蛋白/明膠水凝膠,這種高模量的水凝膠可作為體內(nèi)神經(jīng)組織再生的細(xì)胞培養(yǎng)平臺(tái),支持神經(jīng)元網(wǎng)絡(luò)的發(fā)育。Han等[41]采用碳酸鈣、葡萄糖酸δ-內(nèi)酯雙交聯(lián)海藻酸鈉/絲膠蛋白多孔水凝膠,葡萄糖酸δ-內(nèi)酯促進(jìn)碳酸鈣中的Ca2+持續(xù)釋放,使海藻酸鈉完全交聯(lián)形成第一個(gè)網(wǎng)絡(luò);絲膠蛋白因吸水而膨脹,其構(gòu)象由無(wú)規(guī)卷曲轉(zhuǎn)變?yōu)棣?折疊結(jié)構(gòu),側(cè)鏈親水基團(tuán)與水分子形成氫鍵,形成網(wǎng)狀結(jié)構(gòu),絲膠蛋白豐富的氨
基、羥基等親水極性基團(tuán)與海藻酸鈉的游離羥基和羧基形成氫鍵,形成第二網(wǎng)絡(luò)(圖5)。該支架用于軟骨損傷的原位修復(fù)時(shí),其三維多孔結(jié)構(gòu)更接近軟骨損傷修復(fù)微環(huán)境,有利于系統(tǒng)內(nèi)細(xì)胞遷移和養(yǎng)分循環(huán)。同時(shí)可通過(guò)改變絲膠蛋白的含量來(lái)調(diào)節(jié)水凝膠的降解速率,使其與軟骨再生速度相匹配,有望應(yīng)用于臨床軟骨修復(fù)微創(chuàng)手術(shù)。利用鈣離子將絲膠蛋白與海藻酸鈉交聯(lián),形成半互穿的海藻酸鈉/絲膠網(wǎng)絡(luò)凝膠后,還可以進(jìn)一步利用絲膠中酪氨酸的酚羥基還原陰離子,原位合成銀納米顆粒。制備的復(fù)合凝膠通過(guò)銀納米粒子不可逆地破壞細(xì)菌膜結(jié)構(gòu)導(dǎo)致細(xì)菌裂解和死亡,表現(xiàn)出有效的抗菌活性,并促進(jìn)創(chuàng)面愈合,可用于傷口促愈敷料[42]。
以N,N-亞甲基雙丙烯酰胺為交聯(lián)劑,過(guò)硫酸銨為自由基引發(fā)劑,四甲基乙二胺為催化劑,通過(guò)自由基聚合反應(yīng)可制備絲膠蛋白-聚丙烯酰胺半互穿網(wǎng)絡(luò)復(fù)合水凝膠。該復(fù)合水凝膠的凝膠時(shí)間、微結(jié)構(gòu)、溶脹率、平衡含水量、抗壓強(qiáng)度和體外降解速率可通過(guò)改變絲膠蛋白濃度進(jìn)行調(diào)節(jié)。凝膠中相互連接的三維親水網(wǎng)絡(luò)能支持成纖維細(xì)胞的生長(zhǎng),擴(kuò)散營(yíng)養(yǎng)物質(zhì)、治療藥物和傷口滲出液,并保持適當(dāng)?shù)某睗癍h(huán)境。因此,該復(fù)合水凝膠在組織工程、治療遞送和其他生物醫(yī)學(xué)方面具有潛在的應(yīng)用前景[43]。
無(wú)論使用單一或是復(fù)合交聯(lián)劑都能有效提升絲膠蛋白水凝膠的穩(wěn)定性和機(jī)械性能,但大多交聯(lián)劑存在一定毒性。為保障凝膠的應(yīng)用,應(yīng)優(yōu)先選擇毒性低、殘留少或易清除的交聯(lián)劑,同時(shí)需對(duì)交聯(lián)劑的殘余及水凝膠的細(xì)胞毒性進(jìn)行評(píng)估。利用復(fù)合交聯(lián)劑構(gòu)建絲膠蛋白復(fù)合凝膠,達(dá)到最佳利用目的是目前較為廣泛的凝膠構(gòu)建策略。
3 紫外光催化交聯(lián)絲膠蛋白水凝膠
紫外光誘導(dǎo)催化可促使絲膠蛋白的二級(jí)結(jié)構(gòu)向更穩(wěn)定的β-折疊結(jié)構(gòu)過(guò)渡。凝膠前驅(qū)溶液在紫外線的照射下會(huì)產(chǎn)生活性自由基或陽(yáng)離子,引發(fā)預(yù)聚體的連鎖聚合、交聯(lián)化學(xué)反應(yīng),形成凝膠網(wǎng)絡(luò)[44]。由于絲膠蛋白的提取方法苛刻(高溫和堿性)及低分子量肽的存在,難以直接光交聯(lián)成水凝膠,適當(dāng)?shù)幕瘜W(xué)功能化處理可賦予絲膠蛋白光交聯(lián)特性。如Qi等[45]將甲基丙烯酸基團(tuán)引入到絲膠蛋白側(cè)鏈基團(tuán)(胺和羥基)上,在紫外光照射下,絲膠-甲基丙烯酰溶液通過(guò)甲基丙烯?;鶊F(tuán)的光聚合快速原位交聯(lián)形成水凝膠。通過(guò)改變甲基丙烯酰取代度,可快速調(diào)整水凝膠的網(wǎng)絡(luò)密度、降解速率和力學(xué)性能。絲膠蛋白與其他聚合物在交聯(lián)劑作用下構(gòu)建的復(fù)合水凝膠會(huì)帶有新的理化性質(zhì),但這可能需要犧牲絲膠的部分生物活性,采用光交聯(lián)方式制備的絲膠水凝膠可最大程度地保留絲膠蛋白的特性。
紫外光交聯(lián)配合3D打印技術(shù),可用于定制大孔結(jié)構(gòu)的絲膠基水凝膠支架,有利于保持傷口愈合所需的濕潤(rùn)潔凈環(huán)境。如先將甲基丙烯酸酯基團(tuán)結(jié)合到明膠的含胺側(cè)基上,制成光敏性明膠,再將絲膠/光敏明膠混合物作為生物墨水裝入注射器中,在紫外線照射下以一層一層的方式打印多孔基質(zhì);快速固化的基質(zhì)通過(guò)乙醇浸泡,可獲得更穩(wěn)定、機(jī)械強(qiáng)度更高的結(jié)構(gòu),以構(gòu)建空間互穿聚合物網(wǎng)絡(luò),制得三維透明的水凝膠支架。這種大孔結(jié)構(gòu)的絲膠基水凝膠具有透明性好、溶脹率高、降解可控、生物相容性好等特點(diǎn),是可視化創(chuàng)面護(hù)理的理想選擇[46]。
4 轉(zhuǎn)基因功能化絲膠蛋白水凝膠
將絲膠蛋白與其他聚合物或功能蛋白共混制備水凝膠,可以提高凝膠的機(jī)械性能并擴(kuò)展生物功能,但與絲膠共混的聚合物本身的局限性也會(huì)阻礙絲膠基生物凝膠的應(yīng)用?;诖?,有研究者提出從源頭上改變絲膠蛋白性能的策略,利用轉(zhuǎn)基因技術(shù)在蠶的絲腺中特異性合成功能重組蛋白,并紡成蠶絲的絲膠蛋白層,提取的絲膠蛋白可制成外源蛋白功能化的絲膠水凝膠[47]。例如在轉(zhuǎn)基因蠶的絲腺中合成重組人酸性成纖維細(xì)胞生長(zhǎng)因子(FGF1),紡絲結(jié)繭時(shí)能有效保留FGF1的生物活性(圖6)[48]。用化學(xué)性質(zhì)溫和的尿素來(lái)提取蠶繭中經(jīng)轉(zhuǎn)基因功能化的絲膠蛋白,并于4 ℃冷環(huán)境下誘導(dǎo)形成可注射水凝膠,其中的FGF1能持續(xù)釋放,促進(jìn)細(xì)胞增殖和傷口愈合,同時(shí)水凝膠的生物相容性能支持細(xì)胞的黏附和增殖。將功能蛋白的編碼基因?qū)爰倚Q基因組中的方式,可以方便且經(jīng)濟(jì)地制備具有多種生物特性的功能化絲膠蛋白材料,并且能戰(zhàn)略性地避免從外部添加功能性蛋白產(chǎn)生的風(fēng)險(xiǎn)。
5 結(jié) 論
絲膠蛋白具有豐富的開(kāi)發(fā)價(jià)值和開(kāi)發(fā)需求,適合于新型材料相關(guān)的生物醫(yī)藥領(lǐng)域。絲膠蛋白水凝膠具有優(yōu)良的生物相容性、豐富的化學(xué)修飾位點(diǎn)、高度的親水性和可控的降解性,已被廣泛應(yīng)用于皮膚創(chuàng)面敷料、軟骨再生、神經(jīng)修復(fù)、功能藥物遞送等方面。采用物理方法(如超聲波誘導(dǎo)、自組裝、真空冷凍干燥、乙醇誘導(dǎo)凝膠及反復(fù)凍融等)可制備純絲膠蛋白凝膠,安全無(wú)毒,但凝膠的機(jī)械性能較差,多孔結(jié)構(gòu)也難以調(diào)控。使用化學(xué)交聯(lián)劑不僅能制備純絲膠蛋白水凝膠,也能構(gòu)建絲膠蛋白與其他物質(zhì)的復(fù)合水凝膠,凝膠的機(jī)械性能提升,結(jié)構(gòu)可控,并能疊加其他材料的優(yōu)異性能,但用于生物醫(yī)用材料時(shí)需充分考慮交聯(lián)劑的毒副作用。紫外交聯(lián)配合3D打印技術(shù)是有效的絲膠蛋白水凝膠構(gòu)建方式,既能保持絲膠蛋白的特性,還可調(diào)控凝膠的結(jié)構(gòu)及性能。轉(zhuǎn)基因功能化方式能安全方便地賦予絲膠蛋白多種生物功能。無(wú)論采用何種策略構(gòu)建絲膠蛋白水凝膠,其應(yīng)用和發(fā)展主要從改善凝膠機(jī)械性能、避免化學(xué)交聯(lián)劑毒性影響、挖掘凝膠材料新功能等方向發(fā)展,以獲取更大的應(yīng)用價(jià)值。
參考文獻(xiàn):
[1]HU D D, LI T D, LIANG W A, et al. Silk sericin as building blocks of bioactive materials for advanced therapeutics[J]. Journal of Controlled Release, 2023(353): 303-316.
[2]ARITRA K D, BARI A, SOUMIL D, et al. Sericin nanoparticles: Future nanocarrier for target-specific delivery of chemotherapeutic drugs[J]. Journal of Molecular Liquids, 2022(368): 120717.
[3]PARK C J, RYOO J, KI C S, et al. Effect of molecular weight on the structure and mechanical properties of silk sericin gel, film, and sponge[J]. International Journal of Biological Macromolecules, 2018(119): 821-832.
[4]CAROLINE S, DANIELE B, CARLOS S M G, et al. Evaluation of different covalent crosslinking agents into valsartan-loaded sericin and alginate particles for modified release[J]. Powder Technology, 2021(390): 240-255.
[5]LIU J, WANG W B, LI H, et al. Recent progress in fabrications, properties and applications of multifunctional conductive hydrogels[J]. European Polymer Journal, 2024(208): 112895.
[6]JO Y N, PARK B D, UM I C. Effect of storage and drying temperature on the gelation behavior and structural characteristics of sericin[J]. International Journal of Biological Macromolecules, 2015(81): 936-941.
[7]RAMOS E B, DIAS P I, MARIA M A, et al. A review of the strategies used to produce different networks in cellulose-based hydrogels[J]. Materials Today Chemistry, 2023(34): 101803.
[8]WANG X Q, KLUGE J A, LEISK G G, et al. Sonication-induced gelation of silk fibroin for cell encapsulation[J]. Biomaterials, 2008, 29(8): 1054-1064.
[9]ZHANG Y S, JIANG R L, FANG A, et al. A highly transparent, elastic, injectable sericin hydrogel induced by ultrasound[J]. Polymer Testing, 2019(77): 105890.
[10]VU T, XUE Y, VUONG T, et al. Comparative study of ultrasonication-induced and naturally self-assembled silk fibroin-wool keratin hydrogel biomaterials[J]. International Journal of Molecular Sciences, 2016, 17(9): 1497.
[11]CHU W H, WANG P, MA Z, et al. Lupeol-loaded chitosan-Ag+ nanoparticle/sericin hydrogel accelerates wound healing and effectively inhibits bacterial infection[J]. International Journal of Biological Macromolecules, 2023(243): 125310.
[12]DU P, DIAO L, LU Y C, et al. Heparin-based sericin hydrogel-encapsulated basic fibroblast growth factor for in vitro and in vivo skin repair[J]. Heliyon, 2023, 9(3): e13554.
[13]WANG Y C, WANG F, WANG R Y, et al. Human-derived cytokine functionalized sericin/agarose composite gel material with cell proliferation-promoting activity fabricated using genetically engineered silk for medical application[J]. Materials amp; Design, 2022(224): 111362.
[14]YANG M R, WANG Y J, TAO G, et al. Fabrication of sericin/agrose gel loaded lysozyme and its potential in wound dressing application[J]. Nanomaterials (Basel, Switzerland), 2018, 8(4): 235.
[15]ELSAMAD L M, HASSAN M A, BASHA A A, et al. Carboxymethyl cellulose/sericin-based hydrogels with intrinsic antibacterial, antioxidant, and anti-inflammatory properties promote re-epithelization of diabetic wounds in rats[J]. International Journal of Pharmaceutics, 2022(629): 122328.
[16]KIM U J, PARK J, LI C M, et al. Structure and properties of silk hydrogels[J]. Biomacromolecules, 2004, 5(3): 786-792.
[17]ZHANG Y S, ZHAO Y Y, HE X B, et al. A sterile self-assembled sericin hydrogel via a simple two-step process[J]. Polymer Testing, 2019(80): 106016.
[18]TAO G, WANG Y J, LIU L N, et al. Preparation and characterization of silver nanoparticles composited on polyelectrolyte film coated sericin gel for enhanced antibacterial application[J]. Science of Advanced Materials, 2016, 8(8): 1547-1552.
[19]SAMIA Z, MUHAMMAD T H, SHAKAT A, et al. Diabetic wound healing potential of silk sericin protein based hydrogels enriched with plant extracts[J]. International Journal of Biological Macromolecules, 2023(242): 125184.
[20]TAO G, WANG Y J, CAI R, et al. Design and performance of sericin/poly(vinyl alcohol) hydrogel as a drug delivery carrier for potential wound dressing application[J]. Materials Science amp; Engineering C, 2019(101): 341-351.
[21]JANG M J, UM I C. Effect of sericin concentration and ethanol content on gelation behavior, rheological properties, and sponge characteristics of silk sericin[J]. European Polymer Journal, 2017(93): 761-774.
[22]TERAMOTO H, KAMEDA T, TAMADA Y. Preparation of gel film from Bombyx mori silk sericin and its characterization as a wound dressing[J]. Bioscience, Biotechnology, and Biochemistry, 2008, 72(12): 3189-3196.
[23]RIZWAN A, NOOR U A H, WANG M W, et al. Genipin, a natural blue colorant precursor: Source, extraction, properties, and applications[J]. Food Chemistry, 2024(434): 137498.
[24]ZHANG Q S, WANG X Z, MU Q F, et al. Genipin-cross-linked silk sericin/poly(N-isopropylacrylamide) IPN hydrogels: Color reaction between silk sericin and genipin, pore shape and thermo-responsibility[J]. Materials Chemistry and Physics, 2015(166): 133-143.
[25]WANG Z, WANG J, JIN Y, et al. A neuroprotective sericin hydrogel as an effective neuronal cell carrier for the repair of ischemic stroke[J]. ACS Applied Materials amp; Interfaces, 2015, 7(44): 24629-24640.
[26]SONG Y, ZHANG C, ZHANG J X, et al. An injectable silk sericin hydrogel promotes cardiac functional recovery after ischemic myocardial infarction[J]. Acta Biomaterialia, 2016(41): 210-223.
[27]SAPRU S, GHOSH A K, KUNDU S C. Non-immunogenic, porous and antibacterial chitosan and Antheraea mylitta silk sericin hydrogels as potential dermal substitute[J]. Carbohydrate Polymers, 2017(167): 196-209.
[28]SAPRU S, DAS S, MANDAL M, et al. Nonmulberry silk protein sericin blend hydrogels for skin tissue regeneration-in vitro and in vivo[J]. International Journal of Biological Macromolecules, 2019(37): 545-553.
[29]WANG J, LI X L, SONG Y, et al. Injectable silk sericin scaffolds with programmable shape-memory property and neuro-differentiation-promoting activity for individualized brain repair of severe ischemic stroke[J]. Bioactive Materials, 2021, 6(7): 1988-1999.
[30]SAPRU S, DAS S, MANDAL M, et al. Sericin-chitosan-glycosaminoglycans hydrogels incorporated with growth factors for in vitro and in vivo skin repair[J]. Carbohydrate Polymers, 2021(258): 117717.
[31]MOISE B B, LALLEPAK L, AHMED Q A A, et al. Antibacterial silk sericin/poly (vinyl alcohol) hydrogel with antifungal property for potential infected large burn wound healing: Systemic evaluation[J]. Smart Materials in Medicine, 2023(4): 37-58.
[32]胡浩然, 何敏, 王平, 等. HRP酶促絲膠自交聯(lián)及其膜材料的制備[J]. 絲綢, 2020, 57(2): 1-5.
HU H R, HE M, WANG P, et al. HRP-catalyzed crosslinking of silk sericin and preparation of its membrane material[J]. Journal of Silk, 2020, 57(2): 1-5.
[33]FELIX L, HERNANDEZ J, ARGUELLES-MONAL W, et al. Kinetics of gelation and thermal sensitivity of N-isobutyryl chitosan hydrogels[J]. Biomacromolecules, 2005, 6(5): 2408-2415.
[34]ZHANG Y S, CHEN H G, LI Y L, et al. A transparent sericin-polyacrylamide interpenetrating network hydrogel as visualized dressing material[J]. Polymer Testing, 2020(87): 106517.
[35]HU H R, WANG L, XU B, et al. Construction of a composite hydrogel of silk sericin via horseradish peroxidase-catalyzed graft polymerization of poly-PEGDMA[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2020, 108(6): 2643-2655.
[36]謝瑞娟, 李明忠, 謝承燕. 絲膠蛋白膜的制備[J]. 紡織學(xué)報(bào), 2002, 23(4): 5-6.
XIE R J, LI M Z, XIE C Y. Preparation of sericin membranes[J]. Journal of Textile Research, 2002, 23(4): 5-6.
[37]WANG Z, ZHANG Y S, ZHANG J X, et al. Exploring natural silk protein sericin for regenerative medicine: An injectable, photoluminescent, cell-adhesive 3D hydrogel[J]. Scientific Reports, 2014, 4(1): 7064.
[38]MANDAK B B, GHOSH B, KUNDU S C. Non-mulberry silk sericin/poly (vinyl alcohol) hydrogel matrices for potential biotechnological applications[J]. International Journal of Biological Macromolecules, 2011, 49(2): 125-133.
[39]YANG C C, XUE R, ZHANG Q S, et al. Nanoclay cross-linked semi-IPN silk sericin/poly (NIPAm/LMSH) nanocomposite hydrogel: An outstanding antibacterial wound dressing[J]. Materials Science amp; Engineering C, 2017(81): 303-313.
[40]AREGUETA-ROBLES U A, MARTENS P J, POOLE-WARREN L A, et al. Tissue engineered hydrogels supporting 3D neural networks[J]. Acta Biomaterialia, 2019(95): 269-284.
[41]HAN L L, WANG W W, CHEN Z M, et al. Sericin-reinforced dual-crosslinked hydrogel for cartilage defect repair[J]. Colloids and Surfaces B: Biointerfaces, 2023(222): 113061.
[42]TAO G, CAI R, WANG Y J, et al. Fabrication of antibacterial sericin based hydrogel as an injectable and mouldable wound dressing[J]. Materials Science amp; Engineering C, 2021(119): 111597.
[43]KUNDU B, KUNDU S C. Silk sericin/polyacrylamide in situ forming hydrogels for dermal reconstruction[J]. Biomaterials, 2012, 33(30): 7456-7467.
[44]XIAO W Q, LI J L, QU X H, et al. Cell-laden interpenetrating network hydrogels formed from methacrylated gelatin and silk fibroin via a combination of sonication and photocrosslinking approaches[J]. Materials Science amp; Engineering C, 2019(99): 57-67.
[45]QI C, LIU J, JIN Y, et al. Photo-crosslinkable, injectable sericin hydrogel as 3D biomimetic extracellular matrix for minimally invasive repairing cartilage[J]. Biomaterials, 2018(163): 89-104.
[46]CHEN C S, ZENG F, XIAO X, et al. Three-dimensionally printed silk-sericin-based hydrogel scaffold: A promising visualized dressing material for real-time monitoring of wounds[J]. ACS Applied Materials amp; Interfaces, 2018, 10(40): 33879-33890.
[47]WANG F, XU H F, WANG Y C, et al. Advanced silk material spun by a transgenic silkworm promotes cell proliferation for biomedical application[J]. Acta Biomaterialia, 2014, 10(12): 4947-4955.
[48]WANG F, WANG Y C, TIAN C, et al. Fabrication of the FGF1-functionalized sericin hydrogels with cell proliferation activity for biomedical application using genetically engineered Bombyx mori (B.mori) silk[J]. Acta Biomaterialia, 2018(79): 239-252.
Construction strategy and application of silk sericin hydrogels
ZHANG Chi, WANG Xiangrong
MA Wei1, NIU Jinbao1, QI Shiyu1, LONG Tingjun1, DU Juncheng1, QU Jing1,2
(1.School of Textile Garment and Design, Changshu Institute of Technology, Suzhou 215500, China; 2.Key Laboratory ofTextile Industry for Silk Products in Medical and Health Use, Soochow University, Suzhou 215123, China)
Abstract: Sericin, a by-product of silk production, has good hydrophilicity, biodegradability and reactivity because of the rich polar amino acids and loose spatial structure. Sericin also has many biological activities such as anti-oxidation, anti-coagulation, hypoglycemic and promoting cell proliferation and differentiation. Sericin hydrogels formed by self-assembly or crosslinking agent have multiple advantages and are widely used in tissue engineering, wound repair, drug release and other fields. The construction strategies of sericin hydrogels include physical methods, chemical crosslinking, ultraviolet photocatalysis and transgenic functional modification.
Physical methods are used to construct sericin hydrogels mainly by triggering the polymerization of sericin molecules to generate intermolecular forces to form cross-linked networks. Inducing sericin hydrogels with ultrasound is to use the ultrasonic cavitation phenomenon in solution to act on sericin molecules in aqueous solution, cause a more violent collision between molecules and form a more stable and orderly spatial structure by rearrangement, so as to obtain a stable gel network structure insoluble in water. Vacuum freeze-drying technology facilitates the physical cross-linking to form a stable and firm spatial network structure using the characteristics of molecular response to ambient temperature changes. Sericin hydrogels prepared by high temperature, high pressure and self-assembly method have the advantages of mild reaction conditions and controllable gelation process. Repeated freezing and thawing is a safe and effective method for preparing porous gels. The obtained sericin hydrogels not only have excellent mechanical properties, high pore expansion ratio, good hydrophilicity and thermal stability, but the ability to load and release small molecule drugs and nanoparticles. In addition, adding an appropriate concentration of ethanol (15%) to the sericin solution can accelerate the gelation process of sericin and enhance the mechanical properties of the gel.
Chemical crosslinking promotes the formation of stable covalent bonds between sericin molecules, and enables sericin in solution to form a network structure and gelatinize, which can not only improve the mechanical properties of sericin hydrogels, but also make sericin and other component materials mixed into a multi-functional composite network structure of hydrogels. The stable pure sericin hydrogel or sericin complex gel that can be effectively constructed by using single crosslinking agents such as genipin, peroxidase and glutaraldehyde or compound crosslinking agents has been widely used in ischemic myocardial repair therapy, skin tissue regeneration and repair, tissue engineering scaffolds, drug delivery carriers, supporting neuronal network development, and improving the thermal stability and mechanical properties of cotton fabrics. When chemical agents are used to cross-link sericin hydrogels, the crosslinkers with low toxicity, few residues or easy removal should be preferentially selected, and the cytotoxicity of hydrogels should be evaluated to ensure the further application of hydrogels.
In addition to physical and chemical crosslinking methods, sericin hydrogels can also constructed by means of ultraviolet photocatalytic crosslinking and transgenic functional modification. UV light can induce free radical polymerization and construct in situ cross-linked transparent porous sericin-based hydrogels. With the use of 3D printing technology, sericin-based hydrogel scaffolds with large pore structure can be customized, which is conducive to maintaining the wet and clean environment required for wound healing, and is an ideal choice for visual wound care. By introducing the coding genes of functional proteins into the genome of silkworms and spinning into the sericin layer of silk, sericin biomaterials with various biological functions can be prepared conveniently and economically, which strategically avoids sourcing and safety risks from exogenously added functional proteins during materials fabrication.
Sericin hydrogels have excellent histocompatibility, abundant chemical modification sites, high hydrophilicity and controllable degradability. Sericin gels prepared with different construction strategies have been widely used in skin wound dressing, nerve regeneration, cartilage repair, functional drug delivery and other fields. Sericin gels are mainly developed and applied from the directions of improving the mechanical properties of gels, avoiding the toxic effects of chemical crosslinking agents and exploring new functions of gel materials, so as to obtain greater application value.
Key words: sericin; hydrogel; crosslinking; photocatalysis; wound dressing; tissue engineering
收稿日期: 2023-12-15; 修回日期: 2024-05-27
基金項(xiàng)目: 蘇州大學(xué)紡織行業(yè)醫(yī)療健康用蠶絲制品重點(diǎn)實(shí)驗(yàn)室項(xiàng)目(SDHY2230);江蘇省高校自然科學(xué)基金項(xiàng)目(23KJB430003)
作者簡(jiǎn)介: 馬維(1994),女,博士研究生,研究方向?yàn)楣δ芨叻肿硬牧?。通信作者:瞿靜,博士,講師,364385734@qq.com。