摘 要:為了提高對微小形變的監(jiān)測精度,增強(qiáng)柔性應(yīng)變傳感器的靈敏度,制備了一種“溝脊”結(jié)構(gòu)熱塑性聚氨酯(TPU)纖維基高靈敏應(yīng)變傳感器。首先在電場和金屬電極片陣列接收裝置的協(xié)同作用下,得到具有模量差異的“溝脊”結(jié)構(gòu)TPU超細(xì)纖維基底,隨后采用噴涂式層層沉積技術(shù)復(fù)合導(dǎo)電銀層,得到“溝脊”結(jié)構(gòu)TPU纖維基應(yīng)變傳感器。研究表明:“溝脊”結(jié)構(gòu)使得纖維膜的拉伸強(qiáng)度、斷裂伸長率提高至13.26 MPa和355.81%,靈敏度在各應(yīng)變區(qū)間均獲得數(shù)倍增長?!皽霞埂苯Y(jié)構(gòu)纖維膜具有正交的纖維排列角度,該種結(jié)構(gòu)不僅可以增強(qiáng)纖維膜的局部應(yīng)變、誘導(dǎo)表面導(dǎo)電層材料形貌發(fā)生較大變化,而且獨(dú)特的纖維轉(zhuǎn)向?qū)⒁龑?dǎo)產(chǎn)生貫穿型裂紋,引起電阻的急劇增長,靈敏度系數(shù)最高可達(dá)151.36,同時具有100%的寬工作范圍?!皽霞埂苯Y(jié)構(gòu)TPU纖維基高靈敏應(yīng)變傳感器在智能可穿戴、醫(yī)學(xué)診斷、人機(jī)交互等方面有廣闊的應(yīng)用前景。
關(guān)鍵詞:聚氨酯;微結(jié)構(gòu);高靈敏度;纖維轉(zhuǎn)向;柔性應(yīng)變傳感
中圖分類號:TS101.8
文獻(xiàn)標(biāo)志碼:A
文章編號:1009-265X(2024)11-0015-07
柔性應(yīng)變傳感器因其優(yōu)異的可拉伸性、共形性和佩戴舒適性,在運(yùn)動追蹤、健康監(jiān)測及軟機(jī)器人等領(lǐng)域備受關(guān)注[1-3]。其中電阻式柔性應(yīng)變傳感器憑借結(jié)構(gòu)與制備工藝簡單、靈敏度高等優(yōu)點(diǎn),在智能可穿戴、電子皮膚等領(lǐng)域廣泛應(yīng)用[4-5]。相較于薄膜基傳感器,靜電紡超細(xì)纖維基傳感器具有輕薄、柔軟、透氣性和透水性良好等特點(diǎn),但由于超細(xì)纖維通常無規(guī)排列,在低應(yīng)變下因纖維滑移緩沖了大部分應(yīng)變,使得導(dǎo)電層形貌變化較小,因而常面臨靈敏度受限的難題,尤其是對于微小變形和振動的監(jiān)測,如呼吸、脈搏、語音識別等。低靈敏度降低了傳感器的監(jiān)測精度,喪失對微小但有價值的變形的甄別[6]。為滿足實(shí)際應(yīng)用的要求,亟需有效的策略來提高超細(xì)纖維基柔性應(yīng)變傳感器的靈敏度。
電阻式柔性應(yīng)變傳感器主要包括基底層和導(dǎo)電層,早期提高靈敏度的方法大多依靠開發(fā)或組合導(dǎo)電物質(zhì)[7-8],如金屬納米顆粒[9]、碳納米管[10]、石墨烯[11]、MXene[12]、導(dǎo)電高聚物[13]及液態(tài)金屬[14]等。盡管上述工作在靈敏度提高方面已取得相當(dāng)大的進(jìn)展,但從導(dǎo)電層入手的技術(shù)仍存在諸多問題,如導(dǎo)電層材料的種類有限,而且靈敏度的增強(qiáng)往往需要犧牲器件工作范圍。近年來研究學(xué)者將目光轉(zhuǎn)向基底層的設(shè)計與研究[15-17],通過優(yōu)化基底層的結(jié)構(gòu)來提高靈敏度。
構(gòu)建機(jī)械異質(zhì)基底是目前具有潛力的靈敏度提升方案。有研究報道了一種定向增加直徑的一維纖維基應(yīng)變傳感器,與恒定直徑纖維制備的傳感器比,靈敏度系數(shù)在小應(yīng)變下提升約100%,靈敏度系數(shù)最高達(dá)110[18]。Pan等[19]通過局部照明方法制造了具有高低兩種模量的二維機(jī)械異質(zhì)薄膜,以此為基底制備的應(yīng)變傳感器的靈敏度系數(shù)提高了21.9倍。該研究表明,機(jī)械異質(zhì)基底可放大局部應(yīng)變,導(dǎo)致導(dǎo)電材料形貌結(jié)構(gòu)出現(xiàn)較大變化,進(jìn)而獲得靈敏度的提升。但上述方法的制備工藝較為復(fù)雜,同時傳感器為實(shí)心結(jié)構(gòu),工作范圍有限。靜電紡超細(xì)纖維基底在拉伸過程中由于纖維重新排列、滑移等緩沖作用,有助于避免器件的快速失效、拓寬傳感器的工作范圍[20],因此構(gòu)筑超細(xì)纖維機(jī)械異質(zhì)基底是一種解決靈敏度與寬工作范圍相互制約難題的新思路。
為設(shè)計一種“溝脊”結(jié)構(gòu)熱塑性聚氨酯(TPU)纖維基高靈敏應(yīng)變傳感器,本文采用金屬電極片陣列接收裝置調(diào)控局部區(qū)域的纖維堆積密度及纖維排列取向,得到具有“溝脊”結(jié)構(gòu)的TPU超細(xì)纖維基底;通過快速、高效的噴涂式層層沉積技術(shù)制備脆性導(dǎo)電銀(Ag)層,構(gòu)建一種TPU纖維基高靈敏應(yīng)變傳感器。本文將進(jìn)一步探討“溝脊”結(jié)構(gòu)超細(xì)纖維基底形貌結(jié)構(gòu)與纖維排列取向角度的成型機(jī)理,測試?yán)w維基底的拉伸性能和彈性,分析不同規(guī)格“溝脊”結(jié)構(gòu)TPU纖維基應(yīng)變傳感器的傳感性能與傳感機(jī)制。該研究工藝簡單且具有通用性,可制備各種具有“溝脊”結(jié)構(gòu)的靜電紡絲材料,使該材料在顯著增強(qiáng)器件靈敏度的同時仍保持寬工作范圍,在電子皮膚、醫(yī)學(xué)診斷、人機(jī)交互等方面有巨大的應(yīng)用潛力。
1 實(shí)驗(yàn)
1.1 原料及試劑
熱塑性聚氨酯(TPU,85A,德國巴斯夫有限公司),N,N-二甲基甲酰胺(DMF,分析純,國藥集團(tuán)化學(xué)試劑有限公司),四氫呋喃(THF,分析純,國藥集團(tuán)化學(xué)試劑有限公司),鹽酸、氨水(化學(xué)純,國藥集團(tuán)化學(xué)試劑有限公司),二水合氯化亞錫(SnCl2·2H2O,98%,阿法埃莎化學(xué)有限公司),氯化鈀(PdCl2,56%~60%,麥克林生化科技有限公司),硝酸銀(AgNO3,分析純,國藥集團(tuán)化學(xué)試劑有限公司),乙二醛(40%,泰坦科技股份有限公司),三乙醇胺(≥99.0%,阿拉丁生化科技股份有限公司)。
1.2 實(shí)驗(yàn)設(shè)備
TD2202高壓電源(大連泰斯曼有限公司),D7200數(shù)碼相機(jī)(日本尼康株式會社),SU8200場發(fā)射掃描電子顯微鏡(SEM,日立高新技術(shù)公司),LLY-06E電子單纖維強(qiáng)力儀(萊州市電子儀器有限公司),34465A數(shù)字萬用表(是德科技有限公司)。
1.3 實(shí)驗(yàn)方法
1.3.1 “溝脊”結(jié)構(gòu)TPU超細(xì)纖維基底的制備
將TPU顆粒溶解在體積比為1∶1的DMF/THF混合溶液中,得到質(zhì)量分?jǐn)?shù)為12%的紡絲液,在室溫下以400 r/min的速度攪拌6 h。以金屬電極片陣列作為接收裝置(單片電極片規(guī)格:100 mm×10 mm×0.8 mm)得到具有“溝脊”結(jié)構(gòu)的TPU超細(xì)纖維膜(見圖1),調(diào)節(jié)金屬電極片的間距(3 mm和9 mm),得到具有2種規(guī)格的“溝脊”結(jié)構(gòu)纖維膜(記為TPU-3和TPU-9)。由常規(guī)平板接收裝置得到的平面纖維膜作為對照(記為TPU-平面)。紡絲參數(shù)一致,電壓為18 kV,接收距離為18 cm,推速為2.4 mL/h,濕度控制在45%。
1.3.2 Ag@TPU應(yīng)變傳感器的制備
采用噴涂式層層沉積技術(shù)在TPU超細(xì)纖維基底表面復(fù)合金屬銀層,制備流程如圖2所示。首先TPU纖維基底(15 mm×5 mm)在敏化浴和活化浴中依次浸泡處理20 min。其中敏化浴由10.0 mg/mL的SnCl2·2H2O和24.0 mg/mL的鹽酸水溶液構(gòu)成,活化浴由0.1 mg/mL的PdCl2和11.5 mg/mL的鹽酸水溶液構(gòu)成。接下來配置銀氨溶液和還原液,向0.2 g/mL的硝酸銀溶液中滴加1.0 g/mL的稀氨水使溶液由澄清變?yōu)闇啙嵩俪吻宓玫姐y氨溶液,還原液由40.0 mg/mL的乙二醛和5.5 mg/mL的三乙醇胺水溶液構(gòu)成。用噴槍在TPU纖維基底上交替噴灑銀氨溶液和還原液各60次,隨后用去離子水反復(fù)沖洗并在60 ℃下干燥得到Ag@TPU應(yīng)變傳感器。
1.4 測試與表征
1.4.1 形貌表征
采用數(shù)碼相機(jī)與SEM觀察記錄傳感器的宏觀與微觀形貌。通過SEM配置的X射線能量色散譜儀(EDS)電子探針,系統(tǒng)分析樣品表層的元素分布。
1.4.2 拉伸力學(xué)性能與彈性測試
使用電子單纖維強(qiáng)力儀評價TPU超細(xì)纖維基
底的拉伸力學(xué)性能和彈性。測試?yán)煨阅軙r,試樣的夾持距離為17 mm,拉伸速度17 mm/min,每組樣品測試重復(fù)5次。采用定伸長回復(fù)模式,對各組樣品進(jìn)行彈性回復(fù)測試。試樣的夾持距離為17 mm,拉伸速度17 mm/min,定伸長為150%,拉伸停置60 s,回復(fù)停置180 s,每組樣品測試重復(fù)5次。
1.4.3 傳感性能測試
采用數(shù)字萬用表記錄傳感器受到拉伸應(yīng)變時的電阻信號變化。Ag@TPU應(yīng)變傳感器(15 mm×5 mm)的兩端通過導(dǎo)電銅膠帶及銅絲連接至數(shù)字萬用表,初始隔距設(shè)置為10 mm,拉伸速度為30 mm/min。循環(huán)測試時拉伸與回復(fù)速度均為30 mm/min,拉伸停置5 s,回復(fù)停置15 s。各應(yīng)變區(qū)間的靈敏度系數(shù)通過擬合應(yīng)變-相對電阻變化曲線的斜率得到,電阻變化率(ΔR/R0)根據(jù)公式(1)計算:
ΔRR0/%=R-R0R0×100(1)
式中:ΔR為電阻的變化;R為受到拉伸應(yīng)變后的電阻;R0為初始電阻。
2 結(jié)果與討論
2.1 “溝脊”結(jié)構(gòu)TPU超細(xì)纖維膜的形貌分析
圖3展示了平面和具有“溝脊”結(jié)構(gòu)的TPU超細(xì)纖維膜的宏觀和微觀形貌。由圖3(a)可知,以平板為接收裝置制備的TPU纖維基底表面平整,纖維呈隨機(jī)取向。由圖3(b)可知,以平行排列的金屬片陣列作為接收裝置時,得到的超細(xì)纖維膜表面呈現(xiàn)“溝脊”結(jié)構(gòu),處于“溝槽”和“脊”處的纖維具有明顯取向,同時“溝槽”與“脊”取向方向幾乎垂直,即呈現(xiàn)正交排列。在“脊”處纖維堆疊較多,形成凸起,歸因于靜電力驅(qū)動纖維向金屬片移動堆疊。當(dāng)金屬片厚度較小時,纖維和金屬片長軸之間的角度相近,因而沉積在此處的纖維呈取向排列。平行的金屬片改變了電場結(jié)構(gòu),電場線在靠近電極片時將垂直于金屬板,兩塊相同尺寸且平行的電極片對射流的拉伸作用是相同的,因而纖維在兩電極片之間取向排列,形成了“溝槽”和“脊”處纖維正交取向的特殊形貌。
2.2 “溝脊”結(jié)構(gòu)TPU超細(xì)纖維膜的拉伸性能分析
圖4為平面及2種規(guī)格“溝脊”結(jié)構(gòu)TPU超細(xì)纖維膜的拉伸力學(xué)性能圖。由圖4(a)的應(yīng)力應(yīng)變曲線可知,“溝脊”結(jié)構(gòu)TPU纖維基底的斷裂強(qiáng)度與斷裂伸長率均大于平面TPU纖維基底。進(jìn)一步分析圖4(b)—(c)可知,TPU-3試樣斷裂強(qiáng)度高達(dá)13.26 MPa、斷裂伸長率高達(dá)355.81%,與TPU-平面纖維膜相比分別提高了23.42%與56.38%。這可以歸因于“溝脊”結(jié)構(gòu)TPU纖維膜的“溝槽”區(qū)域有大量沿拉伸方向取向的纖維,一方面纖維有序排列,纖維間的氫鍵作用加強(qiáng);另一方面由于纖維在未拉伸狀態(tài)下就已經(jīng)伸直取向,因此大分子鏈間距變小,分子鏈間作用力加強(qiáng),表現(xiàn)出斷裂強(qiáng)度的提高。同時由于存在“溝槽”和“脊”的纖維轉(zhuǎn)向區(qū)域,拉伸時纖維由屈曲狀態(tài)變?yōu)樯扉L狀態(tài),其伸長遠(yuǎn)大于纖維之間的相互滑移。當(dāng)“溝槽”間距由9 mm降低至3 mm時,單位長度上的轉(zhuǎn)向區(qū)域也不斷提升,斷裂伸長率提高了30.94%。由于轉(zhuǎn)向區(qū)域存在一定卷曲,纖維之間的抱合力增大,促使斷裂強(qiáng)度提升了12.70%。
2.3 “溝脊”結(jié)構(gòu)TPU超細(xì)纖維膜的彈性分析
圖5為平面2種規(guī)格“溝脊”結(jié)構(gòu)TPU超細(xì)纖維膜的彈性性能。由圖5(a)可知,與平面TPU纖維膜相比,具有“溝脊”結(jié)構(gòu)的2種TPU纖維膜的彈性回復(fù)率提高了3.19%~6.28%,這可能是由于“脊”處的纖維密度高使得局部模量增強(qiáng),因而拉伸變形主要由“溝槽”區(qū)域承擔(dān),“脊”區(qū)域幾乎不產(chǎn)生變形,“溝槽”區(qū)應(yīng)變顯著增強(qiáng)使得纖維膜儲存的內(nèi)應(yīng)力提高,此時的纖維膜類似于“彈簧”,一旦撤銷外界變形,內(nèi)應(yīng)力立即驅(qū)動纖維膜回復(fù)至初始長度。圖5(b)的急彈性數(shù)據(jù)證實(shí)了這一猜想,TPU-3纖維膜的急彈性回復(fù)率高達(dá)84.71%,比TPU-9與TPU-平面分別提升了9.83%和15.22%。圖6顯示了TPU-3纖維膜拉伸后等待回復(fù)的實(shí)物圖,觀察可知,當(dāng)纖維膜拉伸至150%形變后立即釋放僅有輕微的變形,等待180 s后幾乎可完全回復(fù)至原長。上述結(jié)果表明“溝脊”結(jié)構(gòu)具有優(yōu)異的彈性,作為應(yīng)變傳感平臺有助于降低傳感器的恢復(fù)時間、提高實(shí)際使用價值。
2.4 導(dǎo)電層元素分析
圖7為TPU超細(xì)纖維基底復(fù)合導(dǎo)電層后的SEM圖像與EDS元素分布圖。觀察SEM圖像可知,銀顆粒完全包覆在TPU超細(xì)纖維表面,同時纖維膜仍保留多孔結(jié)構(gòu),有利于器件獲得良好的透氣、透水性及佩戴的舒適性。從EDS元素分布圖可以看到C、N、O和Ag的共存,Ag元素均勻分散在纖維膜表面,表明噴涂效果優(yōu)異,保證了導(dǎo)電層的均勻性。
2.5 “溝脊”結(jié)構(gòu)纖維基應(yīng)變傳感器的傳感性能分析
圖8顯示了Ag@TPU應(yīng)變傳感器的傳感性能。由圖8(a)應(yīng)變與相對電阻變化之間的特性曲線可知,當(dāng)受到相同的應(yīng)變刺激時,3種傳感器的輸出信號強(qiáng)度(電阻變化率)的斜率有顯著差異,這表明器件的靈敏度不同。如圖8(b)所示,在各個應(yīng)變區(qū)間,Ag@TPU-3傳感器均具有最高的靈敏度。在0~25%的小應(yīng)變區(qū)域,Ag@TPU-3傳感器的靈敏度系數(shù)是Ag@TPU-9與Ag@TPU-平面?zhèn)鞲衅鞯?.66倍和7.76倍;在75%~100%的大應(yīng)變區(qū)間,Ag@TPU-3傳感器靈敏度系數(shù)高達(dá)151.36,比Ag@TPU-9與Ag@TPU-平面?zhèn)鞲衅魈岣吡?1.81%和190.14%。這是由于“溝脊”TPU超細(xì)纖維基底具有差異化模量結(jié)構(gòu),當(dāng)基底受外力拉伸時,低模量區(qū)域應(yīng)變顯著增強(qiáng),而且低模量區(qū)的纖維排列方向與拉伸方向相同,促使纖維表面的導(dǎo)電層出現(xiàn)裂紋,同時“溝脊”" 獨(dú)特的纖維轉(zhuǎn)向使器件更容易產(chǎn)生貫穿型裂紋,因而導(dǎo)電通路急劇下降,靈敏度顯著提高。圖8(c)顯示了在25%應(yīng)變下5次循環(huán)拉伸釋放后3種器件的電阻信號變化,Ag@TPU-3傳感器輸出信號值超過500%,表明該器件即使面對小應(yīng)變刺激也能迅速做出高強(qiáng)度信號反饋,敏銳地捕捉外界變形情況,有望應(yīng)用在高精度監(jiān)測場景。此外,從信號波形可以看出3種器件具有良好的穩(wěn)定性,這可能因?yàn)門PU超細(xì)纖維基底具有優(yōu)異的彈性與回復(fù)能力,拉伸過程不易產(chǎn)生突變與滯后。
3 結(jié)論
為解決電阻式超細(xì)纖維基柔性應(yīng)變傳感器靈敏度受限的難題,本文在電場和金屬電極片陣列接收裝置的協(xié)同作用下制備了具有“溝脊”結(jié)構(gòu)的TPU超細(xì)纖維基底,隨后通過噴涂式層層沉積技術(shù)復(fù)合脆性導(dǎo)電Ag層,獲得高靈敏Ag@TPU應(yīng)變傳感器,得到以下結(jié)論:
a)“溝脊”結(jié)構(gòu)TPU超細(xì)纖維基底具有獨(dú)特的正交纖維排列角度,不僅有助于提高纖維基底的斷裂強(qiáng)度(13.26 MPa)、斷裂伸長率(355.81%)及彈性(84.71%),還可以引導(dǎo)導(dǎo)電Ag層產(chǎn)生貫穿型裂紋。
b)“溝脊”結(jié)構(gòu)的間距由9 mm降低至3 mm時,相應(yīng)制備的應(yīng)變傳感器的靈敏度進(jìn)一步增強(qiáng)。Ag@TPU-3傳感器具有最高的靈敏度,在小于25%的小應(yīng)變區(qū)間,靈敏度系數(shù)分別是Ag@TPU-平面和Ag@TPU-9傳感器的2.66倍和7.76倍。
c)本文提出的制備技術(shù)具有工藝簡單、低成本的優(yōu)點(diǎn),適用于構(gòu)筑多種材料和結(jié)構(gòu)的超細(xì)纖維基高靈敏柔性電子器件,有望在呼吸、脈搏、語音識別等高精度監(jiān)測場景中應(yīng)用。
參考文獻(xiàn):
[1]AMJADI M, KYUNG K U, PARK I, et al. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: A review[J]. Advanced Functional Materials, 2016, 26(11): 1678-1698.
[2]艾麗, 陳麗, 劉博文, 等. 基于動態(tài)共價鍵的導(dǎo)電自愈性水凝膠及其用于柔性傳感器在運(yùn)動監(jiān)測領(lǐng)域的研究現(xiàn)狀[J]. 微納電子技術(shù), 2024, 61(3): 51-64.
AI Li, CHEN Li, LIU Bowen, et al. Research status of conductive self-healing hydrogel based on dynamic covalent bond and its application as flexible sensor in motion monitoring[J]. Micronanoelectronic Technology, 2024, 61(3): 51-64.
[3]周金利, 王政, 周知艇, 等. 基于智能柔性織物傳感器的漏尿頻次監(jiān)測系統(tǒng)研究[J]. 現(xiàn)代紡織技術(shù), 2024, 32(3): 91-101.
ZHOU Jinli, WANG Zheng, ZHOU Zhiting, et al. Research on the urine leakage frequency monitoring system based on intelligent flexible fabric sensors[J]. Advanced Textile Technology, 2024, 32(3): 91-101.
[4]ZHOU Y, ZHAN P, REN M, et at. Significant stretchability enhancement of a crack-based strain sensor combined with high sensitivity and superior durability for motion monitoring[J]. ACS Applied Materials amp; Interfaces, 2019, 11(7): 7405-7414.
[5]陳研, 曹蓓玲, 冀禹彤, 等. 棉/氨綸基柔性應(yīng)變傳感器的制備及其性能研究[J]. 化工新型材料, 2023, 51(S2): 274-278.
CHEN Yan, CAO Beiling, JI Yutong, et al. Preparation and performance study of cotton/spandex fabric-based flexible strain sensor[J]. New Chemical Materials. 2023, 51(S2): 274-278.
[6]LINGAMPALLY P K, DOSS A S A, KADIYAM V R. Wearable neck assistive device strain evaluation study on surface neck muscles for head/neck movements[J]. Technology and Health Care, 2022, 30(6): 1503-1513.
[7]易雯, 陳逸菲, 趙明明, 等. 導(dǎo)電復(fù)合紗基柔性電阻式應(yīng)變傳感器的研究進(jìn)展[J]. 現(xiàn)代紡織技術(shù), 2022, 30(4): 12-23.
YI Wen, CHEN Yifei, ZHAO Mingming, et al. Research progress of flexible resistance-type strain sensor based on conductive composite yarns[J]. Advanced Textile Tech-nology, 2022, 30(4): 12-23.
[8]ZHU D, DUAN S, LIU J, et al. A double-crack structure for bionic wearable strain sensors with ultra-high sensitivity and a wide sensing range[J]. Nanoscale, 2024, 16(10): 5409-5420.
[9]LIU W, CHEN Q, HUANG Y, et al. In situ laser synthesis of Pt nanoparticles embedded in graphene films for wearable strain sensors with ultra-high sensitivity and stability[J]. Carbon, 2022, 190: 245-254.
[10]HUANG J Y, LI D W, ZHAO M, et al. Highly sensitive and stretchable CNT-bridged AgNP strain sensor based on TPU electrospun membrane for human motion detection[J]. Advanced Electronic Materials, 2019, 5(6): 1900241.
[11]潘陳浩, 石磊,傅雅琴. 高應(yīng)變石墨烯紗線的制備及其電化學(xué)性能[J]. 現(xiàn)代紡織技術(shù), 2023, 31(5): 157-164.
PAN Chenhao, SHI Lei, FU Yaqin. Preparation and electrochemical performance of high strain graphene yarns with electrochemical properties[J]. Advanced Textile Technology, 2023, 31(5): 157-164.
[12]CUI X, MIAO C, LU S, et al. Strain sensors made of MXene, CNTs, and TPU/PSF asymmetric structure films with large tensile recovery and applied in human health monitoring[J]. ACS Applied Materials amp; Interfaces, 2023, 15(51): 59655-59670.
[13]TONG L, WANG X X, HE X X, et al. Electrically conductive TPU nanofibrous composite with high stretcha-bility for flexible strain sensor[J]. Nanoscale Research Letters, 2018, 13(1): 86.
[14]FENG B, JIANG X, ZOU G, et al. Nacre-inspired, liquid metal-based ultrasensitive electronic skin by spa-tially regulated cracking strategy[J]. Advanced Functi-onal Materials, 2021, 31(29): 2102359.
[15]JIANG Y, LIU Z, WANG C, et al. Heterogeneous strain distribution of elastomer substrates to enhance the sensitivity of stretchable strain sensors[J]. Accounts of Chemical Research, 2019, 52(1): 82-90.
[16]LIU Z, QI D, HU G, et al. Surface strain redistribution on structured microfibers to enhance sensitivity of fiber-shaped stretchable strain sensors[J]. Advanced Materials, 2018, 30(5): 1704229.
[17]TAN X C, XU J D, JIAN J M, et al. Programmable sensitivity screening of strain sensors by local electrical and mechanical properties coupling[J]. ACS Nano, 2021, 15(12): 20590-20599.
[18]WU C, WANG H, LI Y, et al. Sensitivity improvement of stretchable strain sensors by the internal and external structural designs for strain redistribution[J]. ACS Applied Materials amp; Interfaces, 2020, 12(45): 50803-50811.
[19]PAN S, LIU Z, WANG M, et al. Mechanocombinatorially screening sensitivity of stretchable strain sensors[J]. Advanced Materials, 2019, 31(35): e1903130.
[20]YANG J, XU Y, SONG Y, et al. Controllable configuration of conductive pathway by tailoring the fiber alignment for ultrasensitive strain monitoring[J]. Com-posites Part A:Applied Science and Manufacturing, 2021, 141: 106223.
Preparation of a highly sensitive strain sensor based on \"furrow-ridge\" structured TPU fibers
LIU" Lu," YANG" Yi," LIU" Fei," HUANG" Liqian," JIANG" Qiuran
(a.Key Laboratory of Textile Science amp; Technology, Ministry of Education;
b.College of Textiles, Donghua University, Shanghai 201620, China)
Abstract:
With the development of the artificial intelligence, the demand for flexible electronic devices is constantly increasing. Flexible resistive strain sensors, with a simple structure and fabrication process, can convert external mechanical stimuli into electrical signals, and exhibit high stretchability and adaptability, leading to wide utilization in smart wearables, medical diagnostics, soft robotics, and other fields. Traditional resistive strain sensors usually employ flexible polymer films as their substrate, but their poor breathability and water permeability reduce comfort of wearing, resulting in redness and even allergic reactions. Electrospun ultrafine fibers, characterized by their rich porosity, lightness, thinness, softness, and good conformability, are an ideal flexible electronic platform. However, ultrafine fibers obtained through conventional spinning processes are usually randomly or unidirectionally arranged. Under low strain conditions, fiber sliding buffers most of the strain, resulting in minimal changes in the morphology of the conductive layer and limited sensitivity. This problem greatly compromises the monitoring accuracy of the sensor and reduces its ability to capture valuable but small deformations and provide feedback.
To enhance the sensitivity of ultrafine fiber-based flexible strain sensors, a thermoplastic polyurethane (TPU) ultrafine fiber-based strain sensor with \"furrow-ridge\" structure was proposed. Firstly, a metal sheet array collector was designed to control the local fiber accumulation density and fiber alignment orientation under the driving force of the electric field, resulting in TPU ultrafine fiber substrate with a \"furrow-ridge\" structure. Subsequently, a highly sensitive flexible strain sensor was prepared by deposition of a brittle conductive silver (Ag) layer by using a fast and efficient spray coating technique. This method is simple and versatile, and can be used to prepare various electrospun fiber-based materials with a \"furrow-ridge\" structure, significantly enhancing sensitivity while maintaining a wide working range. It is found that the \"furrow-ridge\" structured ultrafine fiber substrate has orthogonal fiber alignment angles. This structure not only improves the tensile strength (13.26 MPa), elongation at break (355.81%), and elasticity (84.71%) of the fiber mat but also enhances local strain and induces significant changes in the morphology of the surface conductive layer material. Additionally, the unique fiber orientation guides the generation of cut-through cracks, leading to a sharp increase in electrical resistance and a significant improvement in sensitivity, with a maximum gauge factor reaching 151.36. The research can provide suggestions for the design and development of highly sensitive strain sensors and have broad prospects for applications in electronic skin, medical diagnostics, human-computer interaction, and other fields.
Keywords:
polyurethane; microstructure; high sensitivity; fiber orientation; flexible strain sensing
基金項(xiàng)目:中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(2232022D-13); 中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金、東華大學(xué)研究生創(chuàng)新基金項(xiàng)目(CUSF-DH-D-2022034)
作者簡介:劉璐(1996—),女,山東濰坊人,博士研究生,主要從事纖維基柔性傳感器件方面的研究。
通信作者:蔣秋冉,E-mail:jj@dhu.edu.cn