[摘要]"脊髓損傷(spinal"cord"injury,SCI)是一種嚴(yán)重的神經(jīng)系統(tǒng)疾病。缺氧誘導(dǎo)因子(hypoxia-inducible"factor,HIF)-1α作為HIF家族主要成員之一,其在缺氧條件下可調(diào)節(jié)細(xì)胞的增殖、代謝和存活。研究表明,HIF-1α在SCI中發(fā)揮重要作用。HIF-1α可減輕損傷部位的炎癥反應(yīng),促進(jìn)損傷部位的修復(fù)和再生。HIF-1α還可調(diào)節(jié)神經(jīng)元的存活和軸突再生,有助于神經(jīng)功能的恢復(fù)。此外,HIF-1α的表達(dá)水平及活性的調(diào)節(jié)可有效改善SCI的治療效果。因此,HIF-1α作為重要的調(diào)控因子,可為SCI的治療提供新的治療靶點(diǎn)和研究思路。本文對(duì)HIF-1α在SCI中的研究現(xiàn)狀進(jìn)行綜述,總結(jié)HIF-1α介導(dǎo)SCI的作用機(jī)制,并展望其發(fā)展趨勢(shì)。
[關(guān)鍵詞]"脊髓損傷;缺氧誘導(dǎo)因子-1α;炎癥反應(yīng);缺血缺氧;血管生成;細(xì)胞凋亡
[中圖分類號(hào)]"R744""""""[文獻(xiàn)標(biāo)識(shí)碼]"A""""""[DOI]"10.3969/j.issn.1673-9701.2024.23.029
脊髓損傷(spinal"cord"injury,SCI)是一種嚴(yán)重的神經(jīng)系統(tǒng)疾病,每年有多達(dá)50萬人患SCI,無論損傷發(fā)生在脊髓的哪個(gè)部位,SCI都可能導(dǎo)致?lián)p傷節(jié)段以下機(jī)體功能的永久性喪失或衰退[1]。SCI分為創(chuàng)傷性損傷和非創(chuàng)傷性損傷2種類型。創(chuàng)傷性SCI通常是由急性脊柱骨折或脫位等因素引起的,患者通常會(huì)出現(xiàn)各種難以恢復(fù)的運(yùn)動(dòng)、感覺和括約肌功能障礙;最常見的非創(chuàng)傷性SCI是一種進(jìn)行性退行性疾病,如椎間盤突出和黃韌帶增生等引起的脊髓慢性機(jī)械壓迫[2]。
1""概述
SCI的初始階段主要涉及軸突和細(xì)胞膜的破裂、髓鞘碎片、水腫和炎癥反應(yīng);隨后,增殖和激活的小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞開始分泌一系列因子,以應(yīng)對(duì)急性損傷引發(fā)的反應(yīng),促進(jìn)傷口愈合,形成瘢痕和空洞[3]。創(chuàng)傷性SCI會(huì)破壞脊髓的結(jié)構(gòu)和功能,導(dǎo)致神經(jīng)元和軸突喪失及髓鞘破裂,此外還會(huì)引起炎癥反應(yīng)和細(xì)胞凋亡;非創(chuàng)傷性SCI所引起的慢性機(jī)械壓迫會(huì)導(dǎo)致脊髓的血液供應(yīng)不足和缺氧,進(jìn)而引發(fā)炎癥反應(yīng)和細(xì)胞凋亡[4]。
SCI發(fā)生后,損傷區(qū)域內(nèi)的微環(huán)境會(huì)發(fā)生顯著改變,缺血缺氧便是顯著變化之一。在這種狀態(tài)下,脊髓微環(huán)境的穩(wěn)態(tài)平衡受到破壞,這對(duì)于維持脊髓的正常功能構(gòu)成巨大挑戰(zhàn)[5]。缺氧誘導(dǎo)因子(hypoxia-inducible"factor,HIF)-1α在應(yīng)對(duì)缺氧環(huán)境、維持細(xì)胞生存方面起重要作用,其在炎癥、氧化、細(xì)胞死亡和腫瘤發(fā)生等過程中廣泛表達(dá)[6-10]。在SCI過程中,HIF-1α的激活如何影響炎癥反應(yīng)、細(xì)胞凋亡、血管生成和神經(jīng)保護(hù)等過程,進(jìn)而影響SCI的修復(fù)和再生是當(dāng)前研究的關(guān)鍵問題之一。
2""HIF-1α在SCI中的作用
2.1""炎癥因素
炎癥反應(yīng)在SCI的病理過程中起至關(guān)重要的作用。炎癥反應(yīng)的失控可導(dǎo)致細(xì)胞損傷的加劇,使SCI患者的病情進(jìn)一步惡化。Ni等[11]揭示zeste同源物2增強(qiáng)子(enhancer"of"zeste"homology"2,EZH2)、微RNA(microRNA,miRNA)-146a-5p和HIF-1α在炎癥和糖酵解過程中的作用,使用脂多糖誘導(dǎo)小膠質(zhì)細(xì)胞的炎癥反應(yīng),并構(gòu)建SCI動(dòng)物模型發(fā)現(xiàn),EZH2可通過介導(dǎo)miR-146a-5p/HIF-1α緩解急性SCI大鼠的炎癥和糖酵解過程。Li等[12]降低SCI大鼠模型體內(nèi)HIF-1α水平,發(fā)現(xiàn)腫瘤壞死因子-α(tumor"necrosis"factor-α,TNF-α)、白細(xì)胞介素(interleukin,IL)-1β、IL-6和IL-18的水平降低;同時(shí)體外模型中發(fā)現(xiàn),HIF-1α的滅活可降低circ"0001723的促炎作用,且沉默NOD樣受體熱蛋白結(jié)構(gòu)域相關(guān)蛋白3(NOD-like"receptor"thermal"protein"domain"associated"protein"3,NLRP3)可促進(jìn)自噬而抑制circ"0001723的促炎作用,表明HIF-1α通過circ"0001723介導(dǎo)miR-380-3p/"NLRP3降低SCI中的炎癥反應(yīng)。Xu等[13]研究發(fā)現(xiàn),CD73可抑制NLRP3炎癥小體復(fù)合物的激活,并降低孔形成蛋白GSDMD的成熟,這可在一定程度上降低小膠質(zhì)細(xì)胞的細(xì)胞焦亡;而SCI發(fā)生后,HIF-1α的累積可促使CD73過表達(dá),CD73表達(dá)的增加又會(huì)促進(jìn)HIF-1α的表達(dá),從而形成正反饋調(diào)節(jié)。Ma等[14]將光生物調(diào)節(jié)連續(xù)4周作用于脊髓鉗夾雄性小鼠,并構(gòu)建巨噬細(xì)胞炎癥和光生物調(diào)節(jié)干預(yù)體外模型,結(jié)果發(fā)現(xiàn)光生物調(diào)節(jié)可作用于Notch1-HIF-1α/核因子κB信號(hào)通路,抑制巨噬細(xì)胞神經(jīng)毒性因子和炎癥因子的釋放,從而使小鼠發(fā)生SCI后運(yùn)動(dòng)功能得以更好地恢復(fù)。SCI發(fā)生后過度的炎癥反應(yīng)可能會(huì)加劇細(xì)胞損傷,從而加劇SCI。因此,抑制過度炎癥反應(yīng)是當(dāng)前SCI治療的必經(jīng)之路。HIF-1α可能成為SCI發(fā)生后抑制炎癥反應(yīng)的潛在靶點(diǎn)之一。
2.2""氧化/缺氧因素
HIF-1α在氧化反應(yīng)和缺氧環(huán)境中發(fā)揮重要作用。研究表明,抑制脯氨酰4-羥化酶可減少HIF-1α的表達(dá),增加組織對(duì)缺氧環(huán)境的耐受性并改善疾病預(yù)后[15]。Wu等[16]研究一種新型脯氨酰羥化酶抑制劑FG-4592,其可提高神經(jīng)元PC-12細(xì)胞的存活率,激活HIF-1α阻斷劑YC-1,下調(diào)HIF-1α的表達(dá),從而促進(jìn)SCI小鼠模型神經(jīng)功能的恢復(fù)。David等[17]激活HIF-1α的轉(zhuǎn)錄途徑,施萬細(xì)胞中VP16-HIF-1α逆轉(zhuǎn)錄病毒的表達(dá)使得HIF-1α的表達(dá)增加5.9倍,施萬細(xì)胞的生存率提高34.3%。Fan等[18]探討經(jīng)缺氧預(yù)處理的神經(jīng)干細(xì)胞移植對(duì)SCI的影響,研究認(rèn)為HIF-1α的下游基因趨化因子受體4及其配體基質(zhì)細(xì)胞衍生因子1被認(rèn)為是干細(xì)胞移植的關(guān)鍵因素。Chen等[19]研究證實(shí),HIF-11血管內(nèi)皮生長(zhǎng)因子(vascular"endothelial"growth"factor,VEGF)激活劑ML228可增強(qiáng)HIF-1α/VEGF信號(hào)通路的活性,進(jìn)而改善局部缺氧缺血環(huán)境,促進(jìn)神經(jīng)功能的恢復(fù)。Zhou等[20]研究認(rèn)為,高壓氧可促進(jìn)VEGF的表達(dá),抑制HIF-1α的表達(dá),這可能與SCI修復(fù)保護(hù)呈負(fù)相關(guān)。SCI發(fā)生后,微環(huán)境缺氧加劇,勢(shì)必會(huì)影響到氧化反應(yīng),促進(jìn)HIF-1α的表達(dá),降低缺氧及氧化反應(yīng)所引起的負(fù)面結(jié)果,從而促進(jìn)SCI患者神經(jīng)功能的恢復(fù),改善其預(yù)后。
2.3""血管生成因素
血管在支持神經(jīng)系統(tǒng)的微環(huán)境中具有重要作用,內(nèi)源性血管生成是SCI修復(fù)的基礎(chǔ)條件。Huang等[21]研究M2型巨噬細(xì)胞來源的外泌體在SCI中的促進(jìn)血管生成作用,發(fā)現(xiàn)促血管生成因子HIF-1α和VEGF的表達(dá)隨著M2型巨噬細(xì)胞外泌體的增加而上調(diào),表明M2型巨噬細(xì)胞外泌體通過激活HIF-1α/VEGF信號(hào)通路促進(jìn)SCI發(fā)生后神經(jīng)功能恢復(fù)和血管生成。Tao等[22]通過大鼠實(shí)驗(yàn)發(fā)現(xiàn),SCI發(fā)生后大鼠miR-195的水平顯著降低,但B細(xì)胞淋巴瘤2(B-cell"lymphoma"2,Bcl2)、VEGF和HIF-1α的表達(dá)增加。Tang等[23]在SCI大鼠腹腔內(nèi)注射去鐵胺1~2周后,發(fā)現(xiàn)去鐵胺可促進(jìn)HIF-1α、VEGF的表達(dá),從而促進(jìn)血管新生。Shen等[24]研究認(rèn)為,瞬時(shí)受體電位通道5可抑制HIF-1α的表達(dá),并促進(jìn)血管生成相關(guān)蛋白的表達(dá),從而減少炎癥反應(yīng)的發(fā)生。因?yàn)镠IF-1α特殊的靶點(diǎn)作用,通常在調(diào)節(jié)HIF-1α表達(dá)的同時(shí),也會(huì)影響VGEF及其血管生成蛋白的表達(dá)。
2.4""細(xì)胞凋亡因素
神經(jīng)元細(xì)胞凋亡是造成脊髓不可逆損傷的主要原因之一。SCI患者血脊髓屏障的完整性和微循環(huán)機(jī)制尚不清楚。Wu等[25]研究褪黑素對(duì)SCI小鼠模型血脊髓屏障的影響,結(jié)果表明褪黑素可抑制SCI小鼠基質(zhì)金屬蛋白酶-3/水通道蛋白4/HIF-1α/"VEGF/"VEGF受體2的表達(dá),保護(hù)緊密連接蛋白、內(nèi)皮細(xì)胞和周細(xì)胞,減少細(xì)胞凋亡數(shù)量,從而促進(jìn)血脊髓屏障的修復(fù)。Luo等[26]實(shí)驗(yàn)發(fā)現(xiàn),在氧化應(yīng)激條件下,HIF-1α在缺氧預(yù)處理骨髓間充質(zhì)干細(xì)胞的存活中起關(guān)鍵作用,沉默HIF-1α可促進(jìn)骨髓間充質(zhì)干細(xì)胞的凋亡,而HIF-1α誘導(dǎo)劑FG-4592可減少骨髓間充質(zhì)干細(xì)胞的凋亡。HIF-1α是參與線粒體細(xì)胞死亡的靶點(diǎn)。Li等[27]研究發(fā)現(xiàn),脯氨酰羥化酶抑制劑DMOG可促進(jìn)HIF-1α的表達(dá),介導(dǎo)HIF-1α/Bcl2相互作用蛋白3信號(hào)通路,抑制凋亡蛋白的表達(dá),促進(jìn)神經(jīng)存活,還可通過調(diào)節(jié)微管的穩(wěn)定性促進(jìn)軸突再生。Wang等[28]研究證實(shí),HIF-1α/miR-204/"Bcl-2信號(hào)通路誘導(dǎo)缺氧神經(jīng)元細(xì)胞死亡。SCI后抑制細(xì)胞凋亡可減輕繼發(fā)性SCI,從而促進(jìn)SCI后神經(jīng)功能的恢復(fù)和重建。
2.5""其他因素
Han等[29]研究成年大鼠SCI后即刻注射攜帶HIF-1α的重組腺病毒并觀察其治療機(jī)制,認(rèn)為攜帶HIF-1α的重組腺病毒可將骨髓間充質(zhì)干細(xì)胞動(dòng)員到損傷區(qū)域,并提高神經(jīng)營(yíng)養(yǎng)因子-3和腦源性神經(jīng)營(yíng)養(yǎng)因子的表達(dá)水平,從而改善SCI大鼠神經(jīng)功能的恢復(fù)。Wang等[30]研究發(fā)現(xiàn),缺氧預(yù)處理的骨髓間充質(zhì)干細(xì)胞可上調(diào)脊髓組織中HIF-1α的表達(dá)水平,從而對(duì)SCI細(xì)胞起保護(hù)作用。
Xiong等[31]實(shí)驗(yàn)發(fā)現(xiàn),丙酮酸直接通過腹膜復(fù)蘇作用于脯氨酰羥化酶2及其下游HIF-1α/Bcl2相互作用蛋白3信號(hào)通路,激活自噬,對(duì)脊髓缺血再灌注損傷具有一定的保護(hù)作用。而Wei等[32]認(rèn)為,HIF對(duì)SCI后脯氨酰羥化酶的抑制并不能促進(jìn)運(yùn)動(dòng)恢復(fù)。α-觸核蛋白是一種突觸前蛋白,其可從損傷神經(jīng)元中釋放并激活小膠質(zhì)細(xì)胞。Qiao等[33]在大鼠中分離原代小膠質(zhì)細(xì)胞,檢測(cè)HIF-1α"mRNA和蛋白的表達(dá)水平,結(jié)果發(fā)現(xiàn)α-突觸核蛋白以劑量大小刺激HIF-1α在小膠質(zhì)細(xì)胞中積累,此外過表達(dá)的HIF-1α與c-Src可共同促進(jìn)小膠質(zhì)細(xì)胞中小窩蛋白-1的表達(dá)和磷酸化,從而引起小膠質(zhì)細(xì)胞遷移。
Fan等[34]認(rèn)為,增強(qiáng)大鼠SCI后神經(jīng)營(yíng)養(yǎng)因子的分泌可促進(jìn)大鼠神經(jīng)功能的恢復(fù),這是SCI治療的可行之策。Yuan等[35]將周細(xì)胞外泌體移植到SCI小鼠體內(nèi),外泌體可提高內(nèi)皮細(xì)胞調(diào)節(jié)血流的能力,保護(hù)血脊髓屏障,減輕水腫,降低HIF-1α等的表達(dá)水平,從而發(fā)揮治療作用。Wang等[36]使用成年大鼠SCI模型調(diào)查引起水通道蛋白1和水通道蛋白4表達(dá)上調(diào)的機(jī)制,發(fā)現(xiàn)2-甲氧基雌二醇可抑制SCI后HIF-1α、VEGF、水通道蛋白41和水通道蛋白4表達(dá)的上調(diào),故而推斷HIF-1α抑制劑是治療SCI水腫的潛在藥物。
3""未來與展望
目前,SCI的治療主要依靠癥狀和影像學(xué)檢查結(jié)果評(píng)估SCI的嚴(yán)重程度和脊髓形態(tài),但這些方法僅能反映損傷已經(jīng)發(fā)生的情況。未來,臨床診治SCI的方法將更加多元化和精確化,將更加注重早期干預(yù)和預(yù)測(cè)。脊髓內(nèi)微環(huán)境紊亂將成為未來研究的重點(diǎn)之一。HIF-1α在SCI中發(fā)揮重要作用,其參與調(diào)控炎癥反應(yīng)、氧化代謝、血管生成、細(xì)胞凋亡和組織再生等修復(fù)過程。因此,HIF-1α可能成為未來SCI早期診斷和治療評(píng)估的重要指標(biāo)。在國(guó)內(nèi)外學(xué)者的共同努力下,HIF-1α在治療SCI方面的研究已取得重要進(jìn)展。這些研究不僅闡明了SCI的相關(guān)機(jī)制,還指出了新的治療路徑。然而,仍需對(duì)HIF-1α進(jìn)行更深入、更全面的研究,以進(jìn)一步探索其在SCI中的作用機(jī)制和潛在治療效果。這將為SCI的治療提供新的思路和方法,為解決這一全球性難題做出重要貢獻(xiàn)。
未來SCI的相關(guān)研究應(yīng)集中于以下幾個(gè)方面:①進(jìn)一步研究HIF-1α在SCI中的調(diào)控機(jī)制,包括其與其他分子的相互作用和信號(hào)通路的調(diào)節(jié)。②探索HIF-1α在早期診斷和治療評(píng)估中的應(yīng)用潛力,開發(fā)新的檢測(cè)方法和指標(biāo),以提高SCI的診斷準(zhǔn)確性和治療效果。③研究HIF-1α作為治療靶點(diǎn)的可行性和安全性,研發(fā)新的藥物和治療策略,以實(shí)現(xiàn)對(duì)SCI的精準(zhǔn)治療。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻(xiàn)]
[1] HOLMES"D."Spinal-cord"injury:"Spurring"regrowth[J]."Nature,"2017,"552(7684):"S49.
[2] DAVID"G,"MOHAMMADI"S,"MARTIN"A"R,"et"al."Traumatic"and"nontraumatic"spinal"cord"injury:"Pathological"insights"from"neuroimaging[J]."Nat"Rev"Neurol,"2019,"15(12):"718–731.
[3] HUTSON"T"H,"DI"GIOVANNI"S."The"translational"landscape"in"spinal"cord"injury:"Focus"on"neuroplasticity"and"regeneration[J]."Nat"Rev"Neurol,"2019,"15(12):"732–745.
[4] FOUAD"K,"POPOVICH"P"G,"KOPP"M"A,"et"al."The"neuroanatomical-functional"paradox"in"spinal"cord"injury[J]."Nat"Rev"Neurol,"2021,"17(1):"53–62.
[5] XU"Y,"ZHU"Z"H,"XU"X,"et"al."Neuron-derived"exosomes"promote"the"recovery"of"spinal"cord"injury"by"modulating"nerve"cells"in"the"cellular"microenvironment"of"the"lesion"area[J]."Mol"Neurobiol,"2023,"60(8):"4502–4516.
[6] KIM"J"W,"JEON"N,"SHIN"D"E,"et"al."Regeneration"in"spinal"disease:"Therapeutic"role"of"hypoxia-inducible"factor-1"alpha"in"regeneration"of"degenerative"intervertebral"disc[J]."Int"J"Mol"Sci,"2021,"22(10):"5281.
[7] TESSEMA"B,"SACK"U,"SEREBROVSKA"Z,"et"al."Effects"of"hyperoxia"on"aging"biomarkers:"A"systematic"review[J]."Front"Aging,"2021,"2:"783144.
[8] TANG"Y"Y,"WANG"D"C,"WANG"Y"Q,"et"al."Emerging"role"of"hypoxia-inducible"factor-1α"in"inflammatory"autoimmune"diseases:"A"comprehensive"review[J]."Front"Immunol,"2022,"13:"1073971.
[9] CHEN"W,"WU"P,"YU"F,"et"al."HIF-1α"regulates"bone"homeostasis"and"angiogenesis,"participating"in"the"occurrence"of"bone"metabolic"diseases[J]."Cells,"2022,"11(22):"3552.
[10] TANAKA"N,"SAKAMOTO"T."Mint3"as"a"potential"target"for"cooling"down"HIF-1α-mediated"inflammation"and"cancer"aggressiveness[J]."Biomedicines,"2023,"11(2):"549.
[11] NI"S,"YANG"B,"XIA"L,"et"al."EZH2"mediates"miR-146a-5p/HIF-1α"to"alleviate"inflammation"and"glycolysis"after"acute"spinal"cord"injury[J]."Mediators"Inflamm,"2021,"2021:"5591582.
[12] LI"X,"LOU"X,"XU"S,"et"al."Hypoxia"inducible"factor-1"(HIF-1α)"reduced"inflammation"in"spinal"cord"injury"via"miR-380-3p/"NLRP3"by"circ"0001723[J]."Biol"Res,"2020,"53(1):"35.
[13] XU"S,"WANG"J,"ZHONG"J,"et"al."CD73"alleviates"GSDMD-mediated"microglia"pyroptosis"in"spinal"cord"injury"through"PI3K/AKT/Foxo1"signaling[J].nbsp;Clin"Transl"Med,"2021,"11(1):"e269.
[14] MA"Y,"LI"P,"JU"C,"et"al."Photobiomodulation"attenuates"neurotoxic"polarization"of"macrophages"by"inhibiting"the"Notch1-HIF-1α/NF-κB"signalling"pathway"in"mice"with"spinal"cord"injury[J]."Front"Immunol,"2022,"13:"816952.
[15] BAO"W,"QIN"P,"NEEDLE"S,"et"al."Chronic"inhibition"of"hypoxia-inducible"factor"prolyl"4-hydroxylase"improves"ventricular"performance,"remodeling,"and"vascularity"after"myocardial"infarction"in"the"rat[J]."J"Cardiovasc"Pharmacol,"2010,"56(2):"147–155.
[16] WU"K,"ZHOU"K,"WANG"Y,"et"al."Stabilization"of"HIF-1α"by"FG-4592"promotes"functional"recovery"and"neural"protection"in"experimental"spinal"cord"injury[J]."Brain"Res,"2016,"1632:"19–26.
[17] DAVID"B"T,"CURTIN"J"J,"GOLDBERG"D"C,"et"al."Hypoxia-inducible"factor"1α"(HIF-1α)"counteracts"the"acute"death"of"cells"transplanted"into"the"injured"spinal"cord[J]."eNeuro,"2020,"7(3):"ENEURO.0092–19.2019.
[18] FAN"X,"WEI"H,"DU"J,"et"al."Hypoxic"preconditioning"neural"stem"cell"transplantation"promotes"spinal"cord"injury"in"rats"by"affecting"transmembrane"immunoglobulin"domain-containing[J]."Hum"Exp"Toxicol,"2022,"41:"9603271211066587.
[19] CHEN"H,"LI"J,"LIANG"S,"et"al."Effect"of"hypoxia-inducible"factor-1/vascular"endothelial"growth"factor"signaling"pathway"on"spinal"cord"injury"in"rats[J]."Exp"Ther"Med,"2017,"13(3):"861–866.
[20] ZHOU"Y,"LIU"X"H,"QU"S"D,"et"al."Hyperbaric"oxygen"intervention"on"expression"of"hypoxia-inducible"factor-1α"and"vascular"endothelial"growth"factor"in"spinal"cord"injury"models"in"rats[J]."Chin"Med"J"(Engl),"2013,"126(20):"3897–3903.
[21] HUANG"J"H,"HE"H,"CHEN"Y"N,"et"al."Exosomes"derived"from"M2"macrophages"improve"angiogenesis"and"functional"recovery"after"spinal"cord"injury"through"HIF-1α/VEGF"axis[J]."Brain"Sci,"2022,"12(10):"1322.
[22] TAO"B,"SHI"K."Decreased"miR-195"expression"protects"rats"from"spinal"cord"injury"primarily"by"targeting"HIF-1α[J]."Ann"Clin"Lab"Sci,"2016,"46(1):"49–53.
[23] TANG"G,"CHEN"Y,"CHEN"J,"et"al."Deferoxamine"ameliorates"compressed"spinal"cord"injury"by"promoting"neovascularization"in"rats[J]."J"Mol"Neurosci,"2020,"70(9):"1437–1444.
[24] SHEN"N,"WANG"L,"WU"Y,"et"al."Adeno-associated"virus"packaged"TRPC5"gene"therapy"alleviated"spinal"cord"ischemic"reperfusion"injury"in"rats[J]."Neuroreport,"2020,"31(1):"29–36.
[25] WU"Q,"JING"Y,"YUAN"X,"et"al."Melatonin"treatment"protects"against"acute"spinal"cord"injury-induced"disruption"of"blood"spinal"cord"barrier"in"mice[J]."J"Mol"Neurosci,"2014,"54(4):"714–722.
[26] LUO"Z,"WU"F,"XUEnbsp;E,"et"al."Hypoxia"preconditioning"promotes"bone"marrow"mesenchymal"stem"cells"survival"by"inducing"HIF-1α"in"injured"neuronal"cells"derived"exosomes"culture"system[J]."Cell"Death"Dis,"2019,"10(2):"134.
[27] LI"Y,"HAN"W,"WU"Y,"et"al."Stabilization"of"hypoxia"inducible"factor-1α"by"dimethyloxalylglycine"promotes"recovery"from"acute"spinal"cord"injury"by"inhibiting"neural"apoptosis"and"enhancing"axon"regeneration[J]."J"Neurotrauma,"2019,"36(24):"3394–3409.
[28] WANG"X,"LI"J,"WU"D,"et"al."Hypoxia"promotes"apoptosis"of"neuronal"cells"through"hypoxia-inducible"factor-1α-microRNA-204-B-cell"lymphoma-2"pathway[J]."Exp"Biol"Med"(Maywood),"2016,"241(2):"177–183.
[29] HAN"X,"CHEN"Y,"LIU"Y,"et"al."HIF-1α"promotes"bone"marrow"stromal"cell"migration"to"the"injury"site"and"enhances"functional"recovery"after"spinal"cord"injury"in"rats[J]."J"Gene"Med,"2018,"20(12):"e3062.
[30] WANG"Z,"FANG"B,"TAN"Z,"et"al."Hypoxic"preconditioning"increases"the"protective"effect"of"bone"marrow"mesenchymal"stem"cells"on"spinal"cord"ischemia/reperfusion"injury[J]."Mol"Med"Rep,"2016,"13(3):"1953–1960.
[31] XIONG"Y,"XIA"Y,"DENG"J,"et"al."Direct"peritoneal"resuscitation"with"pyruvate"protects"the"spinal"cord"and"induces"autophagy"via"regulating"PHD2"in"a"rat"model"of"spinal"cord"ischemia-reperfusion"injury[J]."Oxid"Med"Cell"Longev,"2020,"2020:"4909103.
[32] WEI"G"Z,"SARASWAT"OHRI"S,"KHATTAR"N"K,"et"al."Hypoxia-inducible"factornbsp;prolyl"hydroxylase"domain"(PHD)"inhibition"after"contusive"spinal"cord"injury"does"not"improve"locomotor"recovery[J]."PLoS"One,"2021,"16(4):"e0249591.
[33] QIAO"H,"HE"X,"ZHANG"Q,"et"al."Α-synuclein"induces"microglial"cell"migration"through"stimulating"HIF-1α"accumulation[J]."J"Neurosci"Res,"2017,"95(9):"1809–1817.
[34] FAN"W"L,"LIU"P,"WANG"G,"et"al."Transplantation"of"hypoxic"preconditioned"neural"stem"cells"benefits"functional"recovery"via"enhancing"neurotrophic"secretion"after"spinal"cord"injury"in"rats[J]."J"Cell"Biochem,"2018,"119(6):"4339–4351.
[35] YUAN"X,"WU"Q,"WANG"P,"et"al."Exosomes"derived"from"pericytes"improve"microcirculation"and"protect"blood-spinal"cord"barrier"after"spinal"cord"injury"in"mice[J]."Front"Neurosci,"2019,"13:"319.
[36] WANG"Y"F,"FAN"Z"K,"CAO"Y,"et"al."2-methoxyestradiol"inhibits"the"up-regulation"of"AQP4"and"AQP1"expression"after"spinal"cord"injury[J]."Brain"Res,"2011,"1370:"220–226.
(收稿日期:2024–03–07)
(修回日期:2024–05–30)