• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      新課標理念下“數(shù)與運算一致性”教學初探

      2024-12-31 00:00:00張麗娟
      求知導刊 2024年15期
      關鍵詞:整數(shù)小數(shù)一致性

      計數(shù)單位是建構數(shù)的概念的基礎,整數(shù)、小數(shù)和分數(shù)與計數(shù)單位息息相關。計數(shù)單位也是學生理解運算算理的基礎,四則運算可視為計數(shù)單位的累加、遞減、分解和組合。聚焦新課標理念下小學數(shù)學“數(shù)與運算”結構化主題教學,結合“計數(shù)單位”這一核心概念整體設計教學活動,幫助學生理解“數(shù)的認識”與“數(shù)的運算”的本質(zhì),感悟數(shù)與運算的整體性與一致性,培養(yǎng)學生的數(shù)學核心素養(yǎng)。

      計數(shù)單位;數(shù)的認識;數(shù)的運算;一致性

      張麗娟(1986—),女,江蘇省蘇州市吳中區(qū)郭巷實驗小學。

      《義務教育數(shù)學課程標準(2022年版)》指出,要感悟、體會數(shù)的概念的一致性、數(shù)的運算的一致性、數(shù)與運算的一致性。從數(shù)的概念看,數(shù)是由多個計數(shù)單位組成的;從運算的意義看,加法是一切運算的基礎,所有運算都可以理解為相同計數(shù)單位個數(shù)的累加或遞減。因此,計數(shù)單位是建構數(shù)的概念的基礎,計數(shù)單位也是學生理解運算算理的關鍵,計數(shù)單位是溝通“認數(shù)”與“算數(shù)”的橋梁。在實際教學中,教師要基于新課標理念整體把握核心知識,開展知識間的結構化教學,以計數(shù)單位勾連“數(shù)的認識”和“數(shù)的運算”,體現(xiàn)數(shù)與運算的一致性,加深學生對知識本質(zhì)的理解,培養(yǎng)其數(shù)學核心素養(yǎng)。

      一、數(shù)與運算一致性內(nèi)涵分析

      (一)數(shù)的認識一致性

      在小學階段,學生對數(shù)的認識主要包括整數(shù)、小數(shù)和分數(shù)。整數(shù)是從具體數(shù)量中抽象出的數(shù),小數(shù)、分數(shù)是從具體數(shù)量及數(shù)量關系中抽象出的數(shù)。

      學生首先學習的是整數(shù),如認識整數(shù)4123,知道它是由4個“千”、1個“百”、2個“十”、3個“一”組成的;之后認識更大的數(shù),如13987,知道千位滿十要向萬位進一。整數(shù)的計數(shù)單位包括個、十、百、千、萬等,相鄰的兩個計數(shù)單位間的進率都是10,稱為十進制計數(shù)法。

      小數(shù)包含整數(shù)部分和小數(shù)部分。把“1”平均分成10份,則每份是0.1;0.1平均分成10份,每份是0.01,以此類推。小數(shù)部分的計數(shù)單位包括0.1、0.01等,10個0.01是1個0.1,同樣屬于十進制計數(shù)法。

      在這三類數(shù)中,分數(shù)是相對特殊的存在。分數(shù)的意義是指將單位“1”平均分成若干份,表示其中的一份或幾份。分數(shù)的計數(shù)單位是分數(shù)單位,如認識分數(shù),知道它是由7個組成的,再數(shù)1個就可以進一。因此,分數(shù)的進制不一定是滿十進一,而是滿特定的分數(shù)單位進一,與計數(shù)單位的個數(shù)有關。

      綜上所述,計數(shù)單位是建構整數(shù)、小數(shù)、分數(shù)的關鍵,它決定了數(shù)的意義、組成、大小等,這些數(shù)本質(zhì)上是一個整體,具有一致性。學生在學習過程中要逐漸感悟計數(shù)單位的產(chǎn)生與實際應用的緊密聯(lián)系,慢慢體會數(shù)的認識的一致性。

      (二)數(shù)的運算一致性

      小學階段關于“數(shù)的運算”的學習是指整數(shù)、小數(shù)、分數(shù)的四則運算。從四種運算間的關系出發(fā),加法是一切運算的開始,表示部分量和部分量合起來求出總量;減法是加法的逆運算,表示從總量中拿出部分量,求出剩下的部分量;乘法的意義是“多個相同數(shù)相加”,本質(zhì)上是加法運算的簡化過程;除法是乘法的逆運算,也與減法有關,本質(zhì)上是一個數(shù)連續(xù)減去若干個相同數(shù)得到結果。由此可見,四則運算間相互勾連,教師在教學中應建立相關的知識體系,幫助學生深刻理解運算的本質(zhì)。

      數(shù)的運算的一致性也是通過計數(shù)單位聯(lián)系起來的。在筆算加減法時,要注意將相同數(shù)位對齊,目的是使相同計數(shù)單位的累加或遞減準確。分數(shù)的通分,也是為了在計數(shù)單位相同的基礎上進行運算。在筆算乘法中,均是將計數(shù)單位與計數(shù)單位相乘,得到新的計數(shù)單位;計數(shù)單位的個數(shù)與計數(shù)單位的個數(shù)相乘,得到新的計數(shù)單位的個數(shù)。在筆算除法時,則是計數(shù)單位與計數(shù)單位相除,計數(shù)單位的個數(shù)與計數(shù)單位的個數(shù)相除。無論是哪一種數(shù)的運算,小數(shù)、分數(shù)的四則運算都可以和整數(shù)的四則運算建立聯(lián)系;無論哪種形式的數(shù)的運算,都是計數(shù)單位的累加、遞減、創(chuàng)生和細分這充分體現(xiàn)了數(shù)的運算的一致性。

      綜上所述,數(shù)的認識和數(shù)的運算都具有一致性。數(shù)的認識是數(shù)的運算的基礎,數(shù)的運算又能更深層次地反映數(shù)的概念的形成與發(fā)展,這綜合體現(xiàn)了數(shù)與運算具有一致性。

      二、數(shù)與運算一致性教學策略

      基于對數(shù)與運算一致性內(nèi)涵的深度理解,教師在組織數(shù)與運算主題課程教學時,要從整體出發(fā)架構知識體系,幫助學生把握運算的本質(zhì),從而促進學生數(shù)學學科核心素養(yǎng)的發(fā)展。下面,筆者以具體的教學實例“小數(shù)的意義和讀寫”與“除數(shù)是整數(shù)的小數(shù)除法”進行闡述與說明。

      (一)數(shù)的認識的一致性以“小數(shù)的意義和讀寫”為例

      “小數(shù)的意義和讀寫”是蘇教版小學數(shù)學五年級上冊第三單元第1課時的教學內(nèi)容。蘇教版教材關于小數(shù)的知識共安排了四個單元,如表1所示。

      在學生建立了對小數(shù)的初步認識后,“小數(shù)的意義和讀寫”能讓學生深入認識小數(shù)的本質(zhì),為學生進一步學習小數(shù)四則運算等知識奠定基礎。教材基于學生對米、分米、厘米、毫米,以及它們之間的關系的認識,引導學生感知一位小數(shù)、兩位小數(shù)、三位小數(shù)的含義。如果停留于表面的學習,學生就只能知道小數(shù)和分數(shù)在形式上有所聯(lián)系,并不能真正體會數(shù)之間的內(nèi)在本質(zhì)聯(lián)系。因此,如何引導學生在已有的認知基礎和學習經(jīng)驗上認識小數(shù),如何呈現(xiàn)小數(shù)、分數(shù)以及整數(shù)間的聯(lián)系,打通知識脈絡,是教師在備課中需要深入思考的問題。

      1.勾連分數(shù)抽象概括0.1的意義

      教師可出示研究單:0.1元表示什么?0.1米表示什么?

      學生可選擇一個問題,結合研究單上的圖形進行思考并與同桌交流。學生通過展示、交流,能明白1元等于10角,1角是元,寫成小數(shù)是0.1元;1米等于10分米,1分米是米,寫成小數(shù)是0.1米。接著,教師可讓學生在正方形、正方體中分別表示出0.1,體會用具體圖形表示0.1就是將圖形平均分成10份,取其中的1份。如果用整數(shù)“1”來表示圖形,就是把“1”平均分成10份,其中的1份是0.1,表示,這就是0.1的意義。

      2.數(shù)數(shù)深化一位小數(shù)的意義

      教師可提出問題:在認識了0.1后,我們再來仔細觀察被平均分的正方形、正方體,你能從中找出哪個小數(shù)?它與0.1有什么聯(lián)系?

      學生通過觀察、數(shù)數(shù),能發(fā)現(xiàn)0.2里面有2個0.1,0.3里面有3個0.1……0.9里面有9個0.1。這些小數(shù)的小數(shù)部分都只有1位數(shù),這樣的小數(shù)叫作一位小數(shù)。一位小數(shù)表示十分之幾,這就是一位小數(shù)的意義。然后,教師可讓學生繼續(xù)觀察正方形(或正方體),數(shù)一數(shù)并想一想:如果在0.9后再多數(shù)一個0.1是多少呢?學生很容易就能想到10個0.1就是“1”。在這一過程中,學生不僅能深刻理解一位小數(shù)的意義,還能明白小數(shù)和整數(shù)、分數(shù)間的聯(lián)系“數(shù)是數(shù)出來的”。

      3.數(shù)的認識一致性計數(shù)單位的累加

      學生通過遷移一位小數(shù)的認知方法,經(jīng)歷從“生活中的數(shù)量”到“具體的圖形”抽象概括出0.01、0.001的意義的過程,理解兩位小數(shù)表示百分之幾,三位小數(shù)表示千分之幾;然后在數(shù)形結合情境中數(shù)一數(shù)、想一想,理解和歸納兩位小數(shù)、三位小數(shù)的意義。這樣的結構化學習能讓學生逐漸體會小數(shù)與整數(shù)都是“十進制”以及小數(shù)與十進分數(shù)的聯(lián)系:一位小數(shù)表示十分之幾,兩位小數(shù)表示百分之幾,三位小數(shù)表示千分之幾……10個0.001()是0.01(),10個0.01()是0.1(),10個0.1()是1,10個1是10……通過勾連小數(shù)、分數(shù)、整數(shù),學生能慢慢體會數(shù)的認識的一致性,感悟“數(shù)是計數(shù)單位的累加”。計數(shù)單位是建構整數(shù)、小數(shù)、分數(shù)的關鍵,決定了數(shù)的意義、組成、大小等,因而整數(shù)、小數(shù)、分數(shù)在本質(zhì)上是一個整體,具有一致性。

      (二)數(shù)的運算的一致性以“除數(shù)是整數(shù)的小數(shù)除法”為例

      數(shù)的運算具有一致性,但要真正打通整數(shù)、小數(shù)、分數(shù)運算之間的壁壘并非易事。學生學習整數(shù)除法之后,五年級上學期開始學習小數(shù)除法。小數(shù)除法涉及的知識點根據(jù)除數(shù)的特點總體可分為兩類,即除數(shù)是整數(shù)的小數(shù)除法和除數(shù)是小數(shù)的小數(shù)除法,而除數(shù)是小數(shù)的小數(shù)除法通過商不變規(guī)律可以轉(zhuǎn)化為除數(shù)是整數(shù)的小數(shù)除法。因此,除數(shù)是整數(shù)的小數(shù)除法在小數(shù)除法計算教學中十分重要。教師在備課時要深入探究問題:關于整數(shù)除法的學習認知與經(jīng)驗對小數(shù)除法的學習有什么幫助?小數(shù)除法與整數(shù)除法之間到底有什么關系?

      1.自主探索不同算法

      在實際教學中,教師可創(chuàng)設貼合學生生活實際的問題情境:①小明去超市買4瓶養(yǎng)樂多,共花了48元,平均每瓶養(yǎng)樂多多少元?該問題可以用除法解決,學生在計算過程中需要回憶整數(shù)除法的計算方法。②小明買了3張貼畫共花了9.6元,平均每張貼畫多少元?同樣的,這個問題也屬于“等分除”的問題,可以用除法解決,列算式“9.6÷3”便可得出答案。通過觀察、對比,學生能夠發(fā)現(xiàn)這個算式與之前的算式有所不同,即被除數(shù)是小數(shù)?;诖耍處熆梢龑W生在研究單上自主探索小數(shù)除法的計算方法,并與同桌交流為什么要這樣算。

      2.理解算法與算理間的聯(lián)系

      在學生進行自主探索、同桌交流后,教師可組織全班展示活動。可能出現(xiàn)的算法如下:

      ①1元=10角,9.6元=96角,96÷3=32(角),32角=3.2元。

      ②9.6元=9元6角,9元平均分成3份,每份是3元,6角平均分成3份,每份是2角,3元2角是3.2元。

      ③豎式計算。學生在此計算過程中可能會遇到問題:小數(shù)點的位置應該放在哪里?學生交流算法及算理:計算9.6除以3時,先將9平均分成3份,也就是9個1平均分成3份,每份是3個1,3寫在個位上;再將0.6平均分成3份,也就是6個0.1平均分成3份,每份是2個0.1,2寫在十分位上。這與整數(shù)除法的計算方法是一致的,先從高位算起,再逐一細分計數(shù)單位。

      3.體會除法運算的一致性

      教師可繼續(xù)提出問題:小明又買了5千克香蕉,共花了12元,平均每千克香蕉多少元?

      學生列豎式計算“12÷5”時,可能產(chǎn)生兩種想法:一是根據(jù)以往的經(jīng)驗,用余數(shù)表示,得到“12÷5=2(元)……2(元)”;二是繼續(xù)往下除,因為余下的“2元”還能繼續(xù)分,把2元看成20角,平均分成5份,每份是4角,進而得出2.4元。

      這道題能讓學生進一步感悟小數(shù)除法是整數(shù)除法的延續(xù),因為小數(shù)除法和整數(shù)除法一樣,都是先從高位算起,當高位上的數(shù)在平均分時有剩余時,再將高一級剩余的計數(shù)單位轉(zhuǎn)化為低一級的計數(shù)單位繼續(xù)細分計算下去。小數(shù)除法和整數(shù)除法的核心本質(zhì)都是十進制計數(shù)單位的不斷細分,體現(xiàn)了除法運算之間的內(nèi)在聯(lián)系,這可以讓學生感悟小數(shù)除法與整數(shù)除法運算具有整體性和一致性,建立關于除法運算的整體知識結構。

      總而言之,計數(shù)單位是建構數(shù)的概念的基礎,計數(shù)單位也是學生理解運算算理的關鍵。抓住計數(shù)單位這一核心概念,使學生體會整數(shù)、小數(shù)、分數(shù)的意義與運算是一脈相承的,感悟數(shù)的概念的形成和發(fā)展與數(shù)的運算的一致性,進而凸顯“數(shù)與運算”主題教學的整體性與一致性,有助于學生深化對數(shù)學知識本質(zhì)的理解,建立知識之間的聯(lián)系,形成結構化的思維,從而發(fā)展數(shù)學核心素養(yǎng)。

      三、數(shù)與運算一致性教學評價分析

      在讓學生感悟數(shù)與運算一致性的教學實踐中,教師切不可急于求成,尤其是新課標頒布以后,要讓學生有個慢慢適應的、循序漸進的過程。同時,教師對新課標以及教材的理解需要更透徹、更長遠,更具有目標性。比如,在幫助學生理解數(shù)的運算一致性的過程中,計算方法及原理的證明過程是培養(yǎng)學生數(shù)學核心素養(yǎng)必不可少的環(huán)節(jié)。教師要讓學生既明白算法,又講得清算理,將算理和算法融會貫通,真正理解知識的本質(zhì)。對于課與課之間、單元與單元之間的聯(lián)系,教師要有系統(tǒng)性、整體性、發(fā)展性的認識,將零散的知識點整合在一起,幫助學生梳理知識脈絡。

      從教材的教學內(nèi)容分析,由生活化的問題情境入手是使數(shù)學教學有的放矢的重要途徑,也是學生體會數(shù)學與生活密切聯(lián)系的關鍵。在讓學生感悟數(shù)與運算一致性的教學實踐中,教師可以結合生活中的實際情況,引出有價值的數(shù)學問題,讓數(shù)的呈現(xiàn)更形象、具體。在解決實際問題的過程中,必定會用到數(shù)的運算,學生結合生活情境更容易理解四則運算的意義。像這樣以生為本的教學方式,不僅能激發(fā)學生的學習興趣,也能促進學生數(shù)學素養(yǎng)的全面發(fā)展。

      綜上所述,教師應當重視對教材內(nèi)容的分析和把控,深入淺出地理解小學數(shù)學教學的關鍵點,提煉并梳理出整體框架,進而引導學生體會不同數(shù)學知識之間的一致性和可遷移性,形成科學的思維習慣。

      [參考文獻]

      [1]中華人民共和國教育部.義務教育數(shù)學課程標準(2022年版)[M].北京:北京師范大學出版社,2022.

      [2]鞏子坤,史寧中,張丹.義務教育數(shù)學課程標準修訂的新視角:數(shù)的概念與運算的一致性[J].課程教材教法,2022(6):48.

      [3]史寧中.數(shù)學思想概論:數(shù)量與數(shù)量關系的抽象(第1輯)[M].長春:東北師范大學出版社,2008.

      [4]史寧中.基本概念與運算法則:小學數(shù)學教學中的核心問題[M].北京:高等教育出版社,2013.

      猜你喜歡
      整數(shù)小數(shù)一致性
      關注減污降碳協(xié)同的一致性和整體性
      公民與法治(2022年5期)2022-07-29 00:47:28
      小數(shù)加減“四不忘”
      注重教、學、評一致性 提高一輪復習效率
      IOl-master 700和Pentacam測量Kappa角一致性分析
      我國古代的小數(shù)
      小數(shù)的認識
      小數(shù)的認識
      一類整數(shù)遞推數(shù)列的周期性
      聚焦不等式(組)的“整數(shù)解”
      基于事件觸發(fā)的多智能體輸入飽和一致性控制
      平泉县| 来安县| 灌云县| 泸定县| 乌拉特后旗| 甘德县| 杭锦旗| 阳城县| 南漳县| 潞西市| 苍山县| 麻栗坡县| 张家港市| 平度市| 天气| 左权县| 天门市| 鄂温| 旬阳县| 潮安县| 德安县| 汕头市| 饶河县| 伊春市| 桦川县| 广宁县| 独山县| 内丘县| 龙泉市| 旬阳县| 淮南市| 通辽市| 隆子县| 达拉特旗| 铁岭市| 宁都县| 隆化县| 岳普湖县| 大城县| 瑞丽市| 象州县|