[摘要]"在中樞神經(jīng)系統(tǒng)退行性疾病中,帕金森病的發(fā)病率僅次于阿爾茨海默病。帕金森病的早期臨床癥狀并不典型,易被漏診和誤診。因此,早期發(fā)現(xiàn)和治療帕金森病尤為重要。近年來,酰胺質(zhì)子轉(zhuǎn)移成像、定量磁敏感圖和神經(jīng)黑色素敏感磁共振成像及影像組學(xué)等新技術(shù)迅速發(fā)展,其可在不受電離輻射影響的情況下評估患者的腦功能及代謝變化,廣泛應(yīng)用于帕金森病的臨床診斷及病情評估。本文對上述三種磁共振成像新技術(shù)及影像組學(xué)在帕金森病中的應(yīng)用進(jìn)展進(jìn)行綜述,以期為帕金森病的診斷提供新思路。
[關(guān)鍵詞]"帕金森??;磁共振成像技術(shù);酰胺質(zhì)子轉(zhuǎn)移成像技術(shù);定量磁敏感圖;神經(jīng)黑色素敏感磁共振成像技術(shù);影像組學(xué)
[中圖分類號]"R742.5""""""[文獻(xiàn)標(biāo)識碼]"A""""""[DOI]"10.3969/j.issn.1673-9701.2024.34.024
1""帕金森病概述
帕金森?。≒arkinson’s"disease,PD)主要影響大腦黑質(zhì)(substantia"nigra,SN)中的多巴胺能神經(jīng)元。PD的發(fā)病率隨著年齡的增長而升高,且男性患者多于女性[1-2]。PD的臨床表現(xiàn)主要包括運動遲緩、僵直、靜息性震顫及病程后期姿勢不穩(wěn)等[3]。傳統(tǒng)磁共振成像(magnetic"resonance"imaging,MRI)技術(shù)作為一種常規(guī)影像學(xué)檢查方法,廣泛應(yīng)用于神經(jīng)系統(tǒng)退行性疾病的臨床診斷中。然而,傳統(tǒng)MRI技術(shù)在PD的診斷中缺乏特異性[4]。研究證實酰胺質(zhì)子轉(zhuǎn)移(amide"proton"transfer,APT)成像、定量磁敏感圖(quantitative"susceptibility"mapping,QSM)和神經(jīng)黑色素敏感磁共振成像(neuromelanin-sensetive"magnetic"resonance"imaging,NM-MRI)等MRI新技術(shù)可用于PD的臨床診斷[5]。APT成像技術(shù)是一種基于內(nèi)源性移動蛋白質(zhì)濃度生成對比度的新型分子成像方法[6]。APT成像技術(shù)通過化學(xué)交換飽和轉(zhuǎn)移使用內(nèi)源性對比度檢測溶質(zhì)中的低濃度酰胺質(zhì)子[7]。QSM可檢測鐵含量的局部變化,其對不同化學(xué)物質(zhì)的磁化率差異敏感,這些差異可由MRI梯度回波序列的信號相位捕獲。NM-MRI技術(shù)能可視化藍(lán)斑核(locus"coeruleus,LC)結(jié)構(gòu),檢測神經(jīng)黑色素(neruomelanin,NM)可直接反映腦內(nèi)含NM的兒茶酚胺能神經(jīng)元的存活狀態(tài)[8]。
2""PD的發(fā)生機(jī)制
PD的主要病理學(xué)特征是中腦黑質(zhì)致密部(substantia"nigra"pars"compacta,SNc)多巴胺神經(jīng)元的進(jìn)行性丟失及殘存于神經(jīng)元中的α-突觸核蛋白(α-synuclein,α-Syn)的異常聚集。新紋狀體作為SN的一部分,包括尾狀核和殼核(putamen,PUT)[9]。已有研究證實新紋狀體中存在α-Syn的異常沉積[10]。腦中(包括新紋狀體)鐵沉積在PD的病理生理學(xué)中發(fā)揮重要作用[11]。
3""MRI新技術(shù)在PD中的研究進(jìn)展
3.1""APT成像在PD中的應(yīng)用
磁共振化學(xué)交換飽和轉(zhuǎn)移成像是一種MRI新技術(shù),在PD診斷中具有巨大潛力[12]。該技術(shù)的原理是化合物中的飽和質(zhì)子與游離于水中的不飽和質(zhì)子之間發(fā)生交換反應(yīng),導(dǎo)致水中質(zhì)子信號降低,進(jìn)而評估化合物是否存在[13]。z譜是一種用于描述化學(xué)交換飽和轉(zhuǎn)移效應(yīng)的曲線圖譜,能顯示出不同共振頻率下自由水的信號強(qiáng)度。磁共振化學(xué)交換飽和轉(zhuǎn)移成像技術(shù)可根據(jù)機(jī)體不同種類生物大分子衍生出多種分支技術(shù)。如根據(jù)葡萄糖可衍生出葡萄糖磁共振化學(xué)交換飽和轉(zhuǎn)移成像技術(shù),根據(jù)谷氨酸可衍生出谷氨酸磁共振化學(xué)交換飽和轉(zhuǎn)移成像技術(shù)等[14]。
APT成像是磁共振化學(xué)交換飽和轉(zhuǎn)移成像技術(shù)的一種,可根據(jù)組織中內(nèi)源性移動肽和蛋白質(zhì)生成圖像對比度,聚焦于3.5ppm處共振的內(nèi)源性移動肽和蛋白質(zhì)中的酰胺質(zhì)子[15-17]。APT成像的量化指標(biāo)通常為z光譜水峰兩側(cè)±3.5ppm處不對稱磁化傳遞轉(zhuǎn)移率(asymmetric"magnetization"transfer"rate,MTRasym)的差值。Li等[18]研究發(fā)現(xiàn)在3T場強(qiáng)下,與健康對照組相比,PD患者的SN和紅核區(qū)域的APT信號強(qiáng)度降低。另有研究發(fā)現(xiàn),對有單側(cè)癥狀的PD患者而言,患側(cè)SN的APT信號強(qiáng)度明顯低于正常對照組。根據(jù)發(fā)病時間及病情嚴(yán)重程度將PD患者分為早期組和晚期組,結(jié)果發(fā)現(xiàn)早期組SN的APT信號明顯高于晚期組,提示SN的APT信號丟失與PD病情嚴(yán)重程度及疾病病程相關(guān)。
3.2""QSM在PD中的應(yīng)用
鐵沉積增加是PD最常見的特征之一。鐵在PD發(fā)病機(jī)制中的作用是其產(chǎn)生自由基物質(zhì)的能力,自由基物質(zhì)可與α-Syn協(xié)同作用誘導(dǎo)Lewy小體生成,也可催化多巴胺氧化反應(yīng),加劇其他神經(jīng)毒性副產(chǎn)物的產(chǎn)生[19-20]。近年來識別可量化和可視化鐵沉積的成像標(biāo)志物越來越受到學(xué)者關(guān)注[21]。QSM是一種相對較新的MRI技術(shù),該技術(shù)基于測量相位和局部磁場之間的對應(yīng)關(guān)系,被視為定量測量腦鐵沉積的首選方法[22]。QSM技術(shù)測量的磁化率與腦鐵沉積量呈正相關(guān)[23]。病理研究證實PD患者腦鐵水平升高,特別是在SN中,而過量的鐵沉積可導(dǎo)致氧化應(yīng)激和神經(jīng)元死亡[24-25]。QSM可用于定量描述PD患者SNc中的鐵沉積[26]。在一項應(yīng)用QSM和橫向弛豫率R2*比較PD患者和健康對照者的研究中,QSM描述異常鐵沉積較橫向弛豫率R2*更準(zhǔn)確[27]。QSM可描述PD早期SN和紅核中鐵水平升高程度,表明QSM可作為PD的早期診斷工具[28]。
QSM不僅可用于PD的早期診斷和評估,也可作為診斷非典型帕金森綜合征的一種手段,包括帕金森型多系統(tǒng)萎縮(multiple"system"atrophy-"Parkinsonian,MSA-P)、小腦型多系統(tǒng)萎縮和進(jìn)行性核上性麻痹(progressive"supranuclear"palsy,PSP)等多系統(tǒng)萎縮。這些疾病在早期階段臨床癥狀往往相似,診斷較困難[29]。MSA-P的PUT后外側(cè)部分沉積的鐵水平升高,因此QSM可用于鑒別MSA-P和PSP[30]。
3.3""NM-MRI在PD中的應(yīng)用
NM是一種由黑色素、蛋白質(zhì)、脂質(zhì)和金屬離子組成的深色色素[31]。含有NM的神經(jīng)元主要集中在SN和LC。同時NM是多巴胺和去甲腎上腺素代謝的一種順磁性氧化產(chǎn)物,通過螯合鐵離子,在NM-MRI上呈現(xiàn)高信號[32]。Miyoshi等[33]比較13例早期PD患者、31例晚期PD患者和20名健康對照者的SNc和LC內(nèi)外側(cè)區(qū)域的NM-MRI信號強(qiáng)度,發(fā)現(xiàn)早期PD患者與晚期PD患者內(nèi)側(cè)、外側(cè)SNc的NM-MRI信號強(qiáng)度均顯著低于健康對照者,但早期PD患者與晚期PD患者外側(cè)SNc的NM-MRI信號強(qiáng)度無顯著差異,而內(nèi)側(cè)SNc的NM-MRI信號強(qiáng)度存在顯著差異,同時發(fā)現(xiàn)晚期PD患者LC處NM-MRI信號強(qiáng)度明顯降低,提示NM-MRI有助于評估PD的疾病進(jìn)展。Isaias等[34]研究發(fā)現(xiàn)PD患者的SN體積和對比噪聲比顯著減小,其與紋狀體多巴胺轉(zhuǎn)運體密度相關(guān),表明NM降低可反映大腦中多巴胺能神經(jīng)元的丟失情況。
3.4""影像組學(xué)在PD中的應(yīng)用
影像組學(xué)是醫(yī)學(xué)成像中的新興領(lǐng)域之一,其能從影像圖像中提取和定量分析數(shù)據(jù),通過挖掘高通量定量成像特征自動識別圖像信息,分析圖像紋理,并量化圖像內(nèi)不同體素的空間關(guān)系[35-36]。近年來,影像組學(xué)越來越多地用于醫(yī)學(xué)成像領(lǐng)域,包括MRI、正電子發(fā)射體層成像、CT研究,特別是在腫瘤學(xué)領(lǐng)域[37]。但截至目前,與PD診斷相關(guān)的影像組學(xué)研究卻較少。
Kang等[38]等基于104例PD患者和45名健康對照者的QSM及T2液體衰減反轉(zhuǎn)恢復(fù)、T1加權(quán)成像、T2加權(quán)成像序列,從QSM獲取患者的磁化率和影像組學(xué)特征,建立多元線性回歸和支持向量機(jī)模型對PD患者的認(rèn)知障礙進(jìn)行評估,受試者操作特征曲線下面積分別為0.90、0.95,表明QSM的影像組學(xué)在診斷PD和評估患者認(rèn)知障礙中發(fā)揮重要作用。在一項回顧性分析中,從69例PD患者和69名健康對照者的T2加權(quán)成像序列新紋狀體區(qū)提取274個影像組學(xué)特征并對特征進(jìn)行篩選,分別獲得12個、7個特征,構(gòu)建模型,其曲線下面積分別為0.7732和0.7143[39]。新紋狀體影像組學(xué)特征可實現(xiàn)對PD的良好診斷性能,且具有用作PD臨床診斷的基礎(chǔ)。李星江等[40]通過提取60例PD患者和60名健康對照者的SNc感興趣區(qū)NM-MRI紋理特征參數(shù),對獲得的影像組學(xué)紋理特征參數(shù)降維處理,所取得的最佳紋理特征參數(shù)的曲線下面積達(dá)0.889,說明NM-MRI影像組學(xué)紋理分析可為PD診斷提供診斷依據(jù)。Shinde等[41]通過收集PD、非典型帕金森綜合征患者及健康對照者的NM-MRI影像,提取SNc的影像組學(xué)特征并構(gòu)建多個分類模型,證實卷積神經(jīng)網(wǎng)絡(luò)模型可顯著區(qū)分PD與非典型帕金森綜合征。
4""小結(jié)與展望
MRI新技術(shù)是診斷PD的重要工具,具有成本低、無創(chuàng)性的特點。蛋白質(zhì)的聚集、鐵定量及殘存NM神經(jīng)元定量有助于前驅(qū)期PD的早期發(fā)現(xiàn)。采用上述新序列可從PD的病理特征入手達(dá)到早期診斷PD的目的。但目前對這些新序列的研究多停留在單一的序列上,未來可聯(lián)合多個序列對PD進(jìn)行多模態(tài)的聯(lián)合診斷,提高診斷的敏感度與特異性。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻(xiàn)]
[1] BALDERESCHI"M,"DI"CARLO"A,"ROCCA"W"A,"et"al."Parkinson’s"disease"and"Parkinsonism"in"a"longitudinal"study:"Two-fold"higher"incidence"in"men."ILSA"Working"Group."Italian"longitudinal"study"on"aging[J]."Neurology,"2000,"55(9):"1358–1363.
[2] DORSEY"E"R,"SHERER"T,"OKUN"M"S,"et"al."The"emerging"evidence"of"the"Parkinson"pandemic[J]."J"Parkinsons"Dis,"2018,"8(s1):"S3-S8.
[3] KALIA"L"V,"LANG"A"E."Parkinson’s"disease[J]."Lancet,"2015,"386(9996):"896–912.
[4] PéRAN"P,"CHERUBINI"A,"ASSOGNA"F,"et"al."Magnetic"resonance"imaging"markers"of"Parkinson’s"disease"nigrostriatal"signature[J]."Brain,"2010,"133(11):"3423–3433.
[5] PRASAD"S,"STEZIN"A,"LENKA"A,"et"al."Three-dimensional"neuromelanin-sensitive"magnetic"resonance"imaging"of"the"substantia"nigra"in"Parkinson’s"disease[J]."Eur"J"Neurol,"2018,"25(4):"680–686.
[6] ZHOU"J,"HEO"H"Y,"KNUTSSON"L,"et"al."APT-weighted"MRI:"Techniques,"current"neuro"applications,"and"challenging"issues[J]."J"Magn"Reson"Imaging,"2019,"50(2):"347–364.
[7] KAMIMURA"K,"NAKAJO"M,"YONEYAMA"T,"et"al."Amide"proton"transfer"imaging"of"tumors:"Theory,"clinical"applications,"pitfalls,"and"future"directions[J]."Jpn"J"Radiol,"2019,"37(2):"109–116.
[8] SASAKI"M,"SHIBATA"E,"TOHYAMA"K,"et"al."Neuromelanin"magnetic"resonance"imaging"of"locus"ceruleus"and"substantia"nigra"in"Parkinson’s"disease[J]."Neuroreport,"2006,"17(11):"1215–1218.
[9] WHETSELL"WO"J"R."The"mammalian"striatum"and"neurotoxic"injury[J]."Brain"Pathol,"2002,"12(4):"482–487.
[10] MORI"F,"TANJI"K,"ZHANG"H,"et"al."Alpha-synuclein"pathology"in"the"neostriatum"in"Parkinson’s"disease[J]."Acta"Neuropathol,"2008,"115(4):"453–459.
[11] WALLIS"L"I,"PALEY"M"N,"GRAHAM"J"M,"et"al."MRI"assessment"of"basal"ganglia"iron"deposition"in"Parkinson’s"disease[J]."J"Magn"Reson"Imaging,"2008,"28(5):"1061–1067.
[12] DOU"W,"LIN"C"E,"DING"H,"et"al."Chemical"exchange"saturation"transfer"magnetic"resonance"imaging"and"its"main"and"potential"applications"in"pre-clinical"and"clinical"studies[J]."Quant"Imaging"Med"Surg,"2019,"9(10):"1747–1766.
[13] VAN"ZIJL"P"C,"YADAV"N"N."Chemicalnbsp;exchange"saturation"transfer"(CEST):"What"is"in"a"name"and"what"isn't?[J]."Magn"Reson"Med,"2011,"65(4):"927–948.
[14] 閆爽,"李明利,"金征宇."化學(xué)交換飽和轉(zhuǎn)移技術(shù)原理及應(yīng)用進(jìn)展[J]."磁共振成像,"2016,"7(4):"241–248.
[15] WARD"K"M,"ALETRAS"A"H,"BALABAN"R"S."A"new"class"of"contrast"agents"for"MRI"based"on"proton"chemical"exchange"dependent"saturation"transfer"(CEST)[J]."J"Magn"Reson,"2000,"143(1):"79–87.
[16] ZHOU"J,"PAYEN"J"F,"WILSON"D"A,"et"al."Using"the"amide"proton"signals"of"intracellular"proteins"and"peptides"to"detect"pH"effects"in"MRI[J]."Nat"Med,"2003,"9(8):"1085–1090.
[17] ZHOU"J,"LAL"B,"WILSON"D"A,"et"al."Amide"proton"transfer"(APT)"contrast"for"imaging"of"brain"tumors[J]."Magn"Reson"Med,"2003,"50(6):"1120–1126.
[18] LI"C,"PENG"S,"WANG"R,"et"al."Chemical"exchange"saturation"transfer"MR"imaging"of"Parkinson’s"disease"at"3"tesla[J]."Eur"Radiol,"2014,"24(10):"2631–2639.
[19] LI"W,"JIANG"H,"SONG"N,"et"al."Oxidative"stress"partially"contributes"to"iron-induced"α-synuclein"aggregation"in"SK-N-SH"cells[J]."Neurotox"Res,"2011,"19(3):"435–442.
[20] HARE"D"J,"DOUBLE"K"L."Iron"and"dopamine:"A"toxic"couple[J]."Brain,"2016,"139(Pt"4):"1026–1035.
[21] ACOSTA-CABRONERO"J,"CARDENAS-BLANCO"A,"BETTS"M"J,"et"al."The"whole-brain"pattern"of"magnetic"susceptibility"perturbations"in"Parkinson’s"disease[J]."Brain,"2017,"140(1):"118–131.
[22] HAACKE"E"M,"LIU"S,"BUCH"S,"et"al."Quantitative"susceptibility"mapping:"Current"status"and"future"directions[J]."Magn"Reson"Imaging,"2015,"33(1):"1–25.
[23] AGGARWAL"M,"LI"X,"GR?HN"O,"et"al."Nuclei-"specific"deposits"of"iron"and"calcium"in"the"rat"thalamus"after"status"epilepticus"revealed"with"quantitative"susceptibility"mapping"(QSM)[J]."J"Magn"Reson"Imaging,"2018,"47(2):"554–564.
[24] WARD"R"J,"ZUCCA"F"A,"DUYN"J"H,"et"al."The"role"of"iron"in"brain"ageing"and"neurodegenerative"disorders[J]."Lancet"Neurol,"2014,"13(10):"1045–1060.
[25] KORDOWER"J"H,"OLANOWnbsp;C"W,"DODIYA"H"B,"et"al."Disease"duration"and"the"integrity"of"the"nigrostriatal"system"in"Parkinson’s"disease[J]."Brain,"2013,"136(Pt"8):"2419–2431.
[26] AZUMA"M,"HIRAI"T,"YAMADA"K,"et"al."Lateral"asymmetry"and"spatial"difference"of"iron"deposition"in"the"substantia"nigra"of"patients"with"Parkinson"disease"measured"with"quantitative"susceptibility"mapping[J]."AJNR"Am"J"Neuroradiol,"2016,"37(5):"782–788.
[27] MURAKAMI"Y,"KAKEDA"S,"WATANABE"K,"et"al."Usefulness"of"quantitative"susceptibility"mapping"for"the"diagnosis"of"Parkinson"disease[J]."AJNR"Am"J"Neuroradiol,"2015,"36(6):"1102–1108.
[28] KIM"E"Y,"SUNG"Y"H,"SHIN"H"G,"et"al."Diagnosis"of"early-stage"idiopathic"Parkinson’s"disease"using"high-"resolution"quantitative"susceptibility"mapping"combined"with"histogram"analysis"in"the"substantia"nigra"at"3"T[J]."J"Clin"Neurol,"2018,"14(1):"90–97.
[29] HUGHES"A"J,"DANIEL"S"E,"BEN-SHLOMO"Y,"et"al."The"accuracy"of"diagnosis"of"Parkinsonian"syndromes"in"a"specialist"movement"disorder"service[J]."Brain,"2002,"125(Pt"4):"861–870.
[30] ITO"K,"OHTSUKA"C,"YOSHIOKA"K,"et"al."Differential"diagnosis"of"Parkinsonism"by"a"combined"use"of"diffusion"kurtosis"imaging"and"quantitative"susceptibility"mapping[J]."Neuroradiology,"2017,"59(8):"759–769.
[31] ZECCA"L,"SHIMA"T,"STROPPOLO"A,"et"al."Interaction"of"neuromelanin"and"iron"in"substantia"nigra"and"other"areas"of"human"brain[J]."Neuroscience,"1996,"73(2):"407–415.
[32] SULZER"D,"CASSIDY"C,"HORGA"G,"et"al."Neuromelanin"detection"by"magnetic"resonance"imaging"(MRI)"and"its"promise"as"a"biomarker"for"Parkinson’s"disease[J]."NPJ"Parkinsons"Dis,"2018,"4:"11.
[33] MIYOSHI"F,"OGAWA"T,"KITAO"S"I,"et"al."Evaluation"of"Parkinson"disease"and"Alzheimer"disease"with"the"use"of"neuromelanin"MR"imaging"and"123I-metaiodobenzylguanidine"scintigraphy[J]."AJNR"Am"J"Neuroradiol,"2013,"34(11):"2113–2118.
[34] ISAIAS"I"U,"TRUJILLO"P,"SUMMERS"P,"et"al."Neuromelanin"imaging"and"dopaminergic"loss"in"Parkinson’s"disease[J]."Front"Aging"Neurosci,"2016,"8:"196.
[35] MAYERHOEFER"M"E,"MATERKA"A,"LANGS"G,"et"al."Introduction"to"radiomics[J]."J"Nucl"Med,"2020,"61(4):"488–495.
[36] ZHANG"D,"CHEN"X,"ZHU"D,"et"al."Intrapulmonary"lymph"node"metastasis"is"common"in"clinically"staged"IA"adenocarcinoma"of"the"lung[J]."Thorac"Cancer,"2019,"10(2):"123–127.
[37] SHU"Z"Y,"CUI"S"J,"WU"X,"et"al."Predicting"the"progression"of"Parkinson’s"disease"using"conventional"MRI"and"machine"learning:"An"application"of"radiomic"biomarkers"in"whole-brainnbsp;white"matter[J]."Magn"Reson"Med,"2021,"85(3):"1611–1624.
[38] KANG"J"J,"CHEN"Y,"XU"G"D,"et"al."Combining"quantitative"susceptibility"mapping"to"radiomics"in"diagnosing"Parkinson’s"disease"and"assessing"cognitive"impairment[J]."Eur"Radiol,"2022,"32(10):"6992–7003.
[39] LIU"P,"WANG"H,"ZHENG"S,"et"al."Parkinson’s"disease"diagnosis"using"neostriatum"radiomic"features"based"on"T2-weighted"magnetic"resonance"imaging[J]."Front"Neurol,"2020,"11:"248.
[40] 李星江,"薛培源,"呂坤雪,"等."基于NM-MRI的影像組學(xué)在帕金森病診斷中的價值[J]."中國醫(yī)藥科學(xué),2022,"12(23):"160–163.
[41] SHINDE"S,"PRASAD"S,"SABOO"Y,"et"al."Predictive"markers"for"Parkinson’s"disease"using"deep"neural"nets"on"neuromelanin"sensitive"MRI[J]."Neuroimage"Clin,"2019,"22:"101748.
(收稿日期:2024–09–13)
(修回日期:2024–11–18)