[摘要]"呼吸道傳染病是發(fā)病率較高的一類疾病,病原體檢測(cè)是該類傳染病防治的關(guān)鍵措施之一。高通量快速檢測(cè)技術(shù)可單次檢測(cè)多個(gè)樣品或在同一反應(yīng)體系中同時(shí)進(jìn)行多項(xiàng)檢測(cè),具有速度快、準(zhǔn)確度高等優(yōu)點(diǎn)。多重聚合酶鏈反應(yīng)、基因測(cè)序、生物芯片技術(shù)是當(dāng)前在呼吸道傳染病檢測(cè)中應(yīng)用較為廣泛的高通量快速檢測(cè)技術(shù)。本文探討上述3種技術(shù)的優(yōu)缺點(diǎn),并對(duì)高通量快速檢測(cè)技術(shù)的發(fā)展前景進(jìn)行展望。
[關(guān)鍵詞]"高通量快速檢測(cè)技術(shù);病原體;檢測(cè);呼吸道傳染病
[中圖分類號(hào)]"R446.5;R51""""""[文獻(xiàn)標(biāo)識(shí)碼]"A""""""[DOI]"10.3969/j.issn.1673-9701.2024.36.025
呼吸道傳染病的發(fā)病率較高,其造成的疾病負(fù)擔(dān)日益加重[1-2]。呼吸道傳染病可通過飛沫、氣溶膠、直接接觸途徑傳播[3]。引發(fā)呼吸道疾病的病原體主要包括細(xì)菌、病毒和支原體等[4-5];各種病原體引發(fā)呼吸道疾病的臨床表現(xiàn)十分相似,難以區(qū)分[6]。故病原體的快速檢出關(guān)系到患者的隔離和治療措施,進(jìn)而影響患者的康復(fù)效果和疾病的傳播情況[7]。傳統(tǒng)病原體檢測(cè)技術(shù)操作步驟煩瑣、檢測(cè)時(shí)間較長,難以滿足當(dāng)前衛(wèi)生健康工作需求,急需研發(fā)新的病原體高通量快速檢測(cè)技術(shù)。
高通量快速檢測(cè)技術(shù)是一種可單次檢測(cè)多個(gè)樣品或在同一設(shè)備體系中可同時(shí)進(jìn)行多項(xiàng)檢測(cè)的技術(shù),相比于其他檢測(cè)技術(shù),高通量快速檢測(cè)技術(shù)優(yōu)勢(shì)明顯。本文重點(diǎn)闡述多重聚合酶鏈反應(yīng)(multiplex"polymerase"chain"reaction,mPCR)、全基因組測(cè)序(whole"genome"sequencing,WGS)和生物芯片技術(shù)的原理,并分析各自的優(yōu)缺點(diǎn)及當(dāng)前的研究現(xiàn)狀,為今后病原體檢測(cè)領(lǐng)域的快速發(fā)展提供參考。
1""mPCR技術(shù)
mPCR是在同一聚合酶鏈反應(yīng)(polymerase"chain"reaction,PCR)體系里加入兩對(duì)及以上引物并擴(kuò)增出多個(gè)核酸片段的技術(shù),其反應(yīng)原理、所需試劑和操作步驟與傳統(tǒng)PCR無異。傳統(tǒng)PCR應(yīng)用一對(duì)引物擴(kuò)增產(chǎn)生一個(gè)核酸片段,僅用于單一病原體檢測(cè)。mPCR既保留傳統(tǒng)PCR特異性強(qiáng)、靈敏度高的特點(diǎn),又能快速檢測(cè)多種病原體,是一種經(jīng)濟(jì)、高效的檢測(cè)方法[8-11]。在檢測(cè)數(shù)量方面,mPCR通??蓪?shí)現(xiàn)一個(gè)病原體2~4個(gè)基因或2~4個(gè)目標(biāo)病原體的同時(shí)檢測(cè),甚至更多。Miringu等[12]開發(fā)一種用于檢出包括肺炎克雷伯菌等11種細(xì)菌的mPCR檢測(cè)方法。另有學(xué)者設(shè)計(jì)一種基于擴(kuò)增子基因組富集的mPCR高通量引物及能創(chuàng)建LRRK2基因編碼區(qū)域的二代測(cè)序(next-generation"sequencing,NGS)面板,并使用該面板研究354個(gè)DNA樣本,其中至少有30個(gè)讀數(shù)覆蓋目標(biāo)區(qū)域97.4%的中位覆蓋率[13]。Oh等[14]研究證實(shí),應(yīng)用mPCR能快速檢測(cè)(約1h)包括百日咳在內(nèi)的病原體。
雖然mPCR優(yōu)勢(shì)顯著,應(yīng)用廣泛。但諸多因素會(huì)影響mPCR的檢測(cè)結(jié)果[15];樣品成分較復(fù)雜(如病原體含量低或含有其他物質(zhì))易導(dǎo)致檢測(cè)靈敏度降低,出現(xiàn)假陰性結(jié)果。當(dāng)前研究方向主要是通過優(yōu)化mPCR的反應(yīng)條件,并與其他技術(shù)聯(lián)合應(yīng)用以進(jìn)一步完善檢測(cè)體系,提高其在檢測(cè)過程中的有效性與可行性。有學(xué)者提出基于mPCR的呼吸道病毒納米孔測(cè)序快速檢測(cè)技術(shù),該技術(shù)簡(jiǎn)單快捷,可實(shí)時(shí)獲取擴(kuò)增片段的序列信息,特異性強(qiáng),靈敏度高[16]。有學(xué)者將mPCR與其他高通量測(cè)序技術(shù)結(jié)合,設(shè)計(jì)適用于人腺病毒亞型全基因組擴(kuò)增的mPCR引物,通過Illumina"NGS技術(shù)進(jìn)行高通量測(cè)序[17]。Zhao等[18]利用嚴(yán)重急性呼吸綜合征冠狀病毒2(severe"acute"respiratory"syndrome"coronavirus"2,SARS-CoV-"2)非變異體及合成的攜帶SARS-CoV-2變異體的質(zhì)粒核酸序列,建立基于mPCR擴(kuò)增產(chǎn)物單堿基質(zhì)量探針延伸的基質(zhì)輔助激光解吸電離飛行時(shí)間質(zhì)譜方法,該方法可實(shí)現(xiàn)多位點(diǎn)同時(shí)檢測(cè),解決WGS技術(shù)耗時(shí)、成本高、技術(shù)要求高的問題。為克服mPCR難以區(qū)分死病原體和活病原體的缺陷,有學(xué)者通過加入疊氮溴化乙錠、疊氮溴化丙錠的方式使死病原體的DNA分子在擴(kuò)增時(shí)被抑制,從而提高mPCR檢測(cè)活病原體的準(zhǔn)確率[19]。
2""基因測(cè)序技術(shù)
WGS通過半導(dǎo)體感應(yīng)器對(duì)DNA復(fù)制時(shí)產(chǎn)生的離子流進(jìn)行檢測(cè),主要用于對(duì)未知病原體進(jìn)行基因組測(cè)序,可從未知病原體標(biāo)本中快速、低成本檢測(cè)并識(shí)別未知病原體。該技術(shù)的主要優(yōu)點(diǎn)是讀數(shù)時(shí)間更長、樣本制備更簡(jiǎn)單,無須培養(yǎng),無須進(jìn)行PCR擴(kuò)增,還可實(shí)現(xiàn)單分子測(cè)序。宏基因組二代測(cè)序(metagenomics"next"generation"sequencing,mNGS)技術(shù)可直接利用患者標(biāo)本進(jìn)行核酸檢測(cè)以獲得病原體的基因序列,無須培養(yǎng)、無偏好性、陽性率高。目前,測(cè)序技術(shù)已發(fā)展出長讀測(cè)序、單細(xì)胞基因組學(xué)和納米孔測(cè)序技術(shù)[20]。應(yīng)用廣泛的Illumina測(cè)序平臺(tái)作為NGS技術(shù)的典范,利用邊合成、邊測(cè)序的大規(guī)模并行測(cè)序原理,檢測(cè)結(jié)果準(zhǔn)確、穩(wěn)定。Heikema等[21]使用Illumina"MiSeq和Oxford"Nanopore"16S"rRNA基因測(cè)序技術(shù)對(duì)59個(gè)鼻拭子進(jìn)行白喉棒狀桿菌測(cè)序,結(jié)果表明Illumina平臺(tái)檢測(cè)鼻腔微生物群細(xì)菌屬的能力與納米孔測(cè)序平臺(tái)相當(dāng)。Winand等[22]使用特征明確的參考樣本,對(duì)第二代(Illumina)和第三代(Oxford"Nanopore"Technologies)測(cè)序技術(shù)的16s靶向基因組學(xué)進(jìn)行比較評(píng)估,結(jié)果表明該技術(shù)能可靠地識(shí)別細(xì)菌屬,快速分析混合樣品而無須任何培養(yǎng)步驟。Illumina公司推出的NovaSeq"6000系統(tǒng),具有更強(qiáng)的靈活性,可將多種類型的測(cè)序試劑盒與雙流動(dòng)槽模式結(jié)合,實(shí)現(xiàn)高擴(kuò)展性的測(cè)序輸出,匹配從完整基因組測(cè)序到宏基因組學(xué)分析的廣泛應(yīng)用[23]。
相對(duì)于WGS技術(shù),NGS技術(shù)的成本更低、效率更高,檢測(cè)結(jié)果一致。Yang等[24]采用靶向二代測(cè)序(targeted"next-generation"sequencing,tNGS)技術(shù)檢測(cè)支氣管灌洗液中的肺結(jié)核,結(jié)果表明tNGS技術(shù)的敏感度高、特異性強(qiáng),在病原體檢測(cè)中具有獨(dú)特優(yōu)勢(shì)。Murphy等[25]使用+NGS技術(shù)直接檢測(cè)耐藥結(jié)核分枝桿菌,對(duì)55個(gè)結(jié)核分枝桿菌陽性培養(yǎng)物進(jìn)行tNGS檢測(cè),并將結(jié)果與配對(duì)患者培養(yǎng)物的WGS檢測(cè)結(jié)果進(jìn)行比較,發(fā)現(xiàn)82%的涂片陽性原發(fā)標(biāo)本生成完整或部分易感性譜,tNGS識(shí)別的抗性突變與WGS一致。Miah等[26]建立一種直接從臨床標(biāo)本中對(duì)流感病毒亞型進(jìn)行測(cè)序的方法,成功對(duì)19個(gè)甲型流感病毒陽性臨床樣本進(jìn)行WGS檢測(cè),所有片段的覆蓋率為100%,從提取RNA到獲得完成的序列僅需24h。然而有學(xué)者提出,雖然tNGS能檢測(cè)出少數(shù)變異基因序列及檢測(cè)出比焦磷酸測(cè)序(pyrosequencing,PSQ)更多的靶標(biāo),但PSQ仍是部分三級(jí)實(shí)驗(yàn)室的診斷選擇[27]。
納米孔技術(shù)通過在膜的正向和反向分別將陰極和陽極施加到溶液中實(shí)現(xiàn)病原體的檢測(cè)。帶負(fù)電荷的生物分子(如DNA)在施加電壓的電泳力作用下穿過膜上的孔。不同分子通過孔隙轉(zhuǎn)移時(shí)可捕獲不同水平的電流,利用計(jì)算機(jī)輔助工具進(jìn)行病原體檢測(cè)。納米孔測(cè)序技術(shù)具有便于攜帶、實(shí)時(shí)測(cè)序、超長讀數(shù)等優(yōu)點(diǎn)。近年來,納米孔測(cè)序技術(shù)發(fā)展迅速。曹藍(lán)等[28]利用納米孔測(cè)序技術(shù)對(duì)新型重組H3N2禽流感病毒進(jìn)行測(cè)序,發(fā)現(xiàn)該病毒與H5N6禽流感病毒發(fā)生基因重組。納米孔測(cè)序技術(shù)的錯(cuò)誤率較高(5%~20%)[29]。有學(xué)者基于高級(jí)計(jì)算技術(shù)的堿基讀取方法,設(shè)計(jì)增加覆蓋度實(shí)現(xiàn)更高測(cè)序準(zhǔn)確度的方案[30]。綜上,基因測(cè)序技術(shù)具有高精度、高速、低成本解讀等優(yōu)點(diǎn),但也存在后續(xù)分析困難和設(shè)備高昂的問題,在大規(guī)模推廣應(yīng)用中存在一定難度。
3""生物芯片技術(shù)
基因芯片又稱為DNA微陣列,是分子生物學(xué)領(lǐng)域廣泛應(yīng)用的一種重要的體外分子診斷工具[31]?;蛐酒晒潭ㄔ诠腆w玻璃載玻片或硅基片上的微小DNA點(diǎn)組成,可同時(shí)分析數(shù)千個(gè)基因,以探索基因調(diào)控機(jī)制、識(shí)別生物標(biāo)志物和檢測(cè)病原體。由于其具有平行化、自動(dòng)化和微型化優(yōu)點(diǎn),并可同時(shí)在一張芯片上進(jìn)行多個(gè)目標(biāo)病原體的檢測(cè),且試劑消耗少等特點(diǎn)而廣泛應(yīng)用于不同檢測(cè)環(huán)境中。
生物芯片主要用于傳染病的診斷、治療和預(yù)防,其發(fā)展依賴于傳感化學(xué)、微陣列制造(電子技術(shù))和信息技術(shù)等多種技術(shù)。生物芯片技術(shù)可直接用于臨床標(biāo)本中耐藥結(jié)核病的診斷[32-33]。采用生物芯片技術(shù)進(jìn)行分枝桿菌種類鑒定研究證明生物芯片技術(shù)可快速鑒定痰標(biāo)本中大多數(shù)分枝桿菌[34]。生物芯片技術(shù)在小型化、便攜式研發(fā)方面發(fā)展較快。Wang等[35]開發(fā)的集成便攜式低成本定制檢測(cè)器和新型微孔陣列生物芯片平臺(tái),可快速準(zhǔn)確地檢測(cè)SARS-CoV-2,并在25min內(nèi)實(shí)現(xiàn)比色讀數(shù)?;诩傻倪B續(xù)流PCR和電泳生物芯片原理,Li等[36]制造一種用于快速診斷病原體的便攜式一體化微流控裝置,實(shí)現(xiàn)快速DNA擴(kuò)增和現(xiàn)場(chǎng)PCR產(chǎn)物檢測(cè),可在2min31s內(nèi)完成擴(kuò)增,3min43s內(nèi)完成PCR產(chǎn)物檢測(cè)。Zhang等[37]報(bào)道的用于直接檢測(cè)RNA的微流控RNA芯片(微芯片原型)具有高特異性(區(qū)分單核苷酸差異)、快速性、準(zhǔn)確性、核酸酶抗性和可重復(fù)使用性等特點(diǎn)。
近年來,生物芯片技術(shù)向電化學(xué)芯片、磁光芯片、化學(xué)蝕刻方面發(fā)展,進(jìn)一步提高芯片技術(shù)的檢測(cè)效率。Manickam等[38]介紹一種用于高性能分子檢測(cè)的互補(bǔ)金屬氧化物半導(dǎo)體集成電化學(xué)生物芯片,可進(jìn)行基于陣列的DNA檢測(cè)分析及DNA熔解分析和實(shí)時(shí)無標(biāo)記DNA雜交檢測(cè)。Chen等[39]開發(fā)一種基于γ-Fe2O3@Au核/殼磁性納米顆粒的Cotton-Mouton效應(yīng)的磁光生物芯片,用于檢測(cè)SARS-CoV-2,整個(gè)測(cè)試時(shí)間僅需50min。Gogianu等[40]開發(fā)的檢測(cè)平臺(tái),使用一部納米銀催化刻蝕法在硅納米線基底上組裝3D微陣列芯片,可實(shí)現(xiàn)最佳信號(hào)強(qiáng)度(4.303,3.7)和變異系數(shù)(3.12%,2.59%),該平臺(tái)在DNA檢測(cè)方面有巨大潛力。
雖然生物芯片在病原體檢測(cè)方面具有很大的優(yōu)勢(shì),但現(xiàn)有的單個(gè)生物芯片檢測(cè)敏感度低、重復(fù)性差、分析范圍窄,需要進(jìn)行技術(shù)集成才能大規(guī)模運(yùn)用。芯片傳感器和低功耗數(shù)據(jù)傳輸?shù)南拗谱璧K生物芯片技術(shù)的發(fā)展[41]。
4""小結(jié)與展望
高通量快速檢測(cè)技術(shù)作為一種新型技術(shù),具有傳統(tǒng)檢測(cè)方法沒有的優(yōu)勢(shì),成為病原微生物領(lǐng)域的研究熱點(diǎn)。各種檢測(cè)方法各有利弊,仍處于完善階段。在今后的發(fā)展過程中,需解決以下問題:第一,病原體含量較低。多數(shù)情況下,樣品中病原體含量很低,且存在其他干擾成分,需對(duì)樣品進(jìn)行前處理或培養(yǎng)。傳統(tǒng)方法培養(yǎng)時(shí)間較長,因此需開發(fā)一批可快速富集多種目標(biāo)病原體的培養(yǎng)基,這是實(shí)現(xiàn)高通量快速檢測(cè)的關(guān)鍵。第二,區(qū)分假陽性/陰性結(jié)果。在病原體檢測(cè)過程中,已死亡無活性的病原體仍可被檢出,以致出現(xiàn)假陽性。有些亞致死細(xì)胞經(jīng)培養(yǎng)后未修復(fù),導(dǎo)致無法檢出,以致出現(xiàn)假陰性。因此,需要對(duì)現(xiàn)有方法進(jìn)行改進(jìn)以有效區(qū)別有無活性的病原體,從而避免檢測(cè)中出現(xiàn)假陽性/陰性結(jié)果,進(jìn)一步提高檢測(cè)結(jié)果的準(zhǔn)確性。第三,提高定量分析準(zhǔn)確度。很多檢測(cè)技術(shù)僅能進(jìn)行半定量或相對(duì)定量分析,而目標(biāo)病原體的快速準(zhǔn)確定量分析則與疾病的后續(xù)處置密切相關(guān)。隨著檢測(cè)技術(shù)的發(fā)展,呼吸道病原體的高通量快速檢測(cè)必將成為現(xiàn)實(shí)。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻(xiàn)]
[1] MARR"L"C,"SAMET"J"M."Reducing"transmission"of"airborne"respiratory"pathogens:"A"new"beginning"as"the"COVID-19"emergency"ends[J]."Environ"Health"Perspect,"2024,"132(5):"55001.
[2] ASPLIN"P,"KEELING"M"J,"MANCY"R,"et"al."Epidemiological"and"health"economic"implications"of"symptom"propagation"in"respiratory"pathogens:"A"mathematical"modelling"investigation[J]."PLoS"Comput"Biol,"2024,"20(5):"e1012096.
[3] P?HLKER"M,"P?HLKER"C,"KRüGER"O"O,"et"al."Respiratory"aerosols"and"droplets"in"the"transmission"of"infectious"diseases[J/OL]."Rev"Mod"Phys,"2021."(2021-"08-04)[2024-12-06]."https://www.semanticscholar.org/"reader/14daaa70aa9e59b15bff575a334878d958a12f2b.
[4] BELCHER"T,"DUBOIS"V,"RIVERA-MILLOT"A,"et"al."Pathogenicity"and"virulence"of"Bordetella"pertussis"and"its"adaptation"to"its"strictly"human"host"virulence[J]."2021,"12(1):"2608–2632.
[5] MORIYAMA"M,"HUGENTOBLER"W"J,"IWASAKI"A."Seasonality"of"respiratory"viral"infections[J]."Annu"Rev"Virol,"2020,"7(1):"83–101.
[6] ROSSI"A,"BASILICATA"S,"BORRELLI"M,"et"al."Clinical"and"biochemical"footprints"of"inherited"metabolic"diseases."Ⅻ."Respiratory"manifestations[J]."Mol"Genet"Metab,"2023,"140(3):"107655.
[7] DE"ARAUJO"W"R,"LUKAS"H,"TORRES"M"D"T,"et"al."Low-cost"biosensor"technologies"for"rapid"detection"of"COVID-19"and"future"pandemics[J]."ACS"Nano,"2024,"18(3):"1757–1777.
[8] 王曼,"吳衍恒,"羅樂,"等."多重PCR檢測(cè)技術(shù)在3起小學(xué)呼吸道暴發(fā)疫情中的應(yīng)用[J]."醫(yī)學(xué)動(dòng)物防制,"2022,"38"(12):"1192–1194.
[9] XU"J"N,"PAN"M,"LI"T"S,"et"al."The"use"of"a"multiplex"real-time"PCR"assay"for"rapid"diagnosing"acute"respiratory"viral"infections"in"children[J]."J"Trop"Med,"2019,"19(12):"1468–1471,"1476.
[10] DUFF"S,"HASBUN"R,"GINOCCHIO"C"C,"et"al."Economic"analysis"of"rapid"multiplex"polymerase"chain"reaction"testing"for"meningitis/encephalitis"in"pediatric"patients[J]."Future"Microbiol,"2018,"13:"617–629.
[11] RADMARD"S,"REID"S,"CIRYAM"P,"et"al."Clinical"utilization"of"the"filmarray"meningitis/encephalitis"(ME)"multiplex"polymerase"chain"reaction"(PCR)"assay[J]."Front"Neurol,nbsp;2019,"10:"281.
[12] MIRINGU"G,"MUSYOKI"A,"MURIITHI"B,"et"al."Development"of"two"multiplex"PCR"assays"for"rapid"detection"of"eleven"gram-negative"bacteria"in"children"with"septicemia[J]."Trop"Med"Health,"2024,"52(1):"40.
[13] KECHIN"A,"BOROBOVA"V,"BOYARSKIKH"U,"et"al."NGS-PrimerPlex:"High-throughput"primer"design"for"multiplex"polymerase"chain"reactions[J],"PLoS"Comput"Biol,"2020,"16(12):"e1008468.
[14] OH"S"C,"PARK"S"M,"HUR"J,"et"al."Effectiveness"of"rapid"multiplex"polymerase"chain"reaction"for"early"diagnosis"and"treatment"of"pertussis[J]."J"Microbiol"Immunol"Infect,"2021,"54(4):"687–692.
[15] 劉宇奇,"黃艷智,"孫利偉,"等."基于毛細(xì)管電泳多重PCR方法對(duì)小兒呼吸道感染病原分析[J]."中國小兒急救醫(yī)學(xué),"2019,"26(10):"764–770.
[16] 張述耀,"侯鐵英,"黎小妍,"等."納米孔測(cè)序在病原微生物檢測(cè)中的應(yīng)用專家共識(shí)[J]."中國藥房,"2024,"35(14):"1673–1682.
[17] 申業(yè)壯,"劉冉,"尹曉堯,"等."基于多重PCR的呼吸道病毒納米孔測(cè)序快速檢測(cè)的方法學(xué)研究[J]."軍事醫(yī)學(xué),"2023,"47(11):"823–828.
[18] ZHAO"F,"LU"J,"LU"B,"et"al."A"novel"strategy"for"the"detection"of"SARS-CoV-2"variants"based"on"multiplex"PCR-mass"spectrometry"minisequencing"technology[J]."Microbiol"Spectr,"2021,"9(3):"e0126721.
[19] NOCKER"A,"CHEUNG"C"Y,"CAMPER"A"K."Comparison"of"propidium"monoazide"with"ethidium"monoazide"for"differentiation"of"live"vs."dead"bacteria"by"selective"removal"of"DNA"from"dead"cells[J]."J"Microbiol"Methods,"2006,"67(2):"310–320.
[20] BRLEK"P,"BULI?"L,"BRA?I?"M,"et"al."Implementing"whole"genome"sequencing"(WGS)"in"clinical"practice:"Advantages,"challenges,"and"future"perspectives[J]."Cells,"2024,"13(6):"504.
[21] HEIKEMA"A"P,"HORST-KREFT"D,"BOERS"S"A,"et"al."Comparison"of"illumina"versus"nanopore"16S"rRNA"gene"sequencing"of"the"human"nasal"microbiota[J]."Genes,"2020,"11(9):"1105.
[22] WINAND"R,"BOGAERTS"B,"HOFFMAN"S,"et"al."Targeting"the"16s"rRNA"gene"for"bacterial"identification"in"complex"mixed"samples:"comparative"evaluation"of"second"(illumina)"and"third"(oxford"nanopore"technologies)"generation"sequencing"technologies[J]."Int"J"Mol"Sci,"2019,"21(1):"298.
[23] MODI"A,"VAI"S,"CARAMELLI"D,nbsp;et"al."The"illumina"sequencing"protocol"and"the"NovaSeq"6000"system[M]."New"York:"Springer"US,"2021.
[24] YANG"Z,"TANG"Y,"SHAN"S."Bronchial"lavage"tNGS"in"the"diagnosis"of"pulmonary"tuberculosis[J/OL]."Technol"Health"Care,"2024."(2024-07-20)[2024-12-07]."https://content."iospress.com/articles/technology-and-health-care/thc240823.
[25] MURPHY"S"G,"SMITH"C,"LAPIERRE"P,"et"al."Direct"detection"of"drug-resistant"Mycobacterium"tuberculosis"using"targeted"next"generation"sequencing[J]."Front"Public"Health,"2023,"11:"1206056.
[26] MIAH"M,"HOSSAIN"M"E,"HASAN"R,"et"al."Culture-"independent"workflow"for"nanopore"minion-based"sequencing"of"influenza"a"virus[J]."Microbiol"Spectr,"2023,"11(3):"e0494622.
[27] KAMBLI"P,"AJBANI"K,"ANDREWS"A"A,"et"al."Targeted"next"generation"sequencing"(tNGS)"for"detection"of"drug-resistant"tuberculous"meningitis:"Is"this"sequencing"technology"ready"for"prime"time?[J]."Indian"J"Med"Microbiol,"2024,"51:"100665.
[28] 曹藍(lán),"夏丹,"陳藝韻,"等."基于納米孔測(cè)序技術(shù)對(duì)新型重組H3N2禽流感病毒的測(cè)序鑒定及其基因特征分析[J]."中華流行病學(xué)雜志,"2024,"45(4):"574–578.
[29] KONO"N,"ARAKAWA"K."Nanopore"sequencing:"Review"of"potential"applications"in"functional"genomics[J]."Dev"Growth"Differ,"2019,"61(5):"316–326.
[30] 林勤清,"周華."納米孔測(cè)序技術(shù)在臨床感染性疾病病原診斷中的應(yīng)用[J]."現(xiàn)代實(shí)用醫(yī)學(xué),"2023,"35(3):"281–284.
[31] RODOPLU"SOLOVCHUK"D."Advances"in"AI-assisted"biochip"technology"for"biomedicine[J]."Biomed"Pharmacother,"2024,"177:"116997.
[32] FENG"G,"HAN"W,"SHI"J,"et"al."Analysis"of"the"application"of"a"gene"chip"method"for"detecting"mycobacterium"tuberculosis"drug"resistance"in"clinical"specimens:"A"retrospective"study[J]."Sci"Rep,"2021,"11(1):"17951.
[33] MOGA"S,"BOBOSHA"K,"FIKADU"D,"et"al."Diagnostic"performance"of"the"GenoType"MTBDRplus"VER"2.0"line"probe"assay"for"the"detection"of"isoniazid"resistant"Mycobacterium"tuberculosis"in"Ethiopia[J]."PLoS"One,"2023,"18(4):"e0284737.
[34] FANG"H,"SHANGGUAN"Y,"WANG"H,"et"al."Multicenter"evaluation"of"the"biochip"assay"for"rapid"detection"of"mycobacterial"isolates"in"smear-positive"specimens[J]."Int"J"Infect"Dis,"2019,"81:"46–51.
[35] WANG"Y,"LI"K,"XU"G,"et"al."Low-cost"and"scalable"platform"with"multiplexed"microwell"array"biochip"for"rapid"diagnosis"of"COVID-19[J]."Research"(Wash"D"C),"2021,"2021:"2813643.
[36] LI"Z,"JU"R,"SEKINE"S,"et"al."All-in-one"microfluidic"device"for"on-site"diagnosis"of"pathogens"based"on"an"integrated"continuous"flow"PCR"and"electrophoresis"biochip[J]."Lab"Chip,"2019,"19(16):"2663–2668.
[37] ZHANG"S,"CHEN"J,"LIU"D,"et"al."A"novel"microfluidic"RNA"chip"for"direct,"single-nucleotide"specific,"rapid"and"partially-degraded"RNA"detection[J]."Talanta,"2022,"239:"122974.
[38] MANICKAM"A,"YOU"K"D,"WOOD"N,"et"al."A"CMOS"electrochemical"biochip"with"32×32"three-electrode"voltammetry"pixels[J]."IEEE"J"Solid-State"Circuits,"2019,"54(11):"2980–2990.
[39] CHEN"K"L,"YANG"Z"Y,"LIN"C"W."A"magneto-optical"biochip"for"rapid"assay"based"on"the"Cotton-Mouton"effect"of"γ-Fe2O3@Au"core/shell"nanoparticles[J]."J"Nanobiotechnology,"2021,"19(1):"301.
[40] GOGIANU"L,"POPESCU"M"C,"VASILE"B"S,"et"al."Microarray"biochip"fabricated"on"silicon"nanowires/"carbon"dots"heterostructures"for"enhanced"viral"DNA"detection[J]."Appl"Surf"Sci,"2023,"636:"157878.
[41] WANG"J,"SUN"B,"ZHU"Z."Biochip"systems"for"intelligence"and"integration[J]."Systems,"2023,"11(1):"43.
(收稿日期:2024–08–28)
(修回日期:2024–12–10)