【摘要】 文章綜合國(guó)內(nèi)外文獻(xiàn),從第2組先天淋巴樣細(xì)胞(ILC2)在支氣管哮喘(哮喘)發(fā)病過(guò)程的作用、針刺調(diào)控ILC2治療哮喘的研究?jī)煞矫孢M(jìn)行總結(jié)。研究初步表明針刺可能是通過(guò)影響ILC2的分泌和遷移功能等途徑,達(dá)到減輕哮喘氣道炎癥、抑制氣道高反應(yīng)性、改善氣道重塑的目的,但現(xiàn)有仍存在針刺調(diào)控哮喘的ILC2相關(guān)通路尚未明確、動(dòng)物實(shí)驗(yàn)及臨床研究少、缺乏針刺經(jīng)ILC2s途徑改善激素抵抗性哮喘的機(jī)制研究等問(wèn)題。
【關(guān)鍵詞】 針刺;第2組先天淋巴樣細(xì)胞;支氣管哮喘;糖皮質(zhì)激素
Research progress on acupuncture regulation of asthma related group 2 innate lymphoid cell function
DONG Min1, LI Hao1, PAN Jiaxin1, ZHANG Kun1,2,3 , GUO Bin4
(1.Department of Acupuncture and Moxibustion, Zhaoqing Hospital, the Third Affiliated Hospital of Sun Yat-sen University, Zhaoqing 526040, China; 2. Department of Acupuncture and Moxibustion, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; 3. Department of Allergy, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China;
4. Ningxia Medical University, Yinchuan 750004, China)
Corresponding author: ZHANG Kun, E-mail: 1486644904@qq.com
【Abstract】 This paper reviews the role of innate lymphoid cells (ILC2s) in the pathogenesis of bronchial asthma and explores the evidence for acupuncture’s regulatory effects on ILC2s in asthma treatment. Preliminary findings suggest that acupuncture may mitigate airway inflammation, curb airway hyperresponsiveness, and enhance airway remodeling in asthma patients by modulating ILC2 secretion and migration. Despite these insights, several challenges remain, including the unclear pathways through which ILC2s are regulated by acupuncture in asthma, a scarcity of animal experiments and clinical studies, and a lack of understanding regarding how acupuncture might improve the mechanisms underlying hormone-resistant asthma via the ILC2 pathway.
【Key words】 Acupuncture; ILC2; Bronchial asthma; Glucocorticoid
支氣管哮喘(哮喘)是由多種炎癥細(xì)胞和細(xì)胞成分參與的慢性氣道炎癥性疾病,以氣道炎癥、氣道高反應(yīng)性等為特征[1],以2型輔助性T細(xì)胞(helper T cell 2,Th2)占優(yōu)勢(shì)的Th1/Th2失衡是哮喘的免疫發(fā)病機(jī)制之一[2]。全球現(xiàn)有超過(guò)3億哮喘患者,且仍在逐年遞增,尋找更為有效的防治方法已刻不容緩。前沿研究表明,先天淋巴樣細(xì)胞(innate lymphoid cell,ILC)在哮喘的發(fā)病中起著重要作用[3]。第2組先天淋巴樣細(xì)胞(2 innate lymphoid cell,ILC2)廣泛分布于腸、肺、腭扁桃體和外周血中,主要依靠白介素-33(interleukin-33,IL-33)及生長(zhǎng)刺激表達(dá)基因2蛋白受體(suppression of tumorigenicity 2,ST2)刺激,分泌Th2型細(xì)胞因子,具有突出的記憶遷移和聚集能力。近年來(lái),ILC2相關(guān)研究已成為哮喘防治的熱點(diǎn)[4-5]。
目前,針灸治療哮喘已在世界范圍內(nèi)得到廣泛應(yīng)用和肯定。美國(guó)國(guó)立衛(wèi)生研究院(National Institutes of Health,NIH)早已將針灸作為治療哮喘有前景的方法進(jìn)行推薦[6]。業(yè)已證實(shí),針刺能有效改善哮喘癥狀,對(duì)與哮喘相關(guān)的免疫細(xì)胞產(chǎn)生顯著的調(diào)節(jié)作用[7-8]。針刺可通過(guò)抑制肺部ILC2的流入,干預(yù)細(xì)胞因子的產(chǎn)生,進(jìn)而緩解哮喘癥狀,這可能是針刺防治哮喘的關(guān)鍵起效因素[9]?,F(xiàn)就近10年來(lái)針刺調(diào)控ILC2細(xì)胞功能和相關(guān)信號(hào)通路,改善哮喘癥狀的基礎(chǔ)研究進(jìn)行綜述,為今后進(jìn)一步探索針刺調(diào)控ILC2的功能及相關(guān)作用機(jī)制夯實(shí)科學(xué)基礎(chǔ)。
1 ILC2在支氣管哮喘中的作用
1.1 ILC2參與2型免疫過(guò)程
哮喘發(fā)病機(jī)制與免疫系統(tǒng)密切相關(guān)。ILC2作為免疫系統(tǒng)中的重要組成部分,在炎癥反應(yīng)、代謝穩(wěn)態(tài)、組織修復(fù)中有重要作用[10]。ILC2的增殖受到抑制,相應(yīng)IL-5、IL-13等2型細(xì)胞因子分泌也會(huì)隨之減少,小鼠肺部急性過(guò)敏性炎癥反應(yīng)隨之減弱[11]。
IL-25、IL-33及胸腺基質(zhì)淋巴細(xì)胞生成素(thymic stromal lymphopoietin, TSLP)均可免疫應(yīng)答ILC2[12]。IL-17家族成員之一的IL-25,可作用于氣道炎癥及氣道高反應(yīng)性發(fā)生發(fā)展過(guò)程中的重要環(huán)節(jié)。IL-33作為IL-1細(xì)胞因子家族分支,通過(guò)結(jié)合肺樹(shù)突細(xì)胞表面ST2受體,誘導(dǎo)Th2型免疫應(yīng)答;IL-7樣細(xì)胞因子TSLP可經(jīng)樹(shù)突狀細(xì)胞和肥大細(xì)胞,進(jìn)而引起Th2型炎癥反應(yīng)發(fā)生[13]。骨髓淋巴祖細(xì)胞經(jīng)轉(zhuǎn)錄因子視黃酸受體相關(guān)孤兒受體α(retinoic acid receptor-related orphan receptor alpha,RORα)和GATA結(jié)合蛋白3(GATA binding protein 3,GATA3)產(chǎn)生ILC2,在變應(yīng)原的刺激下,IL-25、IL-33和TSLP免疫應(yīng)答ILC2,產(chǎn)生大量Th2細(xì)胞因子如IL-13、IL-5,促進(jìn)炎性細(xì)胞浸潤(rùn)及杯狀細(xì)胞分泌黏液,引起炎癥反應(yīng),參與哮喘氣道炎癥的發(fā)生[12, 14]。
另外,活化的ILC2還可分泌雙調(diào)蛋白和集落刺激因子2,與多種細(xì)胞、表皮生長(zhǎng)因子配體、炎性因子等相互作用,共同參與哮喘的炎癥反應(yīng)和氣道重塑的過(guò)程[15]。上述研究表明,ILC2及其上下游物質(zhì)參與哮喘機(jī)體免疫的過(guò)程,在氣道炎癥、氣道高反應(yīng)性以及氣道重塑的發(fā)生、發(fā)展中扮演著重要角色。
1.2 ILC2的“記憶遷移”作用
ILC2的遷移主要由IL-33、IL-25誘導(dǎo)進(jìn)行,多種相關(guān)黏附分子及趨化因子在此過(guò)程中發(fā)揮著重要作用。當(dāng)受到過(guò)敏原攻擊時(shí),機(jī)體產(chǎn)生大量促敏因子IL-25、IL-33和TSLP,它們與ILC2表面受體結(jié)合,刺激Th2型細(xì)胞因子分泌,增加嗜酸性粒細(xì)胞數(shù)量,進(jìn)而誘發(fā)氣道炎癥,驅(qū)動(dòng)氣道高反應(yīng)性,導(dǎo)致哮喘的發(fā)作[16]。
IL-33是外周組織中ILC2的標(biāo)志性激活劑,與其受體ST2結(jié)合誘導(dǎo)多種下游免疫反應(yīng)。骨髓中最成熟的ILC2譜系細(xì)胞,稱為ILC2祖細(xì)胞 (ILC2 progenitor,ILC2P)。有研究者檢測(cè)IL-33基因敲除(IL-33 knockout,IL-33-/-)小鼠和生長(zhǎng)刺激表達(dá)基因2蛋白受體基因敲除(ST2 knockout,ST2-/-)小鼠與野生型(wild type,WT)小鼠ILC2P、ILC2數(shù)量,結(jié)果顯示,小鼠骨髓中ILC2P的數(shù)量明顯增加,外周組織中ILC2的數(shù)量減少,提示ST2和IL-33是ILC2的重要媒介,小鼠肺組織中ILC2數(shù)量的迅速增加可能是來(lái)源于骨髓中ILC2P;同時(shí)ILC2P在ST2-/-小鼠表達(dá)更高水平的CXCR4,可能參與IL-33依賴的ILC2遷移途徑[17]。有研究者將重組IL-33(recombinant IL-33,rIL-33)注入IL-13增強(qiáng)型綠色熒光蛋白融合基因(IL-13 enhanced green fluorescent protein,IL13-eGFP),肺切片顯示ILC2聚集在支氣管周?chē)脱苤車(chē)臻g,且大多數(shù)ILC2展示了“變形蟲(chóng)樣”遷移運(yùn)動(dòng),同時(shí)將rIL-33模型小鼠注入C-C基序趨化因子受體8[chemokine (C-C motif) receptor 8,CCR8]阻斷抗體,結(jié)果顯示ILC2在支氣管周?chē)鷧^(qū)域的積累明顯減少,CCR8阻斷后ILC2遷移減少,證明IL-33誘導(dǎo)肺部炎癥時(shí),ILC2聚集在大血管周?chē)慕M織,并表現(xiàn)出“變形蟲(chóng)樣”遷移運(yùn)動(dòng),CCR8在此遷移過(guò)程中具有重要作用[18]。IL-33可以促進(jìn)ILC2產(chǎn)生前列腺素D2的能力,進(jìn)而通過(guò)趨化因子受體同源分子表達(dá)的Th2細(xì)胞(chemoattractant receptor homologous molecule expressed on Th2 cell,CRTH2)調(diào)節(jié)ILC2的遷移,與普通小鼠相比,CRTH2-缺乏小鼠肺中的IL-33誘導(dǎo)的ILC2積累,但I(xiàn)LC2的增殖或凋亡不受其影響[19-20]。
IL-25受體(IL-25 receptor,IL-25R)被認(rèn)為是肺臟記憶性ILC2的可能分子標(biāo)志[21]。通過(guò)檢測(cè)屋塵螨誘導(dǎo)的過(guò)敏性哮喘模型小鼠氣管、肺、縱隔淋巴結(jié)、小腸固有層、腸系膜淋巴結(jié)以及外周血等部位淋巴系細(xì)胞標(biāo)志物陰性-殺傷細(xì)胞凝集素樣受體G1陽(yáng)性的IL-25受體陽(yáng)性-2型固有淋巴細(xì)胞(lineage-negative killer cell lectin-like receptor G1 positive IL-25R-positive ILC2,Lin-KLRG1+IL-25R+ILC2)細(xì)胞的分布、數(shù)量以及存留時(shí)間,發(fā)現(xiàn)肺部和小腸中Lin-KLRG1+IL-25R+ILC2增加,而外周血、氣管、縱隔淋巴結(jié)、腸系膜淋巴結(jié)中未見(jiàn)明顯改變,提示這類(lèi)細(xì)胞可能是具有“記憶”樣特征的ILC2細(xì)胞;在哮喘緩解第90天,還可在小腸固有層檢測(cè)到大量“記憶”樣ILC2細(xì)胞,說(shuō)明小腸固有層可能是記憶性ILC2細(xì)胞在過(guò)敏緩解期的靜息停駐部位,等待快速應(yīng)答下一次過(guò)敏[22]。實(shí)驗(yàn)給藥阻斷腸中炎癥性ILC2(inflammatory ILC2,iILC2)遷移至肺部后,發(fā)現(xiàn)肺及小腸組織中IL-25 mRNA和鞘氨醇激酶1(sphingosine kinase 1,SPHK1)mRNA、小腸組織中鞘氨醇-1-磷酸受體1(sphingosine-1-phosphate receptor 1,S1PR1)及ILC2(GATA3+上皮細(xì)胞黏附分子+IL-17受體β鏈)、小腸組織中iILC2和天然淋巴樣細(xì)胞(natural ILC2,nILC2)以及肺iILC2表達(dá)水平明顯降低,但對(duì)肺組織中nILC2的表達(dá)水平無(wú)影響,模型小鼠的氣道黏液分泌及炎癥細(xì)胞浸潤(rùn)減輕,炎癥狀態(tài)改善,哮喘樣癥狀明顯緩解[23]。另有研究者使芬戈莫德(FTY720)抑制S1P趨化性途徑,通過(guò)IL-25給藥觸發(fā)腸ILC2的局部增殖和激活,發(fā)現(xiàn)腸ILC2進(jìn)入淋巴系統(tǒng)受阻,遠(yuǎn)端部位出現(xiàn)的ILC2數(shù)量減少,只有少量出現(xiàn)腸系膜淋巴結(jié),說(shuō)明S1PR為此類(lèi)遷移途徑的重要受體;IL-25誘導(dǎo)產(chǎn)生炎癥性iILC2細(xì)胞,下調(diào)CD69表達(dá),上調(diào)S1PR,并以S1P依賴的方式穿過(guò)絨毛淋巴管內(nèi)皮,經(jīng)血液系統(tǒng)聚集在肺部,炎癥反應(yīng)后期,部分iILC2轉(zhuǎn)化為肺部駐留的nILC2,另有部分重新回到小腸固有層、肺及腸中的ILC2共同參與了肺部炎癥反應(yīng)的過(guò)程[24-25]。
ILC2增殖并分泌細(xì)胞因子后,停止分泌細(xì)胞因子到達(dá)靜止收縮期,哮喘癥狀緩解。其中某些特定亞型的ILC2(如對(duì)IL-33、IL-25記憶的ILC2)再次暴露于過(guò)敏原后,迅速?gòu)撵o息部位遷移至過(guò)敏部位,誘發(fā)變態(tài)反應(yīng),具有“記憶遷移”樣特征[26]。某種程度解釋了中醫(yī)學(xué)“肺腸同治”的機(jī)制,腸道及呼吸道簇狀細(xì)胞產(chǎn)生的IL-25可能參與了這一過(guò)程[27]。
2 針灸調(diào)控ILC2相關(guān)分子的研究
雖然哮喘最初被認(rèn)為主要與Th2有關(guān),但近期研究表明ILC2實(shí)際上可能也是哮喘發(fā)展的一個(gè)關(guān)鍵驅(qū)動(dòng)因素[28]。抑制和阻斷ILC2的遷移分泌途徑和相關(guān)蛋白表達(dá)已成為治療哮喘的又一可能途徑。目前關(guān)于針灸如何調(diào)控ILC2功能的機(jī)制尚不明確,且相關(guān)研究較少。
業(yè)已證明,IL-25、IL-33和TSLP在ILC2的分泌和遷移的過(guò)程中具有重要作用。針刺中脘、足三里、照海、申脈等穴位5~10 mm,留針20 min,每5 min捻轉(zhuǎn)行針30 s,連續(xù)治療5 d,結(jié)果大鼠血清及海馬中腫瘤壞死因子-α(tumor necrosis Factor-α,TNF-α)、IL-25水平降低[29]。有學(xué)者應(yīng)用電針針刺足三里穴5 mm,選擇連續(xù)波治療20 min,每天1次,連續(xù)治療7 d,發(fā)現(xiàn)電針針刺足三里可使IL-33誘導(dǎo)的大鼠組織肥大細(xì)胞浸潤(rùn)減少,抑制局部炎癥區(qū)細(xì)胞因子IL-33分泌,下調(diào)細(xì)胞炎性因子IL-6、TNF、IL-13、單核細(xì)胞趨化蛋白-1(monocyte chemotactic protein-1,MCP-1)的釋放及核因子-κB(nuclear factor-κB,NF-κB)蛋白的表達(dá),減輕炎癥反應(yīng)[30]。另有學(xué)者應(yīng)用“邵氏五針?lè)ā贬槾谭斡幔p)、大椎、風(fēng)門(mén)(雙)、印堂、上迎香(雙)、合谷(雙)13~20 mm,得氣基礎(chǔ)上行平補(bǔ)平瀉手法,每日1次,留針30 min,每10 min行針1次,起針后大椎、肺俞(雙)各留火罐10 min,每日治療1次,10次為1個(gè)療程,共2個(gè)療程,療程間隔3 d,結(jié)果表明“邵氏五針?lè)ā贬槾碳影喂拗委熆山档脱錞SLP、IL-33水平[31]。在大鼠清醒狀態(tài)下電針直刺雙側(cè)曲池、血海穴3~5 mm,選用頻率2 Hz疏密波型,電流強(qiáng)度 1 mA,連接電針的肢體出現(xiàn)輕微不自主的震顫即可,留針20 min,每天1次,持續(xù)治療7 d,結(jié)果表明電針曲池、血海可抑制IL-33/ST2表達(dá),降低血清IgE水平,減少肥大細(xì)胞脫顆粒以及組胺釋放[32]。
作用于ILC2免疫應(yīng)答的IL-25、IL-33和TSLP等關(guān)鍵細(xì)胞或相關(guān)蛋白分子,進(jìn)而影響哮喘的發(fā)生和發(fā)展,是針刺有效治療哮喘的可能機(jī)制。有研究者以針刺大椎、肺俞治療卵清蛋白(ovalbumin,OVA)誘導(dǎo)的哮喘小鼠,治療后氣道阻力檢測(cè)結(jié)果發(fā)現(xiàn)氣道阻力降低而肺動(dòng)態(tài)順應(yīng)性增加,支氣管肺泡灌洗液中IL-5、IL-13、IL-9、IL-25和IL-33明顯減少,可溶性IL-33受體增加,表明針刺對(duì)ILC2的抑制作用可能與IL-33/ST2信號(hào)通路和IL-25水平有關(guān)[9]。TSLP的表達(dá)可以調(diào)控Th2,調(diào)節(jié)炎癥介質(zhì)釋放,從而影響哮喘的發(fā)作。研究顯示,針刺雙側(cè)腎俞、合谷、足三里穴聯(lián)合有煙艾灸關(guān)元、神闕穴可降低鼻竇黏膜中TSLP的表達(dá)水平,減輕小鼠炎性反應(yīng),抑制組織結(jié)構(gòu)改變[33]。眾所周知,ILC2可免疫應(yīng)答TSLP,促進(jìn)Th2細(xì)胞因子產(chǎn)生,加重氣道炎癥,致使哮喘癥狀發(fā)作。TSLPR-/-缺陷哮喘小鼠肺中ILC2的活化和過(guò)敏氣道炎癥反應(yīng)均受到抑制,表明在TSLP應(yīng)答ILC2的過(guò)程中,特異性TSLP受體(TSLP receptor,TSLPR)具有重要作用[34]。
依據(jù)上述研究不難發(fā)現(xiàn),針刺可能經(jīng)調(diào)控ILC2達(dá)到抑制相關(guān)蛋白表達(dá)及上下游分子分泌,影響其相關(guān)信號(hào)通路,改善哮喘相關(guān)氣道炎癥及氣道高反應(yīng)性,緩解哮喘癥狀。已有學(xué)者對(duì)針刺調(diào)控IL-33/ST2信號(hào)通路進(jìn)行研究,并取得了一定成果。然而,針刺是否還能通過(guò)IL-25/ILC2或TSLP/ILC2等途徑,進(jìn)一步調(diào)控ILC2細(xì)胞的分泌和遷移功能,從而抑制Th2細(xì)胞因子的產(chǎn)生、緩解氣道炎癥、改善氣道重塑以及減輕哮喘癥狀,是未來(lái)研究的重要方向。
3 討 論
鑒于ILC2在哮喘的發(fā)作過(guò)程中的重要作用,以ILC2為切入點(diǎn)研究針刺改善哮喘的起效機(jī)制具有可行性。目前研究也初步表明針刺改善哮喘癥狀可能是通過(guò)調(diào)控ILC2來(lái)實(shí)現(xiàn)的,但仍有諸多未能明確、亟待探索的角落。
3.1 針刺調(diào)控TSLP/ILC2通路治療哮喘尚未明確
外部刺激TSLP進(jìn)而影響ILC2的作用機(jī)制復(fù)雜。短亞型TSLP(short form TSLP,sfTSLP)調(diào)節(jié)人體健康動(dòng)態(tài)平衡,而長(zhǎng)亞型TSLP(long form TSLP,lfTSLP)多在炎癥時(shí)高表達(dá)[35]。TSLP誘導(dǎo)哮喘的機(jī)制可能是外部刺激增加lfTSLP表達(dá)量,通過(guò)ILC2引起Th2型炎癥反應(yīng),導(dǎo)致了氣道炎癥和氣道高反應(yīng)性[36]。有研究者予IL-7rCre/+TSLPRfl/fl
小鼠木瓜蛋白酶鼻內(nèi)給藥,小鼠嗜酸性粒細(xì)胞和ILC2數(shù)量減少以及ILC2產(chǎn)生的2型細(xì)胞因子減少,肺部炎癥被抑制,表明IL-7R及TSLPR在TSLP應(yīng)答ILC2的過(guò)程中具有重要作用;TSLP與TSLPR形成TSLP-TSLPR復(fù)合體;但TSLPR親和力較低,需與親和力較高的IL-7Rα結(jié)合,啟動(dòng)ILC2細(xì)胞內(nèi)活化信號(hào),刺激信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活因子5磷酸化并增強(qiáng)GATA3表達(dá),產(chǎn)生大量的Th2炎癥因子,同時(shí)破壞氣道平滑肌細(xì)胞內(nèi)Ca2+平衡,導(dǎo)致氣道平滑肌細(xì)胞收縮[37-39]。
上述研究結(jié)果表明,有效阻斷TSLP(主要是lfTSLP)可減輕氣道炎癥和氣道高反應(yīng)性。以TSLP、ILC2為治療靶點(diǎn),是當(dāng)下哮喘治療研究的前沿?zé)狳c(diǎn)。既往研究發(fā)現(xiàn)針刺對(duì)TSLP、ILC2均有影響,但尚未有研究探討針刺與二者之間的關(guān)系,同時(shí)針刺作用于TSLP/ILC2通路的靶點(diǎn)因子亦不清楚,未來(lái)可以TSLP/ILC2為切入點(diǎn),進(jìn)一步研究針刺治療哮喘的內(nèi)在機(jī)制。
3.2 針刺調(diào)控ILC2的臨床及動(dòng)物實(shí)驗(yàn)研究較少
針刺調(diào)控ILC2機(jī)制與多種途徑密切相關(guān)。在過(guò)敏性哮喘中,針刺調(diào)控ILC2的遷移聚集,影響相關(guān)上下游物質(zhì)分泌機(jī)制,作用于其生物網(wǎng)絡(luò)中的不同靶點(diǎn)和多種效應(yīng)物質(zhì),抑制氣道炎癥、氣道高反應(yīng)性以及氣道重塑,最終影響疾病的預(yù)后與轉(zhuǎn)歸。針刺對(duì)ILC2功能的調(diào)控有2種:一是通過(guò)抑制ILC2遷移聚集,減少產(chǎn)生Th2型細(xì)胞因子,緩解免疫反應(yīng)和氣道高反應(yīng)性,腸道中的ILC2可能參與了這一過(guò)程。二是經(jīng)調(diào)控ILC2表面受體蛋白及相關(guān)信號(hào)通路以抑制ILC2增殖分泌,其中IL-25、IL-33以及TSLP在氣道炎癥、IgE產(chǎn)生和AHR中起關(guān)鍵作用。兩者誘導(dǎo)Th2型免疫的機(jī)制有所不同,但在ILC2的增殖和Th2型細(xì)胞因子產(chǎn)生過(guò)程中具有協(xié)同作用[40]。針刺調(diào)控ILC2是治療哮喘起效機(jī)制的中間環(huán)節(jié),其過(guò)程極其復(fù)雜,目前相關(guān)的臨床及動(dòng)物實(shí)驗(yàn)研究較少,亟待進(jìn)一步研究挖掘其內(nèi)在機(jī)制。
3.3 針刺治療激素抵抗性哮喘的起效機(jī)制仍需更進(jìn)一步研究
已發(fā)現(xiàn)ILC2與多種難治性哮喘(如激素抵抗性哮喘)的發(fā)生關(guān)系密切,且與病情嚴(yán)重程度有關(guān)[41]。Th2和ILC2均為2型細(xì)胞因子的來(lái)源,但研究發(fā)現(xiàn)糖皮質(zhì)激素(激素)僅能抑制Th2,而不能抑制ILC2;ILC2可根據(jù)局部炎癥環(huán)境,改變?nèi)梭w對(duì)激素的3CGoRM6oO0WoKS2wshM4IQ==敏感性,導(dǎo)致激素抵抗性哮喘的發(fā)生或加重[42]。研究發(fā)現(xiàn)TSLP/ILC2通路可能參與了激素抵抗性重癥哮喘的發(fā)生[43]。現(xiàn)代醫(yī)學(xué)治療激素抵抗性哮喘手段有限,有研究者予健康大鼠和腎上腺切除的大鼠注射OVA誘發(fā)哮喘,然后在大椎(GV14)、雙側(cè)風(fēng)門(mén)(BL12)和雙側(cè)肺俞(BL13)進(jìn)行針刺治療,結(jié)果發(fā)現(xiàn)針刺治療的2組大鼠氣道阻力均降低,嗜酸性粒細(xì)胞計(jì)數(shù)減少,同時(shí)證明了內(nèi)源性激素并非針刺治療哮喘起效作用的關(guān)鍵因素,針刺治療可能是通過(guò)其他的途徑改善哮喘癥狀[44]。研究針刺治療對(duì)TSLP/ILC2的調(diào)控,可為進(jìn)一步明確針刺治療激素抵抗性哮喘的起效途徑提供新的方向。
4 結(jié)語(yǔ)與展望
基于ILC2探討針刺改善哮喘癥狀的作用機(jī)制具有可行性及必要性,且已取得了一定的研究結(jié)果,但仍存在針刺調(diào)控TSLP/ILC2通路治療哮喘尚未明確、臨床及動(dòng)物實(shí)驗(yàn)研究少、缺乏針刺經(jīng)ILC2途徑改善激素抵抗性哮喘的機(jī)制研究等問(wèn)題,這有待于今后進(jìn)一步研究探討。
參 考 文 獻(xiàn)
[1] SUISSA S, ARIEL A. US Food and Drug Administration-mandated trials of long-acting β-agonists safety in asthma: will we know the answer[J]. Chest, 2013, 143(5): 1208-1213. DOI: 10.1378/chest.12-2881.
[2] 李俊玲. 三子養(yǎng)親湯對(duì)哮喘模型大鼠Th1/Th2失衡的干預(yù)及相關(guān)調(diào)節(jié)機(jī)制研究[D]. 成都: 成都中醫(yī)藥大學(xué), 2018.
LI J L. Intervention and related mechanisms of Sanziyangqin Decoction on the Th1/Th2 imbalance in the rat model of asthma[D]. Chengdu: Chengdu University of Traditional Chinese Medicine, 2018.
[3] WANG X, KONG Y, ZHENG B, et al. Tissue-resident innate lymphoid cells in asthma[J]. J Physiol, 2023, 601(18): 3995-4012. DOI: 10.1113/JP284686.
[4] 易拉, 魏穎, 崔潔, 等. IL-33/ST2/ILC2s軸在哮喘發(fā)病中的作用及中醫(yī)藥干預(yù)研究進(jìn)展[J]. 老年醫(yī)學(xué)與保健, 2019, 25(6): 860-864. DOI: 10.3969/j.issn.1008-8296.2019.06.047.
YI L, WEI Y, CUI J, et al. Research progress on the role of IL-33/ST2/ILC2s axis in asthma and the TCM intervention[J]. Geriatr Health Care, 2019, 25(6): 860-864. DOI: 10.3969/j.issn.1008-8296.2019.06.047.
[5] 劉北星, 朱文文, 王佳, 等. 2型固有淋巴細(xì)胞在哮喘發(fā)生中的作用研究進(jìn)展[J]. 微生物學(xué)雜志, 2020, 40(6): 1-6. DOI: 10.3969/j.issn.1005-7021.2020.06.001.
LIU B X, ZHU W W, WANG J, et al. The role of type 2 innate lymphoid cells in the development of asthma[J]. J Microbiol, 2020, 40(6): 1-6. DOI: 10.3969/j.issn.1005-7021.2020.06.001.
[6] NURWATI I, MUTHMAINAH M, HUDA K N. Acupuncture for asthma: its potential significance in clinical practice[J]. Med Acupunct, 2020, 32(5): 272-279. DOI: 10.1089/acu.2020.1443.
[7] 馬藝菲, 張建. 支氣管哮喘的中西醫(yī)治療研究進(jìn)展[J]. 新疆中醫(yī)藥, 2021, 39(6): 120-124.
MA Y F, ZHANG J. Research progress on treatment of bronchial asthma with traditional Chinese and western medicine[J]. Xinjiang J Tradit Chin Med, 2021, 39(6): 120-124.
[8] 張雪, 程覓, 史陽(yáng)琳, 等. 針灸對(duì)哮喘相關(guān)免疫細(xì)胞調(diào)節(jié)作用的研究進(jìn)展[J]. 上海針灸雜志, 2020, 39(11): 1465-1472. DOI: 10.13460/j.issn.1005-0957.2020.11.1465.
ZHANG X, CHENG M, SHI Y L, et al. Research progress on the regulation of acupuncture and moxibustion on asthma-related immune cells[J]. Shanghai J Acupunct Moxibustion, 2020, 39(11): 1465-1472. DOI: 10.13460/j.issn.1005-0957.2020.11.1465.
[9] CUI J, DONG M, YI L, et al. Acupuncture inhibited airway inflammation and group 2 innate lymphoid cells in the lung in an ovalbumin-induced murine asthma model[J]. Acupunct Med, 2021, 39(3): 217-225. DOI: 10.1177/0964528420924033.
[10] KABATA H, MORO K, KOYASU S. The group 2 innate lymphoid cell (ILC2) regulatory network and its underlying mechanisms[J]. Immunol Rev, 2018, 286(1): 37-52. DOI: 10.1111/imr.12706.
[11] 李倩陽(yáng), 楊柳, 趙坤宇, 等. 伊洛前列素對(duì)ILC2s介導(dǎo)的小鼠急性過(guò)敏性氣道炎癥的作用研究[J]. 中國(guó)免疫學(xué)雜志, 2018, 34(8): 1217-1221. DOI: 10.3969/j.issn.1000-484X.2018.08.018.
LI Q Y, YANG L, ZHAO K Y, et al. Effects of iloprost on ILC2s in a mouse model of acute allergic airway inflammation[J]. Chin J Immunol, 2018, 34(8): 1217-1221. DOI: 10.3969/j.issn.1000-484X.2018.08.018.
[12] MCKENZIE A N J. Type-2 innate lymphoid cells in asthma and allergy[J]. Ann Am Thorac Soc, 2014, 11(Suppl 5): S263-S270. DOI: 10.1513/AnnalsATS.201403-097AW.
[13] 韓曙光. MiR-146a調(diào)控2型固有淋巴細(xì)胞(ILC2s)在哮喘中的作用與分子機(jī)制研究[D]. 南京: 南京醫(yī)科大學(xué), 2019.
HAN S G. The role and molecular mechanism of MiR-146a in regulating type 2 innate lymphocytes (ILC2s) in asthma [D]. Nanjing: Nanjing Medical University, 2019.
[14] 李為強(qiáng), 鄭曄, 姜曉峰. 氣道上皮細(xì)胞在過(guò)敏性哮喘固有免疫應(yīng)答中的作用研究進(jìn)展[J]. 中國(guó)免疫學(xué)雜志, 2023, 39(9): 2003-2007. DOI: 10.3969/j.issn.1000-484X.2023.09.036.
LI W Q, ZHENG Y, JIANG X F. Research progress on role of airway epithelial cells in innate immune response of allergic asthma[J]. Chin J Immunol, 2023, 39(9): 2003-2007. DOI: 10.3969/j.issn.1000-484X.2023.09.036.
[15] 高玲, 許昱. 雙調(diào)蛋白及其在氣道炎性疾病中作用的研究進(jìn)展[J]. 臨床耳鼻咽喉頭頸外科雜志, 2018, 32(1): 77-80. DOI: 10.13201/j.issn.1001-1781.2018.01.016.
GAO L, XU Y. Research progress of amphiregulin and its role in airway inflammatory disease[J]. J Clin Otorhinolaryngol Head Neck Surg, 2018, 32(1): 77-80. DOI: 10.13201/j.issn.1001-1781.2018.01.016.
[16] ARON J L, AKBARI O. Regulatory T cells and type 2 innate lymphoid cell-dependent asthma[J]. Allergy, 2017, 72(8): 1148-1155. DOI: 10.1111/all.13139.
[17] STIER M T, ZHANG J, GOLENIEWSKA K, et al. IL-33 promotes the egress of group 2 innate lymphoid cells from the bone marrow[J]. J Exp Med, 2018, 215(1): 263-281. DOI: 10.1084/jem.20170449.
[18] PUTTUR F, DENNEY L, GREGORY L G, et al. Pulmonary environmental cues drive group 2 innate lymphoid cell dynamics in mice and humans[J]. Sci Immunol, 2019, 4(36): eaav7638. DOI: 10.1126/sciimmunol.aav7638.
[19] LI Y, WANG W, YING S. Factors affecting the migration of ILC2s in allergic disease[J]. Cell Mol Immunol, 2021, 18(8): 2069-2070. DOI: 10.1038/s41423-021-00703-x.
[20] OYESOLA O O, DUQUE C, HUANG L C, et al. The prostaglandin D2 receptor CRTH2 promotes IL-33–induced ILC2 accumulation in the lung[J]. J Immunol, 2020, 204(4): 1001-1011. DOI: 10.4049/jimmunol.1900745.
[21] 王憲偉, 田志剛. 記憶性ILCs研究進(jìn)展[J]. 中國(guó)免疫學(xué)雜志, 2019, 35(7): 769-775. DOI: 10.3969/j.issn.1000-484X.
2019.07.001.
WANG X W, TIAN Z G. Immunological memory of innate lymphoid cells[J]. Chin J Immunol, 2019, 35(7): 769-775. DOI: 10.3969/j.issn.1000-484X.2019.07.001.
[22] 包凱帆. 基于ILC2細(xì)胞“記憶” 及體內(nèi)遷移特征探討玉屏風(fēng)散抗過(guò)敏性炎癥作用機(jī)制[D]. 南京: 南京中醫(yī)藥大學(xué), 2020. DOI: 10.27253/d.cnki.gnjzu.2020.000082.
BAO K F. Mechanism of anti-allergic inflammation effect of Yupingfeng Powder based on ILC2 cell “memory” and in vivo migration characteristics [D]. Nanjing: Nanjing University of Traditional Chinese Medicine, 2020. DOI: 10.27253/d.cnki.gnjzu.2020.000082.
[23] 傅榕冰. 化痰活血方通過(guò)抑制ILC2s干預(yù)哮喘的作用及機(jī)制研究[D]. 昆明: 云南中醫(yī)藥大學(xué), 2020. DOI: 10.27460/d.cnki.gyzyc.2020.000126.
FU R B. Study on the effect and mechanism of Huatan Huoxue Formula in intervening asthma by inhibiting ILC2s [D]. Kunming: Yunnan University of Traditional Chinese Medicine, 2020. DOI: 10.27460/d.cnki.gyzyc.2020.000126.
[24] HUANG Y, MAO K, CHEN X, et al. S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host
defense[J]. Science, 2018, 359(6371): 114-119. DOI: 10.1126/science.aam5809.
[25] GERMAIN R N, HUANG Y. ILC2s - resident lymphocytes pre-adapted to a specific tissue or migratory effectors that adapt to where they move[J]. Curr Opin Immunol, 2019, 56: 76-81. DOI: 10.1016/j.coi.2018.11.001.
[26] MARTINEZ-GONZALEZ I, MATH? L, STEER C A, et al. Allergen-experienced group 2 innate lymphoid cells acquire memory-like properties and enhance allergic lung inflammation[J].
Immunity, 2016, 45(1): 198-208. DOI: 10.1016/j.immuni.2016.06.017.
[27] BOUCHERY T, LE GROS G, HARRIS N. ILC2s-trailblazers in the host response against intestinal helminths[J]. Front Immunol, 2019, 10: 623. DOI: 10.3389/fimmu.2019.00623.
[28] LI B W S, STADHOUDERS R, DE BRUIJN M J W, et al. Group 2 innate lymphoid cells exhibit a dynamic phenotype in allergic airway inflammation[J]. Front Immunol, 2017, 8: 1684. DOI: 10.3389/fimmu.2017.01684.
[29] 黃迎華, 李倩, 楊萍, 等. 針刺對(duì)胃黏膜損傷大鼠睡眠時(shí)間及血清和海馬中腫瘤壞死因子-α及白介素-25含量的影響[J]. 針刺研究, 2015, 40(2): 131-135. DOI: 10.13702/j.1000-0607.2015.02.009.
HUANG Y H, LI Q, YANG P, et al. Effects of acupuncture stimulation of different acupoint groups on sleeping latency, serum and hippocampal TNF-αand IL-25 contents in rats with gastric mucosal injury[J]. Acupunct Res, 2015, 40(2): 131-135. DOI: 10.13702/j.1000-0607.2015.02.009.
[30] 陳姣姣, 陶文婷, 熊勇, 等. 針刺大鼠足三里觸發(fā)IL-33信號(hào)的負(fù)反饋調(diào)節(jié)發(fā)揮對(duì)接觸性過(guò)敏性皮炎的抑制作用[J]. 湖北中醫(yī)藥大學(xué)學(xué)報(bào), 2019, 21(4): 16-20. DOI: 10.3969/j.issn.1008-987x.2019.04.04.
CHEN J J, TAO W T, XIONG Y, et al. Effect of electro-acupuncture at acupoint ST36 on rats of inflammation associated with allergic contact dermatitis[J]. J Hubei Univ Chin Med, 2019, 21(4): 16-20. DOI: 10.3969/j.issn.1008-987x.2019.04.04.
[31] 何竹青, 邵素菊, 黃郁晴, 等. “邵氏五針?lè)ā?為主對(duì)過(guò)敏性鼻炎患者血清TSLP、IL-33的影響[J]. 中醫(yī)藥信息, 2020, 37(5): 82-85. DOI: 10.19656/j.cnki.1002-2406.200138.
HE Z Q, SHAO S J, HUANG Y Q, et al. Effect of “SHAO’s Five-Needling Method” as the main treatment on serous TSLP and IL-33 in patients with AR[J]. Inf Tradit Chin Med, 2020, 37(5): 82-85. DOI: 10.19656/j.cnki.1002-2406.200138.
[32] 劉思佳. 針刺曲池穴、血海穴對(duì)蕁麻疹大鼠肥大細(xì)胞及IL-33/ST2表達(dá)的作用研究[D]. 沈陽(yáng): 遼寧中醫(yī)藥大學(xué), 2021. DOI: 10.27213/d.cnki.glnzc.2021.000456.
LIU S J. Study on the effects of acupuncture at Quchi and Xuehai Points on mast cells and IL-33/ST2 expression in urticaria rats [D].
Shenyang: Liaoning University of Traditional Chinese Medicine, 2021. DOI: 10.27213/d.cnki.glnzc.2021.000456.
[33] 朱鑫, 李輝, 朱天民, 等. 針刺結(jié)合無(wú)煙/有煙艾灸調(diào)節(jié)慢性鼻-鼻竇炎小鼠免疫功能的研究[J]. 針刺研究, 2021,
46(9): 757-762. DOI: 10.13702/j.1000-0607.201021.
ZHU X, LI H, ZHU T M, et al. Acupuncture combined with smokeless or smoky moxibustion for regulating immune function of experimental chronic rhinosinusitis mice[J]. Acupunct Res, 2021, 46(9): 757-762. DOI: 10.13702/j.1000-0607.201021.
[34] 伍林澤, 胡旭紅, 傅榕冰, 等. 清熱潤(rùn)燥口服液對(duì)哮喘小鼠ILC2s上下游細(xì)胞因子的影響[J]. 中國(guó)比較醫(yī)學(xué)雜志, 2021, 31(9): 1-9. DOI: 10.3969/j.issn.1671-7856.2021.09.001.
WU L Z, HU X H, FU R B, et al. Effect of Qingre Runzao Oral Liquid on chemokines and ILC2s and their upstream and downstream cytokines in asthmatic mice[J]. Chin J Comp Med, 2021, 31(9): 1-9. DOI: 10.3969/j.issn.1671-7856.2021.09.001.
[35] BJERKAN L, SCHREURS O, ENGEN S A, et al. The short form of TSLP is constitutively translated in human keratinocytes and has characteristics of an antimicrobial peptide[J]. Mucosal Immunol, 2015, 8(1): 49-56. DOI: 10.1038/mi.2014.41.
[36] NIAN S, ZHU J, YU H, et al. Development and identification of a fully human single-chain variable fragment 29 against
TSLP[J]. Biotechnol ApgB8u9qR+kIsIt+JN11DrQpdaZG10cAYvFlu2edm6510=pl Biochem, 2019, 66(4): 510-516. DOI: 10.1002/bab.1747.
[37] HIRATA H, YUKAWA T, TANAKA A, et al. Th2 cell differentiation from naive CD4+ T cells is enhanced by autocrine CC chemokines in atopic diseases[J]. Clin Exp Allergy, 2019, 49(4): 474-483. DOI: 10.1111/cea.13313.
[38] KABATA H, FLAMAR A L, MAHLAK?IV T, et al. Targeted deletion of the TSLP receptor reveals cellular mechanisms that promote type 2 airway inflammation[J]. Mucosal Immunol, 2020, 13(4): 626-636. DOI: 10.1038/s41385-020-0266-x.
[39] 周巧, 徐尤年, 趙睿含, 等. 胸腺基質(zhì)淋巴細(xì)胞生成素在哮喘發(fā)病機(jī)制和治療中的研究進(jìn)展[J]. 醫(yī)學(xué)綜述, 2022,
28(1): 1-6. DOI: 10.3969/j.issn.1006-2084.2022.01.001.
ZHOU Q, XU Y N, ZHAO R H, et al. Research progress of thymic stromal lymphopoietin in pathogenesis and treatment of asthma[J]. Med Recapitul, 2022, 28(1): 1-6. DOI: 10.3969/j.issn.1006-2084.2022.01.001.
[40] IIJIMA K, KOBAYASHI T, HARA K, et al. IL-33 and thymic stromal lymphopoietin mediate immune pathology in response to chronic airborne allergen exposure[J]. J Immunol, 2014, 193(4): 1549-1559. DOI: 10.4049/jimmunol.1302984.
[41] 畢俊杰, 倪振華, 王雄彪. 2型固有淋巴細(xì)胞與哮喘發(fā)病機(jī)制關(guān)系的研究進(jìn)展[J]. 現(xiàn)代免疫學(xué), 2021, 41(1): 70-73.
BI J J, NI Z H, WANG X B. Research progress on the relationship between type 2 intrinsic lymphocytes and the pathogenesis of asthma[J]. Curr Immunol, 2021, 41(1): 70-73.
[42] TOYOSHIMA S, OKAYAMA Y. Neuro-allergology: mast cell-nerve cross-talk[J]. Allergol Int, 2022, 71(3): 288-293. DOI: 10.1016/j.alit.2022.04.002.
[43] NAKAJIMA S, KABATA H, KABASHIMA K, et al. Anti-TSLP antibodies: targeting a master regulator of type 2 immune responses[J]. Allergol Int, 2020, 69(2): 197-203. DOI: 10.1016/j.alit.2020.01.001.
[44] WANG W Q, XU Y D, CUI L P, et al. Acupuncture has a positive effect on asthmatic rats in a glucocorticoid-independent manner[J]. Acupunct Med, 2016, 34(6): 433-440. DOI: 10.1136/acupmed-2015-010934.
(責(zé)任編輯:林燕薇)