【摘要】 目的 探討外泌體miR-1246對(duì)帕金森?。≒D)的診斷價(jià)值。方法 收集2022年9月至2023年4月在新疆醫(yī)科大學(xué)第二附屬醫(yī)院住院的30例PD患者(PD組)和接受體檢的30名健康對(duì)照者(對(duì)照組)的血清樣本,運(yùn)用實(shí)時(shí)定量PCR分析外泌體中miR-1246的表達(dá)水平,使用受試者操作特征(ROC)曲線評(píng)估m(xù)iR-1246在PD診斷中的預(yù)測(cè)能力。用1-甲基-4-苯基吡啶離子(MPP+)誘導(dǎo)SH-SY5Y細(xì)胞建立PD細(xì)胞模型,通過Cell Counting Kit-8細(xì)胞毒性(CCK-8)實(shí)驗(yàn)確定MPP+的最佳作用濃度,并在成功建立的PD細(xì)胞模型中驗(yàn)證miR-1246的表達(dá)水平。利用TargetScan、miRWalk、miRase數(shù)據(jù)庫對(duì)miR-1246的靶基因進(jìn)行預(yù)測(cè),并進(jìn)行基因本體論(GO)富集分析和京都基因與基因組百科全書(KEGG)富集分析。結(jié)果 PD組與對(duì)照組在年齡、性別上具有可比性。與對(duì)照組相比,PD組血清外泌體中miR-1246表達(dá)下調(diào)[0.73(0.20,1.21) vs. 2.21(1.00,3.05),P < 0.05]。ROC曲線分析顯示miR-1246的曲線下面積為0.88,95% CI為0.77~0.99,截?cái)嘀禐?.98(最佳截?cái)嘀担r(shí)的靈敏度為76.74%、特異度為95.00%。GO富集分析表明靶基因作用機(jī)制涉及細(xì)胞連接組裝、對(duì)肽激素的細(xì)胞反應(yīng)、γ-氨基丁酸突觸、突觸后膜、轉(zhuǎn)錄輔助激活蛋白結(jié)合方面,KEGG富集分析涉及癌癥中的糖蛋白通路、磷脂酰肌醇3-激酶-蛋白激酶B(PI3K-AKT)信號(hào)通路、長(zhǎng)壽調(diào)節(jié)途徑、多巴胺能神經(jīng)突觸、腎素-血管緊張素系統(tǒng)(RAS)信號(hào)通路等。與正常SH-SY5Y細(xì)胞相比,在MPP+誘導(dǎo)的PD細(xì)胞模型中miR-1246的表達(dá)下調(diào)(2.16±1.69 vs. 22.18±6.18, P < 0.05)。結(jié)論 miR-1246在PD患者血清外泌體及PD細(xì)胞模型中的表達(dá)下調(diào),ROC曲線分析證實(shí)miR-1246在PD的診斷中具有預(yù)測(cè)能力,表明其或可作為PD的潛在生物標(biāo)志物。
【關(guān)鍵詞】 帕金森??;血清外泌體;miR-1246;SH-SY5Y細(xì)胞
Diagnostic value of exosomal miR-1246 for Parkinson’s disease
WANG Xiaobei1, YANG Shan1, LI Yatan1, YANG Xinling2
(1.State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Neurology, the Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China; 2.Xinjiang Key Laboratory of Nervous System Disease Research, Xinjiang Medical University, Urumqi 830017, China)
Corresponding author: YANG Xinling, E-mail: poplar862@sohu.com
【Abstract】 Objective To investigate the diagnostic value of exosomal miR-1246 for Parkinson’s disease (PD). Methods Serum samples were collected from 30 PD patients (PD group) and 30 healthy controls (control group) receiving physical examination in the Second Affiliated Hospital of Xinjiang Medical University from September 2022 to April 2023. The expression level of miR-1246 in exosomes was analyzed using real-time quantitative PCR. The predictive value of miR-1246 in the diagnosis of PD was assessed using the receiver operating characteristic (ROC) curves. SH-SY5Y cells were induced by 1-methyl-4-phenylpyridinium (MPP+) to establish a PD cell model. The optimal concentration of MPP+ was determined by CCK-8 assay, and the expression level of miR-1246 was verified in the MPP+-induced SH-SY5Y cell model. The target genes of miR-1246 were predicted using TargetScan, miRWalk, and miRase databases, and gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis were performed. Results Age and gender were matched between the PD and control groups. Compared with healthy controls, miR-1246 expression was significantly down-regulated in serum exosomes of PD patients [0.73 (0.20, 1.21) vs. 2.21 (1.00, 3.05), P < 0.05]. ROC curve analysis showed that the area under the ROC curve (AUC) of miR-1246 was 0.88 with a 95% CI of 0.77-0.99. When the cutoff value was 0.98(optimum cutoff value), the sensitivity was calculated as 76.74% and the specificity was 95.00%. GO enrichment analysis indicated that the mechanism of action of target genes was involved with cellular junction assembly, cellular response to peptide hormones, GABA synapses, post-synaptic membranes, and transcriptional coactivator protein binding. KEGG signaling pathway was involved with glycoprotein pathway, PI3K-AKT signaling pathway, longevity regulation pathway, dopaminergic synapses, and RAS signaling pathway in cancer. In the MPP+-induced SH-SY5Y cell model, miR-1246 expression was significantly down-regulated compared with the control group (2.16±1.69 vs. 22.18±6.18, P < 0.05). Conclusions The expression level of miR-1246 is down-regulated in serum exosomes of PD patients and in PD cell models. ROC curve analysis confirms the predictive value of miR-1246 in the diagnosis of PD, suggesting that it may serve as a potential biomarker for PD.
【Key words】 Parkinson’s disease; Serum exosome; miR-1246; SH-SY5Y cell
帕金森?。≒arkinson’s disease,PD)是一種常見的神經(jīng)退行性疾病,其特征是多巴胺能神經(jīng)元的逐漸喪失,尤其是在大腦的黑質(zhì)區(qū)域[1]。PD的發(fā)病率隨年齡增長(zhǎng)而增加,且隨著全球人口老齡化的日益加重,PD患者的數(shù)量將持續(xù)上升。PD的主要臨床表現(xiàn)包括靜止性震顫、肌僵直、運(yùn)動(dòng)遲緩和姿勢(shì)平衡障礙,這些癥狀嚴(yán)重降低患者的生活質(zhì)量[2-3]。盡管PD的確切病因尚未完全明了,但研究表明,PD的發(fā)生可能是遺傳和環(huán)境因素共同導(dǎo)致的結(jié)果[3]。目前,PD的診斷主要依賴于臨床癥狀和神經(jīng)學(xué)檢查,缺乏早期特異性生物標(biāo)志物,這使得疾病的早期診斷、治療和干預(yù)面臨巨大挑戰(zhàn)[4]。此外,目前PD的治療主要側(cè)重于緩解癥狀,而非阻止疾病的進(jìn)展,這進(jìn)一步凸顯了開發(fā)新治療策略的必要性[5-7]。外泌體是細(xì)胞間通信的重要介質(zhì),近年來其在疾病診斷和治療中的潛力受到廣泛關(guān)注。外泌體是一類直徑30~150 nm的囊泡,能夠攜帶蛋白質(zhì)、脂質(zhì)和核酸,包括微小RNA(microRNA,miR)等生物分子,通過細(xì)胞外泌的方式在細(xì)胞間傳遞信息[8]。在神經(jīng)退行性疾病中,外泌體的異常表達(dá)可能與疾病的發(fā)生發(fā)展密切相關(guān)[9-10]。miR是一類小的非編碼RNA分子,對(duì)多種生物學(xué)過程發(fā)揮重要作用[11]。本課題組通過測(cè)序發(fā)現(xiàn)PD患者血清外泌體中miR-1246較對(duì)照組表達(dá)下調(diào),但miR-1246在PD中的具體作用及其通過外泌體傳遞的機(jī)制尚不明確。因此,本研究旨在探討血清外泌體中miR-1246的表達(dá)情況,并評(píng)估其作為PD早期診斷生物標(biāo)志物的潛力。通過深入分析miR-1246在外泌體中的作用,以期為PD的早期識(shí)別、疾病監(jiān)測(cè)和治療提供新的視角和策略。
1 對(duì)象與方法
1.1 研究對(duì)象
納入2022年9月至2023年4月在新疆醫(yī)科大學(xué)第二附屬醫(yī)院神經(jīng)內(nèi)科住院的30例患者,其中男18例、女12例,年齡(67.70±6.64)歲,Hoehn-Yahr(H-Y)分級(jí)2.5(1.5,3),帕金森綜合評(píng)分量表(unified Parkinson’s disease rating scale,
UPDRSⅢ)(26.73±11.37)分。PD組納入標(biāo)準(zhǔn)如下:①臨床資料及實(shí)驗(yàn)室檢查資料完整;②至少由2名經(jīng)驗(yàn)豐富的神經(jīng)內(nèi)科醫(yī)師進(jìn)行嚴(yán)格的神經(jīng)系統(tǒng)檢查,依據(jù)英國(guó)腦庫PD診斷標(biāo)準(zhǔn)診斷為原發(fā)性PD[12]。排除標(biāo)準(zhǔn)如下:①服用酚噻嗪類、噻噸類、丁酰苯類等藥物所致的帕金森綜合征;②近6個(gè)月內(nèi)出現(xiàn)腦血管疾病、顱腦外傷、中樞神經(jīng)系統(tǒng)感染、帕金森疊加綜合征;③既往有顱腦腫瘤、顱腦轉(zhuǎn)移瘤;④近6個(gè)月血常規(guī)提示白細(xì)胞數(shù)量超過正常值;⑤近6個(gè)月患自身免疫性疾病,甲狀腺功能出現(xiàn)異常;⑥存在慢性感染病史;⑦近6個(gè)月內(nèi)曾應(yīng)用抗生素及其他抑制免疫藥物;⑧近3個(gè)月有重大外傷史及重要器官手術(shù)史;⑨既往曾出現(xiàn)肝、腎損害及心功能異常。同期納入在新疆醫(yī)科大學(xué)第二附屬醫(yī)院體檢的30名健康志愿者作為對(duì)照組,其中男19名、女11名,年齡(64.55±7.27)歲。2組的性別、年齡比較差異均無統(tǒng)計(jì)學(xué)意義(P
均> 0.05)。本研究通過新疆醫(yī)科大學(xué)第二附屬醫(yī)院醫(yī)學(xué)倫理委員會(huì)的批準(zhǔn)(批件號(hào):2022H029),所有研究對(duì)象知情同意。
1.2 材 料
SH-SY5Y細(xì)胞(武漢普諾賽生物有限公司),外泌體總RNA提取試劑盒(廣州Magen生物有限公司),實(shí)時(shí)熒光定量PCR(real-time quantitative polymerase chain reaction,RT-qPCR)試劑盒及引物(銳博生物有限公司),MEM/F12培養(yǎng)基(武漢普諾賽生物有限公司),胎牛血清及胰蛋白酶(美國(guó)GIBCO公司),1-甲基-4-苯基吡啶離子(1-methyl-4-phenylpyridinium MPP+)(美國(guó)Sigma公司),Trizol (美國(guó)Invitrogen公司),氯仿、異丙醇、乙醇、無酶水(國(guó)藥集團(tuán)化學(xué)試劑有限公司),磷酸鹽緩沖液(phosphate buffered saline PBS)、Tris鹽含吐溫20緩沖液(Tween 20-tris-buffered saline TBST)(武漢博士德生物工程有限公司);Cell Counting Kit-8細(xì)胞毒性(CCK-8)試劑盒(日本同仁化學(xué)),CD9抗體(美國(guó)Abcam 公司),HRP標(biāo)記德抗兔二抗(美國(guó)Proteintech公司),低速離心機(jī)(美國(guó)Thermo Fisher Scientific公司),CP100MX超速離心機(jī)(日本日立公司),RT-qPCR儀(美國(guó)BIO-RAD公司),化學(xué)發(fā)光儀(廣州譽(yù)維生物科技儀器有限公司),透射電鏡(日本日立公司)。
1.3 方 法
1.3.1 血清外泌體的提取與鑒定
PD組于入院后第2日清晨、對(duì)照組于體檢當(dāng)日清晨分別取靜脈血10 mL,3 000×g離心15 min,取血清。采用超速離心法提取血清外泌體,通過投射電子顯微鏡觀察提取的外泌體形態(tài)確定是否提取成功,采用蛋白免疫印跡法檢測(cè)外泌體標(biāo)記蛋白CD9。
1.3.2 SH-SY5Y細(xì)胞培養(yǎng)
SH-SY5Y細(xì)胞培養(yǎng)基由15%的MEM/F12完全培養(yǎng)基組成,具體配制為:7.5 mL澳洲胎牛血清+
0.5 mL青霉素-鏈霉素雙抗和42 mL MEM/F12基礎(chǔ)培養(yǎng)基混合而成。細(xì)胞被分為2個(gè)實(shí)驗(yàn)組:一組作為正常對(duì)照組,維持在常規(guī)培養(yǎng)條件下;另一組則使用MPP+進(jìn)行處理,以建立PD的細(xì)胞模型。
1.3.3 miR-1246水平測(cè)定
使用離心柱提取血清外泌體的總RNA。使用Trizol法提取2組細(xì)胞的RNA,使用銳博生物RT-qPCR試劑盒將分離的RNA逆轉(zhuǎn)錄為cDNA后進(jìn)行RT-qPCR,miR-1246以U6為內(nèi)參,表達(dá)水平用2-△△Ct法分析。本研究中用于RT-qPCR的引物序列見表1。
1.3.4 CCK-8細(xì)胞活力檢測(cè)
計(jì)數(shù)確定所需SH-SY5Y細(xì)胞數(shù)量,在96孔板的每孔中加入100 μL含有5 000個(gè)細(xì)胞的細(xì)胞懸液,在細(xì)胞培養(yǎng)箱中培養(yǎng)24 h。隨后,向培養(yǎng)孔中分別加入不同濃度的MPP+ (分別為0、0.25、0.50、1.00、2.00 mmol/L),每個(gè)濃度設(shè)置6個(gè)復(fù)孔作為重復(fù),繼續(xù)孵育24 h。之后每孔加入10 μL的CCK-8溶液,避光處理,繼續(xù)孵育2 h。使用酶標(biāo)儀測(cè)定各孔的吸光度,測(cè)定波長(zhǎng)為450 nm。將測(cè)得的吸光度值減去僅含培養(yǎng)基的陰性對(duì)照孔的吸光度值,最后對(duì)不同MPP+濃度下的吸光度值進(jìn)行統(tǒng)計(jì)分析,以評(píng)估MPP+對(duì)細(xì)胞活性的影響。
1.3.5 生物信息學(xué)分析
使用TargetScan(https://www.targetscan.org/)、miRDB(https: //www.mirdb.org/)、miRWalk(http: //
mirwalk.umm.uni-heidelberg.de/)數(shù)據(jù)庫預(yù)測(cè)miR-1246的結(jié)合位點(diǎn)以及與mRNA的相互作用。對(duì)這些靶mRNA進(jìn)行基因本體論(gene ontology,GO)富集分析和京都基因與基因組百科全書(Kyoto Encyclopedia of Genes and Genomes,KEGG)富集分析。
1.4 統(tǒng)計(jì)學(xué)方法
使用SPSS 26.0處理數(shù)據(jù)。對(duì)于符合正態(tài)分布的連續(xù)型變量,采用描述,并采用獨(dú)立樣本t檢驗(yàn)進(jìn)行組間比較。如果變量不符合正態(tài)分布,采用M(P25,P75)表示,組間比較采用Mann-Whitney U檢驗(yàn)。組間性別差異采用χ 2檢驗(yàn)。為了評(píng)估m(xù)iR-1246的診斷價(jià)值,進(jìn)行受試者操作特征(receiver operating characteristic,ROC)曲線分析,選擇具有最大約登指數(shù)的點(diǎn)作為最佳臨界值,圖表的制作采用GraphPad Prism 8.0軟件。雙側(cè)P < 0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié) 果
2.1 外泌體鑒定
本研究成功提取了外泌體,外泌體在透射電鏡(transmission electron microscopy,TEM)下呈現(xiàn)
非常明顯的膜結(jié)構(gòu),為大小不一的凹半球樣,見圖1A。CD9在外泌體上呈陽性表達(dá),見圖1B。
2.2 PD組與對(duì)照組血清外泌體中miR-1246的表達(dá)
PD組患者血清外泌體中miR-1246的相對(duì)表達(dá)量為0.73(0.20,1.21),對(duì)照組為2.21(1.00,
3.05),2組比較差異有統(tǒng)計(jì)學(xué)意義(P < 0.01),見圖2。
2.3 血清外泌體miR-1246的ROC曲線
構(gòu)建ROC曲線評(píng)估m(xù)iR-1246作為生物標(biāo)志物在區(qū)分PD患者與健康者方面的性能。miR-1246 ROC曲線的曲線下面積(area under the curve,AUC)為0.88,95%CI為0.77~0.99(P < 0.05),見圖3。根據(jù)約登指數(shù)選擇最佳截?cái)嘀?.98時(shí)的靈敏度為76.74%,特異度為95.00%。
2.4 采用CCK-8實(shí)驗(yàn)篩選MPP+最佳造模濃度
使用MPP+處理SH-SY5Y細(xì)胞,構(gòu)建PD細(xì)胞模型。0 mmol/L濃度組貼壁細(xì)胞多,細(xì)胞間連接緊密,經(jīng)MPP+處理后,貼壁細(xì)胞數(shù)量減少,細(xì)胞皺縮成圓形或橢圓形,細(xì)胞間距增加,見圖4。不同濃度MPP+作用的SH-SY5Y細(xì)胞存活率均低于
0 mmol/L濃度組且SH-SY5Y細(xì)胞的活力隨著MPP+濃度的增加而降低,見圖5。最終根據(jù)CCK8實(shí)驗(yàn)結(jié)果選擇1.00 mmol/L的MPP+持續(xù)作用24 h作為最適宜的實(shí)驗(yàn)條件。
2.5 RT-qPCR檢測(cè)細(xì)胞中miR-1246表達(dá)水平
SH-SY5YS細(xì)胞用1 mmol/L MPP+處理后,提取RNA,逆轉(zhuǎn)錄為cDNA進(jìn)行RT-qPCR檢測(cè),PD組miR-1246相對(duì)表達(dá)量較對(duì)照組低(2.17±1.19 vs.22.18±6.39),比較差異有統(tǒng)計(jì)學(xué)意義(P < 0.01),見圖6。
2.6 miR-1246靶基因的GO、KEGG富集分析
GO富集分析顯示,miR-1246的靶基因可能涉及細(xì)胞連接組裝、細(xì)胞對(duì)肽激素的響應(yīng)、γ-氨基丁酸(γ-aminobutyric acid,GABA)突觸、突觸后膜、轉(zhuǎn)錄輔助激活結(jié)合蛋白方面,見圖7。KEGG富集分析顯示miR-1246靶基因可能參與的信號(hào)通路包括癌癥中蛋白聚糖路徑、磷脂酰肌醇3-激酶(phosphatidylinositide 3-kinases,PI3K)-蛋白激酶B(protein kinase B,AKT)信號(hào)通路、長(zhǎng)壽調(diào)節(jié)途徑、多巴胺能神經(jīng)突觸、腎素-血管緊張素系統(tǒng)(renin-angiotensin system,RAS)信號(hào)通路,見圖8。
3 討 論
PD是一種神經(jīng)退行性疾病,全球約有1 000萬
患者,是全球第二大常見退行性疾?。?3-14]。PD導(dǎo)致患者多巴胺能神經(jīng)元死亡,影響其運(yùn)動(dòng)能力,還可能引起其認(rèn)知與情緒障礙,降低生活質(zhì)量。PD的病理特征包括黑質(zhì)區(qū)多巴胺神經(jīng)元減少和α-突觸核蛋白形成的路易體,這些均導(dǎo)致患者出現(xiàn)動(dòng)作緩慢等運(yùn)動(dòng)障礙以及非運(yùn)動(dòng)癥狀[15-16]。由于PD的早期診斷困難,生物標(biāo)志物對(duì)于提高其診斷準(zhǔn)確性至關(guān)重要[17]。
近年來,外泌體miR在PD中的潛在作用受到廣泛關(guān)注。外泌體是一種特殊的分泌性納米囊泡,能夠攜帶蛋白質(zhì)、脂質(zhì)、RNA等生物分子,在中樞神經(jīng)系統(tǒng)及其外周循環(huán)中自由穿梭[18-19]。它們?cè)诖龠M(jìn)錯(cuò)誤折疊蛋白的擴(kuò)散、激活免疫細(xì)胞以及加速神經(jīng)退行性疾病進(jìn)展方面發(fā)揮作用[10, 20]。研究表明,PD患者的血清和腦脊液中外泌體miR的表達(dá)模式與健康對(duì)照組存在顯著差異,具有PD生物標(biāo)志物的潛力[21]。例如,miR-7能夠抑制編碼α-突觸核蛋白的mRNA的轉(zhuǎn)錄,其缺失可能導(dǎo)致α-突觸核蛋白的上調(diào)、聚集和多巴胺能神經(jīng)元的丟失[22]。其他如miR-19b、miR-124、miR-221、miR-29c等在血清中的表達(dá)也已被報(bào)道與PD相關(guān)[23-27]。
根據(jù)前期研究成果,本研究對(duì)miR-1246與PD的關(guān)系做了深入分析,以探討其對(duì)PD的診斷價(jià)值。結(jié)果顯示,本研究提取到的外泌體與已知的形態(tài)特征相一致,證實(shí)提取成功[28]。進(jìn)一步對(duì)PD患者和對(duì)照組血清外泌體中的miR-1246表達(dá)情況進(jìn)行了比較分析,發(fā)現(xiàn)PD組血清外泌體中miR-1246的相對(duì)表達(dá)量低于對(duì)照組,ROC曲線分析顯示miR-1246具有較高的診斷準(zhǔn)確性。上述結(jié)果提示miR-1246在外泌體中的表達(dá)水平能夠以較高的準(zhǔn)確度區(qū)分PD患者和健康個(gè)體。
為了模擬PD的病理環(huán)境,本研究使用不同濃度的MPP+處理SH-SY5Y細(xì)胞,觀察到隨著MPP+濃度的增加,細(xì)胞形態(tài)發(fā)生變化,細(xì)胞存活率降低,表明MPP+誘導(dǎo)的細(xì)胞毒性具有劑量依賴性,在1 mmol/L MPP+處理24 h的條件下,miR-1246的表達(dá)較對(duì)照組下調(diào),這可能與神經(jīng)退行性變過程中的特定分子機(jī)制有關(guān)。miR-1246可能通過靶向特定的mRNA,調(diào)節(jié)與PD相關(guān)的信號(hào)通路。既往研究顯示miR-1246在腎癌、結(jié)腸癌、乳腺癌、肺癌、宮頸癌和肝癌等多種癌癥中起一定作用[29-32],
但目前關(guān)于miR-1246與神經(jīng)退行性疾病之間的直接聯(lián)系的研究相對(duì)較少。為探討miR-1246在神經(jīng)退行性疾病中的具體作用和機(jī)制,本研究采用了多種生物信息學(xué)工具和數(shù)據(jù)庫,以期獲得更全面和深入的分析結(jié)果。通過TargetScan、miRWalk、miRase的綜合分析,預(yù)測(cè)了一系列潛在的靶基因,這些基因可能在miR-1246的調(diào)控下發(fā)揮作用,GO富集分析揭示了這些靶基因在生物學(xué)過程中的多種作用機(jī)制,miR-1246可能在細(xì)胞間的相互作用和組織結(jié)構(gòu)的形成、參與調(diào)節(jié)細(xì)胞對(duì)外部信號(hào)的感應(yīng)和應(yīng)答、神經(jīng)系統(tǒng)的抑制性突觸傳遞中起關(guān)鍵作用,在轉(zhuǎn)錄輔助激活結(jié)合蛋白的富集中,miR-1246可能在轉(zhuǎn)錄調(diào)控網(wǎng)絡(luò)環(huán)節(jié)扮演重要角色。KEGG信號(hào)通路分析進(jìn)一步揭示了miR-1246在多種生物學(xué)通路中的潛在作用,包括miR-1246可能通過蛋白聚糖通路在腫瘤的發(fā)展和轉(zhuǎn)移中發(fā)揮作用,可能通過PI3K-AKT信號(hào)通路在細(xì)胞生長(zhǎng)、增殖、分化和存活中起調(diào)控作用,也可能與長(zhǎng)壽調(diào)節(jié)途徑中的衰老和壽命調(diào)控有關(guān),此外,在神經(jīng)系統(tǒng)功能中,miR-1246可能在多巴胺能神經(jīng)突觸的富集中發(fā)揮重要作用。由此可見,miR-1246在細(xì)胞生物學(xué)和病理生理學(xué)中可能扮演了多種角色,上述發(fā)現(xiàn)為未來的實(shí)驗(yàn)研究提供了重要的線索和理論基礎(chǔ),有助于深入理解miR-1246在PD發(fā)病中的作用,并可能為其治療提供新的靶點(diǎn)。
盡管本研究顯示miR-1246具有成為PD的生物標(biāo)志物的潛力,但由于樣本量較少,可能會(huì)限制結(jié)果的普適性,未來的研究需要在更大的樣本量和不同人群中進(jìn)行驗(yàn)證,以進(jìn)一步評(píng)估m(xù)iR-1246的診斷效能和臨床應(yīng)用價(jià)值。此外,考慮到miR可通過外泌體在PD患者顱內(nèi)與血液循環(huán)中傳遞,為了提高研究結(jié)果的準(zhǔn)確性,后續(xù)擬從患者腦脊液或血液中篩選中樞來源的外泌體進(jìn)行分析,以進(jìn)一步驗(yàn)證此次研究的結(jié)果。本研究提示,探索miR-1246與其他已知PD生物標(biāo)志物的聯(lián)合使用效果,可能有助于進(jìn)一步提高PD的診斷準(zhǔn)確性和早期識(shí)別能力。未來的研究可以進(jìn)一步通過驗(yàn)證預(yù)測(cè)靶基因以及通過細(xì)胞、動(dòng)物模型深度探討miR-1246的具體作用,從而為PD治療策略的革新提供參考。
參 考 文 獻(xiàn)
[1] BLOEM B R, OKUN M S, KLEIN C. Parkinson’s disease[J]. Lancet, 2021, 397(10291): 2284-2303. DOI: 10.1016/s0140-6736(21)00218-x.
[2] TOLOSA E, GARRIDO A, SCHOLZ S W, et al. Challenges in the diagnosis of Parkinson’s disease[J]. Lancet Neurol, 2021, 20(5): 385-397. DOI: 10.1016/S1474-4422(21)00030-2.
[3] ELSWORTH J D. Parkinson’s disease treatment: past, present, and future[J]. J Neural Transm (Vienna), 2020, 127(5): 785-791. DOI: 10.1007/s00702-020-02167-1.
[4] WARNECKE T, LUMMER C, REY J W, et al. Parkinson’s disease[J]. Inn Med (Heidelb), 2023, 64(2): 131-138. DOI: 10.1007/s00108-022-01444-3.
[5] YASUHARA T. Neurobiology research in Parkinson’s disease [J].
Int J Mol Sci, 2020, 21(3): 793. DOI: 10.3390/ijms21030793.
[6] KOBYLECKI C. Update on the diagnosis and management of Parkinson’s disease[J]. Clin Med, 2020, 20(4): 393-398. DOI: 10.7861/clinmed.2020-0220.
[7] XU W M, LI A, CHEN J J, et al. Research development on exosome separation technology[J]. J Membr Biol, 2023,
256(1): 25-34. DOI: 10.1007/s00232-022-00260-y.
[8] ABD EL GWAD A, MATBOLI M, EL-TAWDI A, et al. Role of exosomal competing endogenous RNA in patients with hepatocellular carcinoma[J]. J Cell Biochem, 2018, 119(10): 8600-8610. DOI: 10.1002/jcb.27109.
[9] YAN Y Q, PU J L, ZHENG R, et al. Different patterns of exosomal α-synuclein between Parkinson’s disease and probable rapid eye movement sleep behavior disorder[J]. Eur J Neurol, 2022, 29(12): 3590-3599. DOI: 10.1111/ene.15537.
[10] LIU C, WANG Y, LI J W, et al. MiR-184 mediated the expression of ZNF865 in exosome to promote procession in the PD model[J]. Mol Neurobiol, 2024, 61(6): 3397-3408. DOI: 10.1007/s12035-023-03773-2.
[11] HAYES M T. Parkinson’s disease and Parkinsonism[J]. Am J Med, 2019, 132(7): 802-807. DOI: 10.1016/j.amjmed.2019.03.001.
[12] SHIMO Y, HATTORI N. Parkinson’s disease and it’s look-
alike[J]. Rinsho Shinkeigaku, 2020, 60(12): 815-821. DOI: 10.5692/clinicalneurol.cn-001459.
[13] FRANK C, CHIU R, LEE J. Parkinson disease primer, part 1: diagnosis[J]. Can Fam Physician, 2023, 69(1): 20-24. DOI: 10.46747/cfp.690120.
[14] 潘琪, 張旺明, 羅非, 等. 6-羥基多巴胺單側(cè)帕金森病模型大鼠丘腦腹內(nèi)側(cè)核的放電活動(dòng)[J]. 實(shí)用醫(yī)學(xué)雜志, 2022, 38(3): 324-329. DOI: 10.3969/j.issn.1006-5725.2022.03.012.
PAN Q, ZHANG W M, LUO F, et al. Alterations of firing activity of the ventromedial thalamic nucleus in rats with unilateral 6-OHDA lesions[J]. J Pract Med, 2022, 38(3): 324-329. DOI: 10.3969/j.issn.1006-5725.2022.03.012.
[15] CHU Y, HIRST W D, FEDEROFF H J, et al. Nigrostriatal tau pathology in Parkinsonism and Parkinson’s disease[J]. Brain, 2024, 147(2): 444-457. DOI: 10.1093/brain/awad388.
[16] 張永志, 張立莊, 劉義晗, 等. 帕金森病合并不寧腿綜合征患者臨床特征及影響因素分析[J]. 暨南大學(xué)學(xué)報(bào)(自然科學(xué)與醫(yī)學(xué)版), 2023, 44(5): 513-520. DOI: 10.11778/j.jdxb.
20230118.
ZHANG Y Z, ZHANG L Z, LIU Y H, et al. Analysis of clinical characteristics and influencing factors of patients with Parkinson’s disease complicated with restless legs syndrome[J].
J Jinan Univ(Nat Sci Med Ed), 2023, 44(5): 513-520. DOI: 10.11778/j.jdxb.20230118.
[17] JIANG C, HOPFNER F, KATSIKOUDI A, et al. Serum neuronal exosomes predict and differentiate Parkinson’s disease from atypical Parkinsonism[J]. J Neurol Neurosurg Psychiatry, 2020, 91(7): 720-729. DOI: 10.1136/jnnp-2019-322588.
[18] LIU L, LI Y, PENG H, et al. Targeted exosome coating gene-chem nano complex as “nanoscavenger” for clearing α-synuclein and immune activation of Parkinson’s disease[J]. Sci Adv, 2020, 6(50): eaba3967. DOI: 10.1126/sciadv.aba3967.
[19] YANG J, LUO S, ZHANG J, et al. Exosome-mediated delivery of antisense oligonucleotides targeting α-synuclein ameliorates the pathology in a mouse model of Parkinson’s disease[J].
Neurobiol Dis, 2021, 148: 105218. DOI: 10.1016/j.nbd.
2020.105218.
[20] FERRAGUT CARDOSO A P, BANERJEE M, NAIL A N, et al. miRNA dysregulation is an emerging modulator of genomic instability[J]. Semin Cancer Biol, 2021, 76: 120-131. DOI: 10.1016/j.semcancer.2021.05.004.
[21] LIU H, SHEN L, ZHAO H, et al. Parkinson’s disease patients combined with constipation tend to have higher serum expression of microRNA 29c, prominent neuropsychiatric disorders, possible RBD conversion, and a substandard quality of life[J]. Neurol Sci, 2023, 44(9): 3141-3150. DOI: 10.1007/s10072-023-06793-x.
[22] YAO Y, ZHAO Z, ZHANG F, et al. MicroRNA-221 rescues the loss of dopaminergic neurons in a mouse model of Parkinson’s disease[J]. Brain Behav, 2023, 13(3): e2921. DOI: 10.1002/brb3.2921.
[23] LIN D, ZHANG H, ZHANG J, et al. α-synuclein induces neuroinflammation injury through the IL6ST-AS/STAT3/HIF-1α axis[J]. Int J Mol Sci, 2023, 24(2): 1436. DOI: 10.3390/ijms24021436.
[24] SALAH M, SHAHEEN I, EL-SHANAWANY P, et al. Detection of miR-1246, miR-23a and miR-451 in sera of colorectal carcinoma patients: a case-control study in Cairo University hospital[J]. Afr Health Sci, 2020, 20(3): 1283-1291. DOI: 10.4314/ahs.v20i3.33.
[25] CHEN Q, LIN H, DENG X, et al. MiR-1246 promotes anti-apoptotic effect of mini-αA in oxidative stress-induced apoptosis in retinal pigment epithelial cells[J]. Clin Exp Ophthalmol, 2020, 48(5): 682-688. DOI: 10.1111/ceo.13751.
[26] ANGELOPOULOU E, PAUDEL Y N, PIPERI C. miR-124 and Parkinson’s disease: a biomarker with therapeutic potential[J]. Pharmacol Res, 2019, 150: 104515. DOI: 10.1016/j.phrs.2019.
104515.
[27] ZAMANIAN M Y, IVRAGHI M S, GUPTA R, et al. miR-221 and Parkinson’s disease: a biomarker with therapeutic potential[J].
Eur J Neurosci, 2024, 59(2): 283-297. DOI: 10.1111/ejn.16207.
[28] LIAO J M, ZHOU X, ZHANG Y, et al. MiR-1246: a new link of the p53 family with cancer and Down syndrome[J]. Cell Cycle, 2012, 11(14): 2624-2630. DOI: 10.4161/cc.20809.
[29] ALI H, MALIK M Z, ABU-FARHA M, et al. Global analysis of urinary extracellular vesicle small RNAs in autosomal dominant polycystic kidney disease[J]. J Gene Med, 2024, 26(2): e3674. DOI: 10.1002/jgm.3674.
[30] XIE B, LI L, ZHANG Z, et al. MicroRNA-1246 by targeting AXIN2 and GSK-3β overcomes drug resistance and induces apoptosis in chemo-resistant leukemia cells[J]. J Cancer, 2021, 12(14): 4196-4208. DOI: 10.7150/jca.58522.
[31] WU L, ZUO N, PAN S, et al. The exosomal miR-1246 of laryngeal squamous cell carcinoma induces polarization of M2 type macrophages and promotes the invasiveness of laryngeal squamous cell carcinoma[J]. J Oncol, 2022, 2022: 4424221. DOI: 10.1155/2022/4424221.
[32] 倪瑋, 周繼勤, 凌亞亭, 等. 神經(jīng)干細(xì)胞條件培養(yǎng)液對(duì)帕金森病模型神經(jīng)元損傷的保護(hù)作用[J]. 江蘇大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2023, 33(4): 284-291. DOI: 10.13312/j.issn.1671-7783.y220087.
NI W, ZHOU J Q, LING Y T, et al. Protective effect of neural stem cell-conditioned medium on neuronal injury in Parkinson’s disease model[J]. J Jiangsu Univ(Med Ed), 2023, 33(4): 284-291. DOI: 10.13312/j.issn.1671-7783.y220087.
(責(zé)任編輯:洪悅民)