• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Randomly Weighted LAD-Estimation for Partially Linear Errors-in-Variables Models

    2015-06-01 07:34:26XiaohanYANGRongJIANGWeiminQIAN

    Xiaohan YANG Rong JIANG Weimin QIAN

    1 Introduction

    Consider a partially linear errors-in-variables(EV for short)model as follows:

    where xi∈ Rpare unobservable explanatory variables,Xi∈ Rpare manifest variables,β0∈ Rpis an unknown parameter vector,Tiis a scalar co-variate,the function g(·)is unknown,Yi∈ R are responses,and(ε,uT)T∈ Rp+1are independent with a common error distribution that is spherically symmetric.Spherical symmetry implies that εiand each component of uihave the same distribution,which ensures model identi fiability and means that(ε,uT)T=dRUp+1(R is a nonnegative random variable,Up+1is a uniform random vector on Ωp={a:a ∈ Rp+1,‖a‖=1},R and Up+1are independent),and(ε,uT)Tand x are independent.A detailed coverage of linear errors-in-variables models can be found in[7].More work on nonlinear models with measurement errors can be found in[2].Recently,the model(1.1)has been studied by Cui and Li[5],Liang et al.[13],Zhu and Cui[24]and so on.Cui and Li[5]and Liang et al.[13]discussed the least square estimators for the parametric and nonparametric components by the nearest neighbor estimation and the general kernel smoothing for the nonparametric component,respectively.The quantile estimate of the slope parameter β0has been studied by He and Liang[8].

    It is well known that the least square(LS for short)method is one of the oldest and most widely used statistical tools for linear models.But,the LS estimate can be sensitive to outliers and therefore,non-robust.Unlike the LS method,the least absolute deviation(LAD for short)method is not sensitive to outliers and produces robust estimates.Due to the developments in theoretical aspects and the availability of computing power,the LAD method has become increasingly popular.In particular,it has many applications in econometrics and biomedical studies(see[1,10]),among many others.

    However,the asymptotic distribution of the estimators by the LAD method is generally related to nuisance parameter that can not be conveniently estimated.The randomly weighted method can provide a way of assessing the distribution of the estimators without estimating the nuisance parameter.The random weighting method was first proposed by Zheng[23].An advantage of the random weighting method is that no observation is repeatedly used within each replicate of the random weighting,though each observation may be weighted unequally.This method has been used in many applications as an alternative to the bootstrap method.For example,Rao and Zhao[16]used this method to derive the approximate distribution of the M-estimator in the linear regression model.Cui et al.[6]proposed a random weighting method for the proportional hazards model.Wang et al.[19]extended the method to the censored regression model.Jiang et al.[9]discussed randomly weighted least square estimators for the unknown parameters in semi-linear EV model.A statistical analysis of the LAD method used in the partially linear regression model(1.1)with additive measurement errors,however,still seems to be missing.The objective of the present paper is to fill this gap.

    In this paper,our objective is to apply the randomly weighted LAD-estimation(RWLADE for short)to partially linear EV models,and establish the asymptotic normality of the RWLADE for the parameter.These results can be used to construct confidence intervals for β0.Furthermore,we propose a LAD-test for partially linear EV models.The LAD-test has been used by Zhao and Chen[22]to test linear hypotheses in the linear model.But the critical values of the test statistic are related to estimators of nuisance parameters.Chen et al.[3]proposed an easy and convenient randomly weighting resampling method to determine the critical values for testing linear hypotheses in the least absolute deviation regression.Motivated by this idea,we also use the randomly weighted method to determine the critical values for testing hypotheses in partially linear EV models.

    The outline of the paper is as follows.In Section 2,we define the weighting scheme to be used,hence the RWLADE for β0,and then the test statistics of it.Section 3 is the statement of the main results for β0,and the chi-square distributions of test statistics of the proposed estimators are also given in this section.In Section 4,simulations are carried out to assess the finite sample performance of the method and also an illustration of the method to a real example is given in this section.Some concluding remarks are given in Section 5.All the technical proofs are delayed in the appendix of Section 6.

    2 Definition of the Estimators

    For technical convenience we will assume that Tiare con fined to the interval[0,1].Throughout,we shall employ a constant C(0

    For any t∈ [0,1],we arrange|T1?t|,|T2?t|,···,|Tn?t|in an increasing order:

    (ties are broken by comparing indices).Obviously,R(1,t),R(2,t),···,R(n,t)is a permutation of{1,2,···,n}.Choose a group of fixed nonnegative numbers{dni:i=1,2,···,n}and let k ≡ knbe a natural number dependent solely on n.Suppose that{dni:i=1,2,···,n}and k satisfy

    Now we can define a probability weight vector wni(t)=wni(t;T1,T2,···,Tn),i=1,2,···,n which satisfies wnR(i,t)(t)=dni,i=1,2,···,n.Obviously,1 ≤ dni≤ n,1 ≤ wni(t)≤ n for any i=1,2,···,n,t∈ [0,1].These assumptions are commonly assumed when de fining weight nonnegative functions.For example,

    where Si=(T(i)+T(i?1)),i=1,···,n,S0=0,Sn=1 for any i=1,2,···,n,t∈ [0,1].

    In this paper,for any sequence of variables or functions(S1,···,Sn),we always denote ST=(S1,···,Sn),andThe conversion from S towill be applied to Yi,Xi,xi,εi,uiand g(Ti).For example,Xi?The fact that g(t)=E(Yi?|Ti=t)suggests

    as the nearest neighbor pseudo-estimator of g(·).

    However,since β0is an unknown vector,we have to estimate β0first.Sinceare unobservable,the least square method may be invalid.Instead of the generalized least square method used in[5],we can obtainthe estimator of β0,as follows:

    But the asymptotic covariance matrix ofinvolves the density of the errors and nuisance parameters and therefore is difficult to estimate reliably.To overcome this problem,we propose the following distributional approximation based on random weighting by exogenouslygenerated i.i.d.random variables.The approach can be implemented with the simple LAD programming again.

    Let v1,···,vnbe a sequence of independent and identically distributed(i.i.d.)nonnegative random variables,with mean and variance both equal to 1.The standard exponential distribution has mean and variance equal to 1.define

    In this paper,we are also interested in testing the hypothesis

    where H is a known p×q matrix of rank q,and b0∈Rpis a known vector(0

    To develop an analogue with the least absolute deviation,it is natural to consider the test statistic

    where

    But the limiting distribution of Mnalso involves the density function of the error terms.Chen et al.[3]proposed an easy and convenient randomly weighted resampling method to determine the critical values for testing nested linear hypotheses in the least absolute deviation regression.Motivated by this idea,we introduce a test statistic M?non randomly weighted method and on the suitable centering adjustments.The approach can be implemented with the simple LAD programming again.define

    where

    3 Main Results

    Let the components be xi=(xij).Denote hi=(hi1,hi2,···,hip)T=xi? E(xi|Ti),1 ≤i≤n.We make the following assumptions.

    Assumption 3.1the random weights v1,···,vnare i.i.d.with P(vi≥ 0)=1,E(vi)=Var(vi)=1,and the sequence viand Yi,Xi,xiare independent.

    Assumption 3.2the distribution function F of ε1,···,εnis absolutely continuous,with continuous density f uniformly bounded away from 0 and∞and F(0)=.

    Assumption 3.3ER2<+∞and P(R=0)=0.

    Assumption 3.4The distribution of T1is absolutely continuous and its density r(t)satisfies

    Assumption 3.5Σ =Cov(x1?E(x1|T1))is a positive de finite matrix.

    Assumption 3.6E(|ε1|2+‖x1‖2+‖u1‖2)< ∞;g and g2jare continuous functions on the interval[0,1],where g2j=E(x1j|T1=t)is the jth component of g2(t)=E(x1|T1=t)for 1≤j≤p.

    Assumption 3.7E(|ε1|4+‖x1‖4+‖u1‖4)< ∞;g and g2jsatisfy the Lipschitz condition and g2j=E(x1j|T1=t)is a bounded function of t for 1≤j≤p.

    Remark 3.1Assumption 3.1 is commonly assumed in the random weighting method(see[19]).Assumptions 3.2–3.3 are often used in the LAD estimator(see[4,H1–H4]).Assumptions 3.4–3.6 are necessary for studying the optimal convergence rate of the nonparametric regression estimates and Assumption 3.7 guarantees the asymptotic normality of√n(?β),essentially the same as the conditions 1–4 of[5].

    3.1 Random weighting LAD-estimation

    Theorem 3.1Suppose that Assumptions 3.1–3.7 and(2.2)–(2.3)hold,and then

    Particularly,when vi≡1,we have

    where

    Theorem 3.2Suppose that the conditions of Theorem 3.1 hold,and then

    Comparing(3.1)with(3.3),for the multivariate Kolmogorov-Smirnov distance betweenandwe have

    where L?,P?denote the corresponding distribution and probability conditionally on(X1,Y1,T1),···,(Xn,Yn,Tn).And the approximate to the distribution ofby using random weights is valid in the weak sense.

    Remark 3.2From Theorems 3.1–3.2,it is clear thatis a consistent estimator of β0and the conditionally limiting distribution offor observations given is the same as that ofConsequently,we can take the conditional distribution ofas an approximation to that ofwithout estimating the asymptotic covariance matrix when making the confidence interval for parameters.In practical applications,this can be done by the Monte Carlo method.Speci fically,one can generate random weights repeatedly for(2.6)and then obtain RWLADE of the regression parameters.Then the empirical distribution of the produced estimates is used as an approximation to the distribution of the LAD-estimator of β0.For example,in deriving the(1 ? α)100%confidence interval for β0,one can implement the random weighting N times to obtain the estimates,···,and hence use the lower and upperquantiles of these quantities as the approximation of the lower and upper limits of the confidence interval.

    3.2 LAD-test

    Theorem 3.3Suppose that the conditions of Theorem 3.1 hold,and under the null hypothesis(2.4),then

    where Hn=H(HTΣH)?12,Ai=and

    where“”denotes approximation to the corresponding distribution,S=

    3.3 Random weighting LAD-test

    Theorem 3.4Suppose that the conditions of Theorem 3.1 hold,and under the null hypothesis(2.4),then

    and

    Further by(3.6)–(3.7),we have

    where Z is the chi-squared variable with q degrees of freedom.

    Remark 3.3Theorems 3.3–3.4 show that the limiting distribution ofunder the null hypothesis(2.7)is the same as the null limiting distribution of Mn.Therefore,we can directly use the conditional distribution ofas an approximation to the null distribution of Mnand determine the critical values of the test statistic Mnwithout estimating the nuisance parameters.It is desired to determine a sequence cn(α)such thatP(Mn>cn(α))= α under H0,for a given level α ∈ (0,1).As shown in the sequel,the(1 ? α)quantile(α)of the conditional distribution offor givencan be taken as an approximation to cn(α),and this can be carried out by the following procedure.Take N large enough and generate N independent replicates of random weights to obtain N randomly weighting estimates,j=1,···,N,so then the p-value of testing the hypothesis is approximately equal to ? {j:>Mn,j=1,···,N}/N.A test at the nominal signi ficance level α is to reject H0if Mnis larger than the sample(1?α)quantile ofand to accept H0otherwise.It is easy to show that,for the given nominal signi ficant level α∈(0,1),the test Mnwith the critical value(α)has the same asymptotic level and asymptotic power as the test with the critical value cn(α)obtained by estimating nuisance parameters.

    4 Simulation and Real Data Study

    In this section,we conduct simulation studies to assess the finite sample performance of the proposed procedures and illustrate the proposed methodology on AIDS clinical trials.

    Example 4.1The data are generated from model(1.1),where the explanatory variable x is generated from uniform distribution on the interval(3,5)and β0=2. ε ~ N(0,1),u ~N(0,1),g(t)=sin(2πt),T ~ U(0,1).The randomly weighting variables viare taken to be exponential distribution and Poisson distribution with means 1 respectively(Exp(1)and P(1)).We use the Nadaraya-Watson kernel K(u)=I(|u|≤1);and then

    is the weight function with the bandwidth h=Since the objective is to estimate β0,our limited experience indicates that the choice of the bandwidth h here is not as critical as it is in direct nonparametric function estimation.Sample size n is taken to be 50,100 and 200,respectively,and we do 500 repetitions for each sample size.The number of randomly weighting is N=500.

    We first study the performance of parameter estimators by using our proposed method(RWLADE for short).The mean values of parameter estimators and their standard errors are respectively reported in Table 1.Table 1 shows that the performance ofis very close to the true value in all terms.Moreover,is much more accurate when sample sizes increase.

    Table 1 Simulation results for β?

    We then investigate the length of confidence intervals and empirical coverage rates by the randomly weighted method at the nominal levels 90%and 95%.Simulation results are respectively reported in Tables 2–3.From Table 2,it can be seen that the empirical coverage rates are reasonably close to the true values in all cases,which indicates that the randomly weighted method is valid.As expected,the coverage levels based on the di ff erent cases are much closer to the nominal levels when sample sizes increase.Table 3 shows that the length of confidence intervals is small.Not unexpectedly,the length of confidence intervals decreases with sample sizes.Finally,Tables 1–3 show that the performances of Poisson weights are exactly similar to those of exponential weights.

    Table 2 Simulation results for coverage probability of confidence intervals

    Next,the approximation of the null distribution of the LAD-test statistics Mn,by its randomly weighted version,is evaluated under the null hypotheses.We also study the empirical signi ficance level and the powers of the M-test with the critical values given by the random weighting method.Throughout our simulation study,the convex function is taken as ρ(u)=|u|.The null hypothesis isH0:β0=0.Here,the randomly weighted variables are only taken to be the exponential distribution with means 1.

    Table 3 Simulation results for length of confidence intervals

    Table 4 lists the power functions at signi ficance levelsα=0.10 and 0.05 for various choices of error distributions(N(0,1),t(2)andt(3)),di ff erent sample sizesn=100 and 200,and di ff erentβvalues 0,0.1,0.2 and 0.5.Note that the empirical signi ficant levels when the trueβ=0 are close to the nominal levels,implying that the randomly weighted LAD-test is a valid test.As expected,the test has a bigger power for the larger sample sizes.

    Table 4 Empirical signi ficant levels and power values

    Figure 1 shows quantile-quantile plots ofMnwith respect tofor various choices of error distributions(N(0,1),t(2)andt(3)),and di ff erent sample sizesn=100 and 200,in which the straight lice indicates thatapproximates well to the distribution ofMn.It shows that,when the sample size is increased from 100 to 200,the distribution approximation for the larger size is much more accurate than that for the small one.

    Example 4.2In this section,we model the relationship between viral load and CD4+cell counts in HIV-infected individuals during potent antiviral treatments based on the data from ACTG 315 study.In general,it is believed that the virologic response RNA(measured by viral load)and immunologic response(measured by CD4+cell counts)are negatively correlated during antiviral treatment(see[12,21]).And also the discordance between virologic and immunologic responses has been observed from several recent clinical studies(see[14–15,17,20])which model the relationship between viral load and CD4+cell counts by the mixed-e ff ect varying-coefficient model based on these data.In their studies,exact tests and confidence intervals for parameters are not available.Instead,we present these analysis results by model(1.1).Here,we also focus on the data for the first 24 weeks of treatment,since virological or immunologic responses during this period are popular endpoints for many AIDS clinical trials.So both viral load and CD4+cell counts were scheduled to be measured on days t=0,2,7,10,14,28,56,84,168 after initiation of an antiviral therapy.We obtained 441 complete paries of viral load and CD4+cell count observations from 48 evaluable patients.Let Yibe the viral load and let xibe the CD4+cell count for subject i.To reduce the marked skewness of CD4+cell counts and to make treatment times equal space,we take log-transformations of both variables(this is commonly used in AIDS clinical trials(see[14])).The xiare measured with error.The model we used is

    Y= β0+xβ1+g(T)+ε,X=x+u,

    where X is the observed CD4 cell counts and T is time.

    Figure 1 Q-Q plot ofv.s.Mn

    The parameter estimators,by using our proposed methods,are(β0,β1)=(2.7234,?0.1301).The 95%confidence interval of β0is(2.6496,2.7924)and that of β1is(?0.1498,?0.1085).It can be seen that the length of confidence intervals is small.Furthermore,we test the linear hypothesis H0:β1=0.The resulting p-value is 0,suggesting that β1is signi ficant.

    5 Discussion

    The primary goal of this paper is to provide a convenient inference and a linear hypothesis testing for the partially linear EV model based on the LAD-estimate.The proposed inference procedure via resampling avoids the difficulty of density estimation and is convenient to implement with the availability of the standard linear programming and computing power.All simulation studies con firm that the performance of the random weighting method works well.We believe that the proposed statistical method is methodologically valuable.Some of the conditions assumed for the main results may be dropped or relaxed and,in particular,the samples usually may not be independent in many applications.In addition,it allows that the LAD can be extended to the M method,and the random weighting method can be used in other nonparametric regression models,such as the mixed-e ff ect varying-coefficient model for AIDS data;the censored model or longitudinal data,which are common in survival analysis,and they are valuable subjects for future research.

    6 Appendix

    To prove the theorem,we first introduce the following three lemmas.

    Lemma 6.1(1)Suppose that Assumption 3.6 and(2.2)–(2.3)hold,and then

    (2)Suppose that(2.2)–(2.3)hold,E(|ε1|l+‖x1‖l+‖u1‖l)< ∞,and g and g2jsatisfy the Lipschitz condition.Then

    for l=3 or 4.

    ProofThis result is due to Lemma 1 of[5].

    Lemma 6.2(1)Assume that Assumption 3.2 holds and that f is a continuous function on interval[0,1],andThen

    (2)Assume that Assumption 2.2 holds and that f satisfies the Lipschitz condition and(n→∞).Then

    ProofThis result is due to Lemma 2 of[5].

    Lemma 6.3Under the condition of Theorem 3.1,we have

    ProofObserve that xi=hi+g2(Ti),1≤i≤n,and we have

    By virtue of Lemmas 6.1–6.2 and the strong law of large numbers,we have

    and therefore,

    so

    Next we proceed to prove the theorems.

    Proof of Theorem 3.1In this section,for simplicity in notation,let θ = √n(β ? β0).

    Write

    By virtue of Lemmas 6.1–6.2 and the strong law of large numbers,we have

    By applying the identity in Knight[11],

    We have

    Qn(θ)=Qn1(θ)+Qn2(θ),

    where

    Since

    where=dstands for obeying the same distribution,we have

    EQn2(θ)=EQn(θ)? EQn1(θ)

    By the Schwarz’s inequality and the control limited theorem,it is easy to see that

    and Assumption 3.2 then implies that

    The convextiy of the limiting objective function Q0(θ)assures the uniqueness of the minimizer and consequently

    Furthermore,

    where

    particularly,when v1≡1,we have

    By the central limited theorem,we have

    Proof of Theorem 3.2By the result of Theorem 3.1,we have

    From Lemma 2.9.5 in[20],it follows that conditionally on

    for almost every sequenceThus,by(6.12)–(6.13),it is easy to show that(3.3)holds true,

    By using the similar argument as in[16],(3.4)can be shown to hold true.

    Proof of Theorem 3.3define K as a known p×(p?q)matrix of rank p?q(0

    and then

    and

    Without loss of generality,H0:HT(β ?b0)=0 can be written as

    β?β0=Kγ

    for some γ ∈Rp?q,so

    Let vi≡1.By Theorem 3.1,we have

    It thus follows that

    Replacing(6.14)into(6.15),we get

    Similarly

    whereWhen H0is true,

    Under the condition of Theorem 3.3.This means that the Lindeberg’s condition holds.Moreover,note that

    Proof of Theorem 3.4Similar to the proof of Theorem 3.3,define

    and replacing into Qn(θ?),we have

    Similarly,it is easy to show that

    So

    where

    Therefore

    From Lemma 2.9.5 in[18],it follows that conditionally on

    AcknowledgementThe authors are extremely grateful to the referees for their valuable comments and suggestions.

    [1]Buchinsky,M.,Recent advances in quantile regression models:A practical guideline for empirical research.Journal of Human Resources,33,1998,88–126.

    [2]Carroll,R.J.,Ruppert,D.and Stefanski,L.A.,Nonlinear Measurement Error Models,Chapman and Hall,New York,1995.

    [3]Chen,K.,Ying,Z.and Zhang,H.,Analysis of least absolute deviation,Biometrika,95,2008,107–122.

    [4]Cui,H.J.,Asymptotic properties of generalized minimum L1-norm estimates in EV model,Science in China,Series A,27,1997,119–131(in Chinese).

    [5]Cui,H.J.and Li,R.C.,On parameter estimation for semi-linear errors-in-variables models,Journal of Multivariate Analysis,64,1998,1–24.

    [6]Cui,W.Q.,Li,K.and Yang,Y.N.,Random weighting method for Cox’s proportional hazards model,Science in China,Series A,51,2008,1843–1854.

    [7]Fuller,W.A.,Measurement Error Models,John Wiley and Sons,New York,1987.

    [8]Hardle,W.,Liang,H.and Gao,J.T.,Partially Linear Models,Physica-Verlag,Beilin,2000.

    [9]Jiang,R.,Qian,W.M.and Zhou,Z.G.,Randomly weighted estimators for parametric component in semi-linear errors-in-variables models,Journal of Tongji University,Natural Science,39,2011,768–772(in Chinese).

    [10]Jin,Z.,Ying,Z.and Wei,L.J.,A simple resampling method by perturbing the minimand,Biometrika,88,2001,381–390.

    [11]Knight,K.,Limiting distributions for L1regression estimators under general conditions,Ann.Stat.,26,1998,755–770.

    [12]Lederman,M.M.,Connick,E.and Landay,A.,Immunologic responses associated with 12 weeks of combination antiretroviral therapy consisting of zidovudine and ritonavir:Results of AIDS clinical trials group protocol 315,The Journal of Infectious Diseases,178,1998,70–79.

    [13]Liang,H.,Hardle,W.and Carroll,R.J.,Estimation in a semiparametric partially linear errors-in-variables model,Annual Statistics,27,1999,1519–1535.

    [14]Liang,H.,Wu,H.L.and Carroll,R.J.,The relationship between virologic and immunologic responses in AIDS clinical research using mixed-e ff ect varying-coefficient semiparametric models with measurement error,Biostatistics,4,2003,297–312.

    [15]Mallolas,J.,Li,W.and Del,R.A.,Clinical Outcome,CD4+Cell Count,and HIV-1 Reverse Transcriptase and Protease Sequences in Patients Remaining Viremic during HAART,7th Conference on Retroviruses and Opportunistic Infections,Abstract?334,Jan 30-Feb 2,San Francisco,CA,2000.

    [16]Rao,C.R.and Zhao,L.C.,Approximation to the distribution of M-estimates in linear models by randomly weighted bootstrap,SankhyA,54,1992,323–331.

    [17]Sabin,C.,Staszewski,S.and Phillips,A.,Discordant Immunological and Virological Responses to HAART,7th Conference on Retroviruses and Opportunistic Infections,Abstract?333,Jan 30-Feb 2,San Francisco,CA,2000.

    [18]Van der Vaart,A.W.and Wellner,J.A.,Weak Convergence and Empirical Processes,Springer-Verlag,New York,1996.

    [19]Wang,Z.,Wu,Y.and Zhao,L.C.,Approximation by randomly weighting method in censored regression model,Science in China Series A,52,2009,561–576.

    [20]Wu,H.,Connick,E.and Kuritzkes,D.R.,Cell Kinetic Patterns and Their Relationships with Virologic Responses in HIV-1-Infected Patients Treated with HAART,7th Conference on Retroviruses and Opportunistic Infections,Abstract?340,Jan 30-Feb 2,San Francisco,CA,2000.

    [21]Wu,H.and Ding,A.,Population HIV-1 dynamics in vivo:Applicable models and inferential tools for virological data from AIDS clinical trials,Biometrics,55,1999,410–418.

    [22]Zhao,L.C.and Chen,X.R.,Asymptotic behavior of M-test statistics in linear models,Journal of Combine Information System Science,16,1991,234–248.

    [23]Zheng,Z.G.,Random weighting method,Acta Mathematicae Applilcate Sinica,10,1987,247–253(in Chinese).

    [24]Zhu,L.and Cui,H.J.,A semiparametric regression model with errors in variables,Scan.Journal Statistics,30,2003,429–442.

    亚洲性夜色夜夜综合| 欧美成人免费av一区二区三区| 国产成人av激情在线播放| 欧美不卡视频在线免费观看 | 哪里可以看免费的av片| 免费人成视频x8x8入口观看| 成年免费大片在线观看| 麻豆一二三区av精品| 日本成人三级电影网站| 国产真人三级小视频在线观看| 听说在线观看完整版免费高清| 99精品久久久久人妻精品| 特大巨黑吊av在线直播 | 色精品久久人妻99蜜桃| 中出人妻视频一区二区| 精品久久久久久久人妻蜜臀av| 身体一侧抽搐| 国产高清激情床上av| 91成年电影在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 久久国产精品人妻蜜桃| 国产精品1区2区在线观看.| 午夜福利欧美成人| av在线天堂中文字幕| 无人区码免费观看不卡| 脱女人内裤的视频| 国产一级毛片七仙女欲春2 | netflix在线观看网站| 国产爱豆传媒在线观看 | 国产精品美女特级片免费视频播放器 | 一级a爱片免费观看的视频| or卡值多少钱| 午夜老司机福利片| 日日夜夜操网爽| 色哟哟哟哟哟哟| 欧美黑人欧美精品刺激| 一区二区三区精品91| 正在播放国产对白刺激| 亚洲精品一卡2卡三卡4卡5卡| 久久狼人影院| 国产高清有码在线观看视频 | 国产在线精品亚洲第一网站| 精品少妇一区二区三区视频日本电影| 亚洲精品久久成人aⅴ小说| 国产成人精品久久二区二区91| 国产成人欧美在线观看| 欧美乱色亚洲激情| 91成人精品电影| 天天添夜夜摸| 18禁黄网站禁片午夜丰满| 国产精品野战在线观看| 大型黄色视频在线免费观看| 欧美黑人欧美精品刺激| 欧美成狂野欧美在线观看| xxx96com| 在线观看www视频免费| 免费电影在线观看免费观看| 久久久久九九精品影院| 制服人妻中文乱码| 精品国产超薄肉色丝袜足j| 99热只有精品国产| 两性夫妻黄色片| 亚洲人成网站高清观看| 精品国产亚洲在线| 岛国视频午夜一区免费看| 两性夫妻黄色片| 日韩大尺度精品在线看网址| 亚洲精品国产区一区二| 长腿黑丝高跟| av福利片在线| 国产精品野战在线观看| 此物有八面人人有两片| 一个人免费在线观看的高清视频| 亚洲人成伊人成综合网2020| 香蕉久久夜色| 亚洲欧美日韩无卡精品| 国产亚洲精品久久久久5区| 成人国语在线视频| 又黄又粗又硬又大视频| 欧美av亚洲av综合av国产av| 免费观看人在逋| 久久久国产成人精品二区| 超碰成人久久| 中文字幕人成人乱码亚洲影| 欧美zozozo另类| 校园春色视频在线观看| 国产黄片美女视频| 在线永久观看黄色视频| www.www免费av| 最新美女视频免费是黄的| 亚洲精品中文字幕在线视频| 变态另类丝袜制服| 精品熟女少妇八av免费久了| 国产成人啪精品午夜网站| av免费在线观看网站| 免费av毛片视频| 嫁个100分男人电影在线观看| 国产精品一区二区免费欧美| 国产成人欧美| 女性生殖器流出的白浆| 久久久精品国产亚洲av高清涩受| 久久精品国产综合久久久| 村上凉子中文字幕在线| 亚洲av第一区精品v没综合| 校园春色视频在线观看| 在线观看免费视频日本深夜| 99精品欧美一区二区三区四区| 久9热在线精品视频| 久久 成人 亚洲| 亚洲精品在线观看二区| 一夜夜www| 亚洲精品国产一区二区精华液| 亚洲专区国产一区二区| 国产不卡一卡二| 国产精品 国内视频| 国产高清videossex| 妹子高潮喷水视频| 久久香蕉国产精品| 夜夜夜夜夜久久久久| 99国产精品一区二区三区| 国产精品香港三级国产av潘金莲| 日韩大码丰满熟妇| 日韩大尺度精品在线看网址| 神马国产精品三级电影在线观看 | 欧美丝袜亚洲另类 | 国产亚洲精品一区二区www| 最好的美女福利视频网| 亚洲精品中文字幕一二三四区| 亚洲国产中文字幕在线视频| 国产视频一区二区在线看| 亚洲精品美女久久久久99蜜臀| 亚洲成人久久爱视频| 搡老熟女国产l中国老女人| 啦啦啦免费观看视频1| 亚洲精华国产精华精| 国产成人av激情在线播放| 亚洲 国产 在线| 国产亚洲精品久久久久5区| 亚洲国产精品久久男人天堂| 国产99白浆流出| 久9热在线精品视频| a在线观看视频网站| 脱女人内裤的视频| 最好的美女福利视频网| 免费搜索国产男女视频| 亚洲在线自拍视频| 18禁观看日本| 免费观看人在逋| www.熟女人妻精品国产| 免费在线观看影片大全网站| 欧美性猛交╳xxx乱大交人| 美女扒开内裤让男人捅视频| 亚洲三区欧美一区| 欧美日韩中文字幕国产精品一区二区三区| 性欧美人与动物交配| 亚洲精品一卡2卡三卡4卡5卡| 欧美黑人欧美精品刺激| 日本撒尿小便嘘嘘汇集6| 中文字幕精品免费在线观看视频| 久热这里只有精品99| 欧美zozozo另类| 观看免费一级毛片| 久久久久久九九精品二区国产 | 亚洲国产精品成人综合色| 亚洲天堂国产精品一区在线| 麻豆久久精品国产亚洲av| 一个人免费在线观看的高清视频| 99久久综合精品五月天人人| 欧美成人午夜精品| 丰满的人妻完整版| 别揉我奶头~嗯~啊~动态视频| 一本综合久久免费| 丰满的人妻完整版| 国产麻豆成人av免费视频| 天天一区二区日本电影三级| 他把我摸到了高潮在线观看| 午夜老司机福利片| 国产乱人伦免费视频| 哪里可以看免费的av片| 精品欧美一区二区三区在线| 国产亚洲精品久久久久久毛片| 亚洲精品粉嫩美女一区| 久久草成人影院| 日韩中文字幕欧美一区二区| 午夜福利免费观看在线| 国产激情久久老熟女| 亚洲一区二区三区色噜噜| 国产精品爽爽va在线观看网站 | 久久久国产欧美日韩av| 日韩高清综合在线| 亚洲av片天天在线观看| 国产又爽黄色视频| 久久午夜亚洲精品久久| 免费在线观看视频国产中文字幕亚洲| 久久精品国产清高在天天线| 久久久精品国产亚洲av高清涩受| 国产黄片美女视频| 亚洲中文av在线| 色av中文字幕| 每晚都被弄得嗷嗷叫到高潮| 欧美激情高清一区二区三区| 最近最新中文字幕大全电影3 | 香蕉国产在线看| 国产精品亚洲美女久久久| 久久精品国产清高在天天线| 免费在线观看亚洲国产| 久久香蕉精品热| 精品久久久久久久毛片微露脸| 国产精品亚洲av一区麻豆| 日韩中文字幕欧美一区二区| 亚洲精品美女久久久久99蜜臀| 狂野欧美激情性xxxx| 精品一区二区三区视频在线观看免费| 国产精品精品国产色婷婷| 国产片内射在线| 国产精品久久久久久亚洲av鲁大| 最近最新免费中文字幕在线| 久久 成人 亚洲| 欧美黑人精品巨大| 国产极品粉嫩免费观看在线| 欧美精品亚洲一区二区| 淫秽高清视频在线观看| 在线播放国产精品三级| 99国产极品粉嫩在线观看| 看免费av毛片| 丁香欧美五月| 91国产中文字幕| 国产精品亚洲美女久久久| 一进一出好大好爽视频| 久久这里只有精品19| 欧美激情久久久久久爽电影| 久久久水蜜桃国产精品网| 老司机福利观看| 悠悠久久av| 久久亚洲真实| 国产亚洲精品综合一区在线观看 | 亚洲精品粉嫩美女一区| svipshipincom国产片| 男人舔女人的私密视频| 视频在线观看一区二区三区| 午夜日韩欧美国产| 国产一卡二卡三卡精品| 亚洲免费av在线视频| 动漫黄色视频在线观看| videosex国产| 中文在线观看免费www的网站 | 欧美激情极品国产一区二区三区| 色尼玛亚洲综合影院| 波多野结衣高清无吗| 桃红色精品国产亚洲av| 亚洲最大成人中文| 久久久久久久午夜电影| 正在播放国产对白刺激| 自线自在国产av| 亚洲av第一区精品v没综合| 中文在线观看免费www的网站 | 视频区欧美日本亚洲| 两人在一起打扑克的视频| 欧美三级亚洲精品| 亚洲国产精品成人综合色| 国产成人精品久久二区二区免费| 一进一出好大好爽视频| 成年女人毛片免费观看观看9| 老司机靠b影院| 亚洲国产欧美一区二区综合| 9191精品国产免费久久| 88av欧美| 午夜久久久在线观看| 国产男靠女视频免费网站| 色精品久久人妻99蜜桃| 熟妇人妻久久中文字幕3abv| 国产午夜精品久久久久久| 99久久综合精品五月天人人| 日韩精品青青久久久久久| 亚洲五月婷婷丁香| 美女国产高潮福利片在线看| 国产精品自产拍在线观看55亚洲| 免费观看精品视频网站| 香蕉av资源在线| 女人被狂操c到高潮| 日韩免费av在线播放| 久久精品91无色码中文字幕| 久久精品亚洲精品国产色婷小说| 亚洲熟妇中文字幕五十中出| 午夜成年电影在线免费观看| 国产精品久久久久久亚洲av鲁大| 中国美女看黄片| 一本综合久久免费| 亚洲中文av在线| 欧洲精品卡2卡3卡4卡5卡区| 女人高潮潮喷娇喘18禁视频| 欧美日韩福利视频一区二区| 久久国产精品影院| 国产精品九九99| 一本精品99久久精品77| 久久国产精品男人的天堂亚洲| 久久久国产成人免费| 日本成人三级电影网站| 人成视频在线观看免费观看| 91在线观看av| 99在线人妻在线中文字幕| 中文在线观看免费www的网站 | 日日干狠狠操夜夜爽| 色综合婷婷激情| 亚洲熟妇中文字幕五十中出| 欧美大码av| 精品国产一区二区三区四区第35| 非洲黑人性xxxx精品又粗又长| 一二三四在线观看免费中文在| 亚洲七黄色美女视频| 久久精品国产综合久久久| 亚洲男人天堂网一区| 制服诱惑二区| 亚洲五月色婷婷综合| 99国产精品一区二区蜜桃av| 亚洲自偷自拍图片 自拍| 成人免费观看视频高清| 欧美最黄视频在线播放免费| 99热只有精品国产| 级片在线观看| 午夜a级毛片| 久久草成人影院| 2021天堂中文幕一二区在线观 | 欧美在线黄色| 欧美丝袜亚洲另类 | 999久久久国产精品视频| 午夜精品在线福利| 日韩中文字幕欧美一区二区| 最近最新中文字幕大全免费视频| 一本综合久久免费| 成在线人永久免费视频| 日日夜夜操网爽| 亚洲国产欧洲综合997久久, | 成在线人永久免费视频| 亚洲中文日韩欧美视频| 亚洲久久久国产精品| 午夜久久久久精精品| 日本 av在线| 欧美成人免费av一区二区三区| 波多野结衣av一区二区av| 亚洲人成伊人成综合网2020| 一边摸一边做爽爽视频免费| 69av精品久久久久久| 在线十欧美十亚洲十日本专区| 天天添夜夜摸| netflix在线观看网站| 午夜福利免费观看在线| 男男h啪啪无遮挡| 国产精品二区激情视频| 久久伊人香网站| 中文字幕人成人乱码亚洲影| 欧美成人免费av一区二区三区| 成人三级黄色视频| 久久久国产成人精品二区| 亚洲精品一区av在线观看| 亚洲人成伊人成综合网2020| 波多野结衣高清无吗| 最近在线观看免费完整版| 在线观看66精品国产| 日本免费a在线| 成人18禁高潮啪啪吃奶动态图| 久久国产乱子伦精品免费另类| xxxwww97欧美| 人人妻人人澡欧美一区二区| 国产视频内射| 国产野战对白在线观看| 性欧美人与动物交配| 无遮挡黄片免费观看| 亚洲免费av在线视频| 久久人人精品亚洲av| 日本撒尿小便嘘嘘汇集6| av中文乱码字幕在线| 老司机午夜十八禁免费视频| 国产精品久久久久久亚洲av鲁大| 很黄的视频免费| 波多野结衣高清无吗| 免费在线观看成人毛片| 国产精品影院久久| 97超级碰碰碰精品色视频在线观看| 精品人妻1区二区| 桃色一区二区三区在线观看| 在线视频色国产色| 免费看日本二区| 亚洲第一av免费看| 老司机福利观看| av欧美777| svipshipincom国产片| 免费av毛片视频| 成人18禁高潮啪啪吃奶动态图| 在线免费观看的www视频| 两个人看的免费小视频| 亚洲精品色激情综合| 国产成人av激情在线播放| 精品国产美女av久久久久小说| 黄色丝袜av网址大全| 免费av毛片视频| 最近最新中文字幕大全电影3 | www.熟女人妻精品国产| 黄片小视频在线播放| 九色国产91popny在线| 欧美黑人欧美精品刺激| 啦啦啦韩国在线观看视频| 国产午夜精品久久久久久| 精品高清国产在线一区| 黑丝袜美女国产一区| 怎么达到女性高潮| 亚洲精品粉嫩美女一区| 久久精品国产综合久久久| 欧美日韩乱码在线| 成年版毛片免费区| 一本久久中文字幕| 12—13女人毛片做爰片一| 中文字幕人妻熟女乱码| 嫩草影视91久久| 国产视频内射| 精品国产一区二区三区四区第35| 丰满人妻熟妇乱又伦精品不卡| 欧美激情 高清一区二区三区| 国产在线精品亚洲第一网站| 免费高清视频大片| 男女那种视频在线观看| 女生性感内裤真人,穿戴方法视频| 免费一级毛片在线播放高清视频| 午夜福利免费观看在线| 欧美绝顶高潮抽搐喷水| 69av精品久久久久久| 又紧又爽又黄一区二区| 香蕉国产在线看| 天天躁夜夜躁狠狠躁躁| 国产区一区二久久| 一a级毛片在线观看| 伦理电影免费视频| 长腿黑丝高跟| 午夜日韩欧美国产| а√天堂www在线а√下载| 国产精品98久久久久久宅男小说| 亚洲成av人片免费观看| 韩国精品一区二区三区| 久久草成人影院| 午夜福利一区二区在线看| 久久热在线av| av有码第一页| 国产免费男女视频| 老鸭窝网址在线观看| 亚洲电影在线观看av| 日本一区二区免费在线视频| 色在线成人网| 丰满人妻熟妇乱又伦精品不卡| 俺也久久电影网| 在线观看66精品国产| 好男人在线观看高清免费视频 | 亚洲avbb在线观看| 深夜精品福利| 91九色精品人成在线观看| 99国产精品一区二区蜜桃av| 精品一区二区三区视频在线观看免费| 久久这里只有精品19| 国产又爽黄色视频| 久久国产精品人妻蜜桃| 亚洲av电影在线进入| 在线十欧美十亚洲十日本专区| 男女视频在线观看网站免费 | 在线天堂中文资源库| 好看av亚洲va欧美ⅴa在| 亚洲aⅴ乱码一区二区在线播放 | 久久精品影院6| 久久精品国产综合久久久| 69av精品久久久久久| 在线观看www视频免费| 美女 人体艺术 gogo| 日韩成人在线观看一区二区三区| 午夜久久久久精精品| 国产三级黄色录像| 色老头精品视频在线观看| 91国产中文字幕| 日韩欧美国产一区二区入口| 国产精品久久电影中文字幕| АⅤ资源中文在线天堂| 亚洲自偷自拍图片 自拍| 一级片免费观看大全| 999久久久精品免费观看国产| 很黄的视频免费| 久久精品夜夜夜夜夜久久蜜豆 | 99精品在免费线老司机午夜| 制服丝袜大香蕉在线| 女同久久另类99精品国产91| av福利片在线| 午夜福利欧美成人| 久久青草综合色| av有码第一页| 美女国产高潮福利片在线看| 99在线视频只有这里精品首页| 女人高潮潮喷娇喘18禁视频| 正在播放国产对白刺激| 露出奶头的视频| 人人妻人人看人人澡| 啪啪无遮挡十八禁网站| 12—13女人毛片做爰片一| 欧美中文日本在线观看视频| 岛国视频午夜一区免费看| 国产精品野战在线观看| 国产黄a三级三级三级人| 国产激情欧美一区二区| 欧美zozozo另类| 黄色 视频免费看| 老司机午夜十八禁免费视频| 他把我摸到了高潮在线观看| 国产亚洲精品综合一区在线观看 | 亚洲国产中文字幕在线视频| 一二三四社区在线视频社区8| 亚洲国产日韩欧美精品在线观看 | 国产精品乱码一区二三区的特点| 两性夫妻黄色片| 精品久久久久久,| 精品第一国产精品| 久久人妻福利社区极品人妻图片| 国产精品亚洲一级av第二区| 三级毛片av免费| 国产不卡一卡二| 亚洲 欧美一区二区三区| 男女之事视频高清在线观看| 亚洲电影在线观看av| 成年免费大片在线观看| 在线免费观看的www视频| 色综合婷婷激情| 精品久久久久久久末码| 好男人电影高清在线观看| 国产成人啪精品午夜网站| 久久久久久国产a免费观看| 亚洲av五月六月丁香网| 国产麻豆成人av免费视频| 亚洲精品久久成人aⅴ小说| 久久 成人 亚洲| 99久久无色码亚洲精品果冻| 伊人久久大香线蕉亚洲五| 熟女少妇亚洲综合色aaa.| 欧美激情极品国产一区二区三区| 亚洲色图av天堂| 久99久视频精品免费| 国产主播在线观看一区二区| 看黄色毛片网站| 中国美女看黄片| 免费看a级黄色片| 制服人妻中文乱码| 中文字幕另类日韩欧美亚洲嫩草| 亚洲国产高清在线一区二区三 | 久久久久久免费高清国产稀缺| 久久久国产成人精品二区| 色综合亚洲欧美另类图片| 国产又黄又爽又无遮挡在线| 欧美黑人欧美精品刺激| 天天一区二区日本电影三级| 一级作爱视频免费观看| 免费看a级黄色片| 人妻久久中文字幕网| 亚洲成人国产一区在线观看| 国产免费男女视频| 欧美人与性动交α欧美精品济南到| 一级a爱片免费观看的视频| 午夜免费鲁丝| 色播亚洲综合网| 男人舔女人的私密视频| 国产高清videossex| 极品教师在线免费播放| 久久久久久免费高清国产稀缺| 欧美一级毛片孕妇| 老汉色av国产亚洲站长工具| 亚洲午夜精品一区,二区,三区| 国产国语露脸激情在线看| 国产免费av片在线观看野外av| 久久精品国产综合久久久| 给我免费播放毛片高清在线观看| 国产在线观看jvid| 久久 成人 亚洲| 在线观看午夜福利视频| 亚洲自拍偷在线| 国产精品久久电影中文字幕| 久久久久久大精品| 日韩中文字幕欧美一区二区| 国产亚洲欧美98| 99精品欧美一区二区三区四区| 又黄又爽又免费观看的视频| 中文字幕精品亚洲无线码一区 | 特大巨黑吊av在线直播 | 国产黄片美女视频| 18禁黄网站禁片午夜丰满| 午夜免费观看网址| 欧美乱色亚洲激情| 免费在线观看黄色视频的| 国产精品久久久人人做人人爽| 国产伦在线观看视频一区| 麻豆国产av国片精品| 国内揄拍国产精品人妻在线 | 国产欧美日韩精品亚洲av| 国产乱人伦免费视频| 亚洲免费av在线视频| 久久久水蜜桃国产精品网| 高清在线国产一区| 免费女性裸体啪啪无遮挡网站| 国产爱豆传媒在线观看 | 国产99白浆流出| 亚洲国产中文字幕在线视频| 欧美性猛交╳xxx乱大交人| 免费在线观看影片大全网站| √禁漫天堂资源中文www| 久久中文字幕一级| 一区二区三区高清视频在线| 国产人伦9x9x在线观看| 久久精品国产亚洲av高清一级| 久久精品人妻少妇| 91老司机精品| 啪啪无遮挡十八禁网站| 午夜影院日韩av| 久久青草综合色| 日韩大码丰满熟妇|