[摘要] 甲狀腺是人體內(nèi)最大的內(nèi)分泌腺,通過促甲狀腺激素受體(thyrotropin receptor,TSHR)接受腺垂體分泌的促甲狀腺激素(thyroid-stimulating hormone,TSH)調(diào)節(jié)并分泌甲狀腺激素(thyroid hormone,TH)發(fā)揮生理作用。甲狀腺功能減退癥(hypothyroidism,HT)簡稱甲減,是由各種病因?qū)е碌牡图谞钕偌に匮Y或甲狀腺激素抵抗而引起的全身性低代謝綜合征。因TH幾乎作用于人體所有細(xì)胞,對生長、神經(jīng)元發(fā)育、生殖和能量代謝的調(diào)節(jié)及正常生理活動的維持至關(guān)重要,所以當(dāng)機體TH含量減少時可產(chǎn)生較為廣泛的影響,長期缺少TH往往會出現(xiàn)多系統(tǒng)受累癥狀。此外,TSH不僅對甲狀腺,還對其他器官有影響,故討論HT或亞臨床性HT對某一器官的影響時需考慮機體高TSH水平。HT在中國較為多見,對人們的身心健康影響較大,此病的發(fā)生、發(fā)展嚴(yán)重增加家庭和社會的負(fù)擔(dān)。本文對HT影響各系統(tǒng)器官的機制作一綜述,旨在為疾病的研究與治療提供新方向。
[關(guān)鍵詞] 甲狀腺功能減退癥;甲狀腺激素;促甲狀腺激素;器官影響
[中圖分類號] R581 [文獻標(biāo)識碼] A [DOI] 10.3969/j.issn.1673-9701.2024.27.023
甲狀腺功能減退癥(hypothyroidism,HT)是由自身免疫性疾病、藥物、手術(shù)等各種原因造成的甲狀腺激素(thyroid hormone,TH)分泌過少或利用障礙而導(dǎo)致的全身性低代謝綜合征。目前中國的HT患病率有所上升,這可能與生活方式改變及人口老齡化有關(guān)。HT發(fā)病隱匿,病程較長,主要癥狀以代謝率減低和交感神經(jīng)興奮性下降為主。典型患者有畏寒、乏力、手足腫脹感、嗜睡、記憶力減退、關(guān)節(jié)疼痛、體質(zhì)量增加、女性月經(jīng)紊亂及不孕等癥狀。隨病程的延長及病情的加重,以上癥狀有所加重,更嚴(yán)重者可造成系統(tǒng)器官器質(zhì)性病變。因此,對HT及其并發(fā)癥的研究具有重要意義。
1HT對各系統(tǒng)的影響及機制
1.1HT與心血管系統(tǒng)
HT患者可出現(xiàn)心搏出量減少、心動過緩等癥狀,最終可導(dǎo)致心肌萎縮[1]。肌質(zhì)網(wǎng)/內(nèi)質(zhì)網(wǎng)Ca2+ATP酶2a(sarcoplasmic/endoplasmic reticulum Ca2+ATPase 2a,Serca2a)作為一種重要的鈣轉(zhuǎn)運蛋白,負(fù)責(zé)將鈣重攝取到肌質(zhì)網(wǎng)/內(nèi)質(zhì)網(wǎng)中,成為影響心臟舒張功能的決定因素。TH相對缺乏時可導(dǎo)致心肌細(xì)胞編碼Serca2a的基因表達下降,Serca2a蛋白水平降低,鈣攝取減少,最終導(dǎo)致舒張功能受損,隨后心肌細(xì)胞的鈣離子循環(huán)和收縮力也發(fā)生異常變化,導(dǎo)致收縮功能下降[2-4];此外,Serca2a的活性還可被升高的促甲狀腺激素(thyroid-stimulating hormone,TSH)抑制,其抑制效應(yīng)通過TSH與心肌細(xì)胞促甲狀腺激素受體(thyrotropin receptor,TSHR)的結(jié)合增加而產(chǎn)生[5]。與Serca2a功能相反,蘭尼堿受體(ryanodine receptor2,Ryr2)是肌質(zhì)網(wǎng)中最重要的Ca2+釋放通道,在收縮期發(fā)揮至關(guān)重要的作用。研究表明血清TSH可下調(diào)亞臨床性甲狀腺功能減退癥(subclinical hypothyroidism,SCH)大鼠心肌細(xì)胞中Serca2a和Ryr2的mRNA和蛋白表達量,且這種下調(diào)與TSH呈濃度依賴關(guān)系[6]。由此可見較高的血清TSH濃度可通過影響Serca2a和Ryr2活性導(dǎo)致更嚴(yán)重的心肌收縮和舒張功能障礙。Zhang等[7]研究顯示TSH在心肌細(xì)胞上靶向與TSHR結(jié)合,并通過miR-1a下調(diào)超極化激活環(huán)核苷酸門控通道的表達,進而調(diào)控心功能,引發(fā)心室肌萎縮和心臟收縮功能障礙。至于HT中出現(xiàn)的心肌萎縮還需進一步深入研究。
除心臟器質(zhì)性改變和收縮、舒張功能障礙外,心率及節(jié)律同樣有所改變。已證實HT和甲狀腺功能亢進癥都可增加心房顫動的易感性,表明正常TH水平是防止心律失常和心房顫動所必需的[8]。在動物模型中,HT與心臟電功能障礙有關(guān),部分原因是晚期鈉電流增加,心律失常的易感性增強[9]。原發(fā)性HT患者心率降低,而在中樞性HT中影響不明顯,提示TSH與心率降低有關(guān),深入研究結(jié)果證實,TSH對復(fù)極化K+電流的抑制是大多數(shù)電重構(gòu)的基礎(chǔ),通過心臟TSH受體/蛋白激酶A通路的激活造成心臟電重構(gòu)和心律失常[10]。
研究證實HT可增加動脈粥樣硬化發(fā)生概率,肝脂質(zhì)代謝紊亂造成高血脂,是動脈粥樣硬化發(fā)生的危險因素之一[11]。TH降低時肝細(xì)胞中低密度脂蛋白受體相關(guān)蛋白1的表達下降,影響脂質(zhì)譜,循環(huán)殘粒脂蛋白清除減少,促進動脈粥樣硬化的發(fā)生[12]。TSH可激活巨噬細(xì)胞中的絲裂原活化蛋白激酶和核因子κB通路,增加炎性細(xì)胞因子的產(chǎn)生及其對單核細(xì)胞的募集,加重動脈粥樣硬化[13]。研究顯示轉(zhuǎn)化生長因子激酶1在巨噬細(xì)胞中的活性增加,抑制其下游單磷酸腺苷激活的蛋白激酶和UNC-51樣激酶1,最終間接加速動脈粥樣硬化的進展[14]。在HT動物模型中還發(fā)現(xiàn),血管平滑肌細(xì)胞凋亡對動脈粥樣硬化的早期發(fā)展有作用,具體機制有待深入研究[15]。
1.2HT與消化系統(tǒng)
消化系統(tǒng)中的肝臟與甲狀腺在健康和疾病中存在復(fù)雜的關(guān)系,肝臟在TH的活化和失活、運輸和代謝中發(fā)揮重要的生理作用,反之TH也影響肝細(xì)胞的活性和肝臟代謝[16]。近年來HT引起非酒精性脂肪性肝?。╪on-alcoholic fatty liver disease,NAFLD)的機制研究較受關(guān)注。NAFLD的特點是肝臟內(nèi)脂肪含量超過5%,但堆積的脂肪并非由過量飲酒或長期服用某些特定藥物等繼發(fā)性因素所引發(fā)[17]。HT誘導(dǎo)的NAFLD涉及多種肝內(nèi)外機制,這些機制共同導(dǎo)致三酰甘油在肝臟中積聚;HT還可誘發(fā)高膽固醇血癥,膽固醇增加被認(rèn)為是促進NAFLD發(fā)生的因素之一。研究發(fā)現(xiàn)膽固醇對HT誘導(dǎo)的NAFLD發(fā)病機制無作用[18];但另一項研究顯示HT通過促進膽固醇生物合成誘導(dǎo)膽固醇膽結(jié)石形成[19]。
HT除和肝臟關(guān)系密切,還影響胰腺的生理功能。研究表明HT對胰腺外分泌腺泡細(xì)胞的形態(tài)和功能產(chǎn)生負(fù)面影響,降低胰腺提取物中的淀粉酶和脂肪酶水平,這些改變可能與胰蛋白酶水平升高有關(guān),補充TH可恢復(fù)腺泡細(xì)胞的形態(tài)和功能[20]。
1.3HT與運動系統(tǒng)
嬰幼兒期的HT可導(dǎo)致呆小癥,“小”是指對骨骼發(fā)育的影響。TH受體(thyroidhormone receptor,THR)主要分為TRα1和TRβ1,TH分別通過TRα1和TRβ1控制增殖中的未成熟軟骨細(xì)胞向成熟的肥厚軟骨細(xì)胞轉(zhuǎn)運,后成為骨骺上的成骨細(xì)胞[21]。HT導(dǎo)致此作用機制減少而影響骨骼的發(fā)育。患有甲狀腺功能障礙的個體可經(jīng)歷骨質(zhì)流失和低骨密度,且有骨質(zhì)疏松癥甚至骨折的風(fēng)險,當(dāng)甲狀腺功能狀態(tài)恢復(fù)正常后骨密度可恢復(fù)[22]。正常的甲狀腺功能對骨骼正常發(fā)育和功能維持至關(guān)重要。
雖然甲狀腺功能減退性肌病的發(fā)病機制尚不完全清楚,但提出的機制包括糖原分解和氧化代謝改變、收縮蛋白表達改變和神經(jīng)介導(dǎo)的損傷,這些機制可導(dǎo)致罕見的肌肉表現(xiàn),如橫紋肌溶解、急性骨筋膜室綜合征等[23]。對骨骼肌TRα1顯性失活突變基因小鼠的研究發(fā)現(xiàn)骨骼肌細(xì)胞的自噬水平、線粒體周轉(zhuǎn)、脂肪酸使用和三羧酸循環(huán)通量減少,肌纖維表型發(fā)生改變,導(dǎo)致大多數(shù)明顯的HT患者出現(xiàn)肌肉僵硬、肌痛、痙攣、易疲勞等癥狀[24]。
1.4HT與女性生殖系統(tǒng)
TH對維持生殖功能至關(guān)重要,TH的支持失調(diào)可損害卵泡發(fā)育。研究發(fā)現(xiàn)HT大鼠的卵巢質(zhì)量低于對照大鼠,機制研究發(fā)現(xiàn)TH失調(diào)可降低卵巢細(xì)胞中羊毛甾醇14α-脫甲基酶(sterol 14α-demethylase,CYP51)和卵泡刺激素受體的表達[25]。CYP51是甾醇和類固醇生物合成的關(guān)鍵酶,參與卵泡發(fā)育和卵母細(xì)胞成熟,受卵泡刺激素調(diào)控[26]。伴隨卵泡刺激素受體表達的下調(diào)和血清卵泡刺激素濃度的降低,CYP51表達水平進一步降低,從而進一步加深對卵巢細(xì)胞發(fā)育的負(fù)面影響[25]。研究表明成年雌性大鼠慢性HT的誘導(dǎo)可對卵泡儲備和不斷增長的卵泡產(chǎn)生負(fù)面影響,這可能影響生育能力[27]。
除影響卵巢功能外,HT還對子宮有負(fù)面影響,具體體現(xiàn)在子宮血管內(nèi)皮生長因子、孕激素受體、雌激素受體和THR及腹脂蛋白表達的變化;且脂質(zhì)含量和氧化狀態(tài)的改變促進子宮增生和炎癥[28]。子宮容受期是子宮接受胚胎植入的時期,HT通過降低雌二醇水平及減少子宮容受因子同源盒A10和骨橋蛋白的表達損害子宮容受性,此過程還涉及前列腺素信號通路,導(dǎo)致子宮容受性降低,進而影響受精和著床,更甚者出現(xiàn)流產(chǎn)和妊娠后期并發(fā)癥[29]。綜上,HT可影響女性生殖器官的生理狀態(tài),甚至嚴(yán)重影響女性的生育能力。
1.5HT與男性生殖系統(tǒng)
雖然HT對女性性腺功能的影響已得到證實,但其對男性生殖系統(tǒng)的影響卻因癥狀不突出被忽略。Sarkar等[30]提出新生小鼠的HT通過增加青春期前小鼠的氧化應(yīng)激改變睪丸內(nèi)葡萄糖穩(wěn)態(tài),影響生殖細(xì)胞的存活和增殖,進而影響生殖功能。另一項針對成年大鼠的研究顯示HT可導(dǎo)致睪丸功能障礙,其可能的分子機制是雌激素受體和G蛋白偶聯(lián)受體30表達的改變,細(xì)胞外信號調(diào)節(jié)激酶和磷酸肌醇3激酶/蛋白激酶B信號通路及細(xì)胞周期蛋白D1的抑制誘導(dǎo)線粒體介導(dǎo)的細(xì)胞凋亡途徑,最終誘導(dǎo)睪丸細(xì)胞凋亡[31];但該過程中涉及的分子機制需進一步驗證。綜上,HT對無論性功能是否成熟的雄性生殖系統(tǒng)均有負(fù)面影響。
1.6HT與神經(jīng)系統(tǒng)
HT可導(dǎo)致呆小癥,“呆”是指神經(jīng)系統(tǒng)功能障礙。大腦發(fā)育的“關(guān)鍵時期”可見軸突和樹突增殖、突觸形成、膠質(zhì)生成和髓鞘形成等。Liu等[32]首次證明在正常大腦發(fā)育的“關(guān)鍵時期”,TH水平降低可抑制皮質(zhì)神經(jīng)元內(nèi)全長型塌陷反應(yīng)調(diào)節(jié)蛋白2B(collapsin response mediator protein-2B,CRMP2B)和肌動蛋白相關(guān)蛋白2/3復(fù)合物第5亞單位(actinrelatedprotein2/3complex5,ARPC5)的表達,并促進CRMP2B短亞型的核轉(zhuǎn)化,CRMP2B和ARPC5的水平變化可通過誘導(dǎo)神經(jīng)突生長抑制和細(xì)胞骨架蛋白解體參與HT介導(dǎo)的中央神經(jīng)系統(tǒng)損傷。
研究顯示幼胎大鼠和新生大鼠缺乏TH可對海馬產(chǎn)生有害影響,TH在維持正常的海馬自噬機制中發(fā)揮至關(guān)重要的作用,可通過白細(xì)胞介素激活破壞自噬,最終導(dǎo)致海馬神經(jīng)元損傷、學(xué)習(xí)記憶障礙和認(rèn)知缺陷[33]。研究者在丙基硫氧嘧啶誘導(dǎo)的成年大鼠HT模型中發(fā)現(xiàn)海馬突觸可塑性降低,引發(fā)認(rèn)知能力下降[34]。還有研究顯示內(nèi)質(zhì)網(wǎng)應(yīng)激可能是導(dǎo)致HT海馬神經(jīng)元死亡的主要機制[35]。HT導(dǎo)致神經(jīng)系統(tǒng)功能障礙的機制較為復(fù)雜,仍需更深入的研究。
1.7HT與內(nèi)分泌系統(tǒng)
胎兒下丘腦-垂體-腎上腺軸在控制分娩和器官系統(tǒng)成熟中發(fā)揮關(guān)鍵作用。Camm等[36]發(fā)現(xiàn)胎羊在TH缺乏時導(dǎo)致循環(huán)促腎上腺皮質(zhì)激素濃度、腎上腺皮質(zhì)束狀帶體積、類固醇生成酶mRNA水平和血漿皮質(zhì)醇濃度降低,從而影響胎羊成熟和分娩時間。根據(jù)對甲狀腺功能亢進和HT動物模型的腎上腺觀察發(fā)現(xiàn)參與兒茶酚胺合成的基因表達出現(xiàn)下調(diào)和上調(diào),表明TH與腎上腺髓質(zhì)存在相互作用,研究表明先天性甲狀腺功能亢進癥或HT可改變腎上腺皮質(zhì)發(fā)育及其類固醇生成活性,并對髓質(zhì)基因表達產(chǎn)生至關(guān)重要的影響。另外發(fā)現(xiàn)甲狀腺功能亢進小鼠的腎上腺質(zhì)量增加,而HT小鼠的腎上腺質(zhì)量降低[37]。
一項隊列研究表明HT是糖尿病的危險因素[38];而SCH也可增加血糖水平正常者的胰島素抵抗水平,且TH敏感性降低與患糖尿病的風(fēng)險相關(guān)[39]。有報道稱,主要涉及內(nèi)質(zhì)網(wǎng)應(yīng)激1型跨膜蛋白激酶α (endoplasmic reticulum stress type 1 transmembrane protein kinase α,IRE1α)/X盒結(jié)合蛋白1 (X-box binding protein 1,XBP-1)通路的內(nèi)質(zhì)網(wǎng)應(yīng)激可能在SCH期間誘導(dǎo)葡萄糖代謝異常和胰島素抵抗中發(fā)揮關(guān)鍵作用[38]。內(nèi)質(zhì)網(wǎng)應(yīng)激啟動后,結(jié)合免疫球蛋白從應(yīng)激傳感器IRE1α上解離,導(dǎo)致其通過反式自磷酸化激活,催化細(xì)胞質(zhì)中XBP-1的切除,形成XBP-1的激活模式,從而觸發(fā)未折疊蛋白反應(yīng)。激活的IRE1α可刺激應(yīng)激活化蛋白激酶和胰島素受體底物1的磷酸化,進而抑制胰島素作用,導(dǎo)致胰島素抵抗[40]。HT除致胰島素抵抗外,還可造成胰島素分泌缺陷,對HT狀態(tài)下大鼠離體胰島的研究發(fā)現(xiàn)胰島素分泌減少,可能由葡萄糖轉(zhuǎn)運蛋白2和葡萄糖激酶功能水平下降所致[41]。一項對大鼠胰島素分泌減少的研究發(fā)現(xiàn)另一可能原因為過度氧化應(yīng)激和抗氧化防御系統(tǒng)惡化,導(dǎo)致β細(xì)胞質(zhì)量和胰島素生物合成減少,并改變胰島素分泌途徑中一些關(guān)鍵物質(zhì)(包括葡萄糖激酶)的功能[42]。從機制方面講HT不僅可引發(fā)1型糖尿病也可引發(fā)2型糖尿病,所以仍需進一步研究防治HT導(dǎo)致的糖尿病。
2 小結(jié)與展望
近年來,中國的HT患病率呈上升趨勢,無論是自身免疫性疾病還是甲狀腺手術(shù)等因素所致,均需終身治療。替代治療是其主要且簡單有效的治療方式,可起到維持正常生理活動的作用。但不能完全消除并發(fā)癥,甚至可造成某些器官不可逆損傷;HT對機體各系統(tǒng)的主要器官組織細(xì)胞有不同的影響,且影響的原因和機制各不相同,還有很多機制尚未被闡明,如HT或SCH導(dǎo)致心肌萎縮的機制。因此,HT對人體的負(fù)面影響機制仍需進一步研究。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻]
[1] HAJJE G, SALIBA Y, ITANI T, et al. Hypothyroidism and its rapid correction alter cardiac remodeling[J]. PLoS ONE, 2014, 9(10): e109753.
[2] MENG Y, ZHAO T, ZHANG Z Y, et al. Association between sub-clinical hypothyroidism and heart failure with preserved ejection fraction[J]. Chin Med J (Engl), 2020, 133(3): 364-366.
[3] VETTER R, REHFELD U, REISSFELDER C, et al. Decreased cardiac SERCA2 expression, SR Ca uptake, and contractile function in hypothyroidism are attenuated in SERCA2 overexpressing transgenic rats[J]. Am J Physiol Heart Circ Physiol, 2011, 300(3): 943–950.
[4] MONTALVO D, PéREZ-TREVI?O P, MADRAZO-AGUIRRE K, et al. Underlying mechanism of the contractile dysfunction in atrophied ventricular myocytes from a murine model of hypothyroidism[J]. Cell Calcium, 2018, 72: 26–38.
[5] DONG J, GAO C, LIU J, et al. TSH inhibits SERCA2a and the PKA/PLN pathway in rat cardiomyocytes[J]. Oncotarget, 2016, 7(26): 39207–39215.
[6] CHEN X, GAO C, GONG N, et al. The change of left ventricular function in rats with subclinical hypothyroid and the effects of thyroxine replacement[J]. Int J Endocrinol, 2018, 2018: 8682765.
[7] ZHANG S, LI R, MA Y, et al. Thyroid-stimulating hormone regulates cardiac function through modulating HCN2 via targeting microRNA-1a[J]. FASEB J, 2022, 36(10): e22561.
[8] BEKIARIDOU A, KARTAS A, MOYSIDIS DV, et al. The bidirectional relationship of thyroid disease and atrial fibrillation: Established knowledge and future considerations[J]. Rev Endocr Metab Disord, 2022, 23(3): 621–630.
[9] SOUZA D S, MARQUES L P, COSTA A D, et al. Experimental hypothyroidism induces cardiac arrhythmias and ranolazine reverts and prevents the phenotype[J]. Life Sci, 2022, 308: 120945.
[10] FERNANDEZ-RUOCCO J, GALLEGO M, RODRIGUEZ-DE-YURRE A, et al. High thyrotropin is critical for cardiac electrical remodeling and arrhythmia vulnerability in hypothyroidism[J]. Thyroid, 2019, 29(7): 934–945.
[11] MOON J H, KIM H J, KIM H M, et al. Decreased expression of hepatic low-density lipoprotein receptor-related protein 1 in hypothyroidism: A novel mechanism of atherogenic dyslipidemia in hypothyroidism[J]. Thyroid, 2013, 23(9): 1057–1065.
[12] LIU H, PENG D. Update on dyslipidemia in hypothyroidism: The mechanism of dyslipidemia in hypothyroidism[J]. Endocr Connect, 2022, 11(2): e210002.
[13] YANG C, LU M, CHEN W, et al. Thyrotropin aggravates atherosclerosis by promoting macrophage inflammation in plaques[J]. J Exp Med, 2019, 216(5): 1182–1198.
[14] YANG Y, JIA Y, NING Y, et al. TAK1-AMPK pathway in macrophages regulates hypothyroid atherosclerosis[J].Cardiovasc Drugs Ther, 2021, 35(3): 599–612.
[15] WANG P, XU T Y, GUAN Y F, et al. Vascular smooth muscle cell apoptosis is an early trigger for hypothyroid atherosclerosis[J]. Cardiovasc Res, 2014, 102(3): 448–459.
[16] PIANTANIDA E, IPPOLITO S, GALLO D, et al. The interplay between thyroid and liver: Implications for clinical practice[J]. J Endocrinol Invest, 2020, 43(7): 885–899.
[17] CHALASANI N, YOUNOSSI Z, LAVINE J E, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American association for the study of liver diseases[J]. Hepatology, 2018, 67(1): 328.
[18] FERRANDINO G, KASPARI R R, SPADARO O, et al. Pathogenesis of hypothyroidism-induced NAFLD is driven by intra-and extrahepatic mechanisms[J]. Proc Natl Acad Sci U S A, 2017, 114(43): E9172–E9180.
[19] WANG Y, YU X, ZHAO Q Z, et al. Thyroid dysfunction, either hyper or hypothyroidism, promotes gallstone formation by different mechanisms[J]. J Zhejiang Univ Sci B, 2016, 17(7): 515–525.
[20] GOULART-SILVA F, PESSOA A F M, COSTA R G F, et al.Effect of thyroid hormones on rat exocrine pancreas morphology and function[J]. Life Sci, 2020, 245: 117385.
[21] AGHAJANIAN P, XING W, CHENG S, et al. Epiphyseal bone formation occurs via thyroid hormone regulation of chondrocyte to osteoblast transdifferentiation[J]. Sci Rep, 2017, 7(1): 10432.
[22] ZHU S, PANG Y, XU J, et al. Endocrine regulation on bone by thyroid[J]. Front Endocrinol, 2022, 13: 873820.
[23] SINDONI A, RODOLICO C, PAPPALARDO M A, et al. Hypothyroid myopathy: A peculiar clinical presentation of thyroid failure. Review of the literature[J]. Rev Endocr Metab Disord, 2016, 17(4): 499–519.
[24] LESMANA R, SINHA R A, SINGH B K, et al. Thyroid hormone stimulation of autophagy is essential for mitochondrial biogenesis and activity in skeletal muscle[J]. Endocrinology, 2016, 157(1): 23–38.
[25] WENG X, MA X, WANG Q, et al. Effect of hypothyroidism on CYP51 and FSHR expression in rat ovary[J]. Theriogenology, 2019, 138: 145–151.
[26] LIU J, TIAN Y, DING Y, et al. Role of CYP51 in the regulation of T3and FSH-induced steroidogenesis in female mice[J].Endocrinology, 2017, 158(11): 3974–3987.
[27] MENG L, RIJNTJES E, SWARTS H J M, et al. Prolonged hypothyroidism severely reduces ovarian follicular reserve in adult rats[J]. J Ovarian Res, 2017, 10: 19.
[28] RODRíGUEZ-CASTELáN J, DEL MORAL-MORALES A, PI?A-MEDINA A G, et al. Hypothyroidism induces uterine hyperplasia and inflammation related to sex hormone receptors expression in virgin rabbits[J]. Life Sci, 2019, 230: 111–120.
[29] KOWALCZYK-ZIEBA I, STASZKIEWICZ-CHODOR J, BORUSZEWSKA D, et al. Hypothyroidism affects uterine function via the modulation of prostaglandin signaling[J]. Animals (Basel), 2021, 11(9): 2636.
[30] SARKAR D, SINGH S K. Neonatal hypothyroidism affects testicular glucose homeostasis through increased oxidative stress in prepubertal mice: Effects on GLUT3, GLUT8 and Cx43[J]. Andrology, 2017, 5(4): 749–762.
[31] YAO Y, CHANG X, WANG D, et al. Roles of ERK1/2 and PI3K/AKT signaling pathways in mitochondria-mediated apoptosis in testes of hypothyroid rats[J]. Toxicol Res (Camb), 2018, 7(6): 1214–1224.
[32] LIU C R, MIAO J, ZHANG Y L, et al. Effects of hypothyroidism on expression of CRMP2B and ARPC5 during development of the rat frontal cortex[J]. Int J Biol Sci, 2013, 9(2): 209–218.
[33] MISHRA J, VISHWAKARMA J, MALIK R, et al. Hypothyroidism induces interleukin-1-dependent autophagy mechanism as a key mediator of hippocampal neuronal apoptosis and cognitive decline in postnatal rats[J]. Mol Neurobiol, 2021, 58(3): 1196–1211.
[34] SALAZAR P, CISTERNAS P, CODOCEDO J F, et al. Induction of hypothyroidism during early postnatal stages triggers a decrease in cognitive performance by decreasing hippocampal synaptic plasticity[J]. Biochim Biophys Acta Mol Basis Dis, 2017, 1863(4): 870–883.
[35] TORRES-MANZO A P, FRANCO-COLíN M, BLAS-VALDIVIA V, et al. Hypothyroidism causes endoplasmic reticulum stress in adult rat hippocampus: A mechanism associated with hippocampal damage[J]. Oxid Med Cell Longev, 2018, 2018: 2089404.
[36] CAMM E J, INZANI I, DE BLASIO M J, et al. Thyroid hormone deficiency suppresses fetal pituitary–Adrenal function near term: Implications for the control of fetal maturation and parturition[J]. Thyroid, 2021, 31(6): 861–869.
[37] PATYRA K, L?F C, JAESCHKE H, et al. Congenital hypothyroidism and hyperthyroidism alters adrenal gene eJGZWc0Pm6/6/kQaw1VOgk3bTvk/FhASE67OvZoa0Ng8=xpression, development, and function[J]. Thyroid, 2022, 32(4): 459–471.
[38] GRONICH N, DEFTEREOS S N, LAVI I, et al. Hypothyroidism is a risk factor for new-onset diabetes: A cohort study[J]. Diabetes Care, 2015, 38(9): 1657–1664.
[39] YANG W, JIN C, WANG H, et al. Subclinical hypothyroidism increases insulin resistancein normoglycemic people[J]. Front Endocrinol (Lausanne), 2023, 14: 1106968.
[40] XU C, ZHOU L, WU K, et al. Abnormal glucose metabolism and insulin resistance are induced via the IRE1α/XBP-1 pathway in subclinical hypothyroidism[J]. Front Endocrinol (Lausanne), 2019, 10: 303.
[41] GODINI A, GHASEMI A, ZAHEDIASL S. The possible mechanisms of the impaired insulin secretion in hypothyroid rats[J]. PLoS One, 2015, 10(7): e0131198.
[42] SAFAYEE S, KARBALAEI N, NOORAFSHAN A, et al.Induction of oxidative stress, suppression of glucose-induced insulin release, ATP production, glucokinase activity, and histomorphometric changes in pancreatic islets of hypothyroid rat[J]. Eur J Pharmacol, 2016, 791: 147–156.
(收稿日期:2024–04–23)
(修回日期:2024–09–11)