【摘要】 目的 探討80 kV深度學(xué)習(xí)圖像重建(DLIR)算法在冠狀動脈CT血管造影(CCTA)中的應(yīng)用價值。方法 將接受心臟CCTA檢查的60例患者按掃描方案分為100 kV組(A組,n = 30)和80 kV組(B組,n = 30)。A組采用60% 權(quán)重自適應(yīng)統(tǒng)計迭代重建-Veo(ASIR-V)算法(A-AV60)、DLIR算法(A-DLIR);B組采用DLIR算法(B-DLIR)。記錄2組的CT容積劑量指數(shù)(CTDIvol)、劑量長度乘積(DLP),計算有效輻射劑量(ED)。將感興趣區(qū)(ROI)分別置于主動脈根(AR)、左前降支(LAD)、左回旋支(LCX)、右冠狀動脈(RCA)及同層胸前脂肪區(qū)域,記錄各ROI的CT值、噪聲值,計算信噪比(SNR)和對比噪聲比(CNR)。主觀評價2組經(jīng)2代凍結(jié)技術(shù)后的原始軸位、曲面重建(CPR)、容積再現(xiàn)(VR)重建和最大強度投影(MIP)重建,并且對2組圖像進行主觀質(zhì)量評價。結(jié)果 B組較A組ED降低45.14%。B-DLIR中AR、LAD、LCX、RCA的CT值均高于A-AV60及A-DLIR,比較差異均有統(tǒng)計學(xué)意義(P均< 0.001)。A-DLIR與B-DLIR相比,AR、LAD、LCX的噪聲值相近,僅在RCA中比較差異有統(tǒng)計學(xué)意義(P < 0.05);A-DLIR與B-DLIR的噪聲值均小于A-AV60,比較差異均有統(tǒng)計學(xué)意義(P均< 0.001)。A-DLIR與B-DLIR中AR、LAD、LCX、RCA的SNR、CNR相近,均高于A-AV60(P均< 0.05)。B-DLIR主觀圖像質(zhì)量平均分高于A-AV60(P < 0.05),但低于A-DLIR(P < 0.05)。A-DLIR與B-DLIR的清晰度、偽影、小分支可見度比較差異均無統(tǒng)計學(xué)意義(P均> 0.05)。結(jié)論 在CCTA檢查中,采用80 kV DLIR算法有助于獲得質(zhì)量更優(yōu)的圖像,進一步提高診斷效能,且可減少有效輻射劑量。
【關(guān)鍵詞】 深度學(xué)習(xí)圖像重建;自適應(yīng)統(tǒng)計迭代重建;冠狀動脈CT血管造影;信噪比;對比噪聲比
Application of CCTA under 80 kV tube voltage based on deep learning image reconstruction algorithm
XIANG Qing, CAO Jian, LUO Tao, ZHU Xuan, QIN Jie, GUO Yahao , LI Chao
(Department of Radiology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China)
Corresponding author: GUO Yahao, E-mail: guoyh65@mail.sysu.edu.cn
【Abstract】 Objective To explore the application value of 80 kV deep learning image reconstruction (DLIR) algorithm in coronary CT angiography (CCTA). Methods Sixty patients who underwent CCTA were divided into two groups based on the scanning protocols: 100 kV group (Group A, n = 30) and 80 kV group (Group B, n = 30). In Group A, 60% ASIR-V (A-AV60) and DLIR high-level reconstruction (A-DLIR) was adopted. In Group B, DLIR high-level reconstruction (B-DLIR) was employed. The CT volumetric dose index (CTDIvol) and the dose length product (DLP) were recorded in both groups, and the effective dose (ED) was calculated. Regions of interest (ROI) were placed in the aortic root (AR), left anterior descending coronary artery (LAD), left circumflex coronary artery (LCX), right coronary artery (RCA), and the same-layer pectoral fat area. The CT values and noise values of each ROI were recorded. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. Subjective evaluation was performed on the original axis, curved planar reconstruction (CPR), volume rendering (VR), and maximum intensity projection (MIP) reconstructions after the second-generation freeze technology (Snapshot Freeze 2, SSF-2), and the images in two groups were subject to subjective image quality evaluation. Results The ED in Group B was reduced by 45.14% compared to that in Group A. The CT values for AR, LAD, LCX, and RCA in the B-DLIR were higher than those in the A-AV60 and A-DLIR groups, and the differences were statistically significant (all P < 0.001). The noise values for AR, LAD and LCX were similar, whereas statistical significance was observed in RCA between the A-DLIR and B-DLIR groups (P < 0.05). The noise values in the A-DLIR and B-DLIR groups were smaller than that in the A-AV60 group, and the differences were statistically significant (both P < 0.001). The SNR and CNR for AR, LAD, LCX and RCA were similar between the A-DLIR and B-DLIR groups, which were higher than those in the A-AV60 group (all P < 0.05). The average subjective evaluation score of image quality in the B-DLIR group was higher than that in the A-AV60 group (P < 0.05), whereas lower than that in the A-DLIR group (P < 0.05). There were no significant differences in clarity, artifact and small branch visibility between the A-DLIR and B-DLIR groups (all P > 0.05). Conclusions During CCTA, the 80 kV DLIR algorithm contributes to yielding high-quality images, further improves the diagnostic efficiency and reduces the irradiation dose.
【Key words】 Deep learning image reconstruction; Adaptive statistical iterative reconstruction ; Coronary CT angiography; Signal-to-noise ratio; Contrast-to-noise ratio
動脈粥樣硬化是一種發(fā)病率和病死率均非常高的全身性疾病,最常見表現(xiàn)為冠狀動脈疾病 (coronary artery disease,CAD)[1]。數(shù)字減影血管造影(digital subtraction angiography,DSA)是診斷動脈粥樣硬化的金標準,但具有一定的創(chuàng)傷性,患者需要長時間暴露于射線,且操作方法復(fù)雜,費用較高[2]。冠狀動脈計算機斷層掃描血管造影(coronary computed tomographic angiogram,CCTA)具有侵入性小、檢查時間短以及可用性、準確性高的優(yōu)點[3],已經(jīng)成為診斷心血管疾病的主要手段[4-6]。目前已經(jīng)出現(xiàn)了幾種迭代重建(iterative reconstruction,IR)算法可以有效降低圖像噪聲,提高圖像質(zhì)量?,F(xiàn)階段最常用的自適應(yīng)統(tǒng)計迭代重建-Veo(adaptive statistical iterative reconstruction-Veo,ASIR-V)算法在較低輻射劑量下可提供比傳統(tǒng)迭代重建更好的圖像質(zhì)量[7-8]。但仍存在與 ASIR算法相同的不足,包括高權(quán)重下改變噪聲紋理,圖像具有蠟狀、塑料外觀或點狀不自然的外觀[9]。
近年來,一種基于深度學(xué)習(xí)圖像重建(deep learning image reconstruction,DLIR)的算法出現(xiàn),深度學(xué)習(xí)是機器學(xué)習(xí)的一個子集,兩者均為人工智能(artificial intelligence,AI)的子集。機器學(xué)習(xí)可以從數(shù)據(jù)、模式和特征中學(xué)習(xí),以便在最少的人工干預(yù)下做出決策;深度學(xué)習(xí)利用了深度神經(jīng)網(wǎng)絡(luò)(deep neural network,DNN)來完成機器學(xué)習(xí)所做的相同任務(wù)。DNN由多層數(shù)學(xué)方程組成,無論是線性關(guān)系還是非線性關(guān)系,它都可以找到正確的數(shù)學(xué)操作步驟將輸入轉(zhuǎn)化為輸出。深度學(xué)習(xí)的強大之處在于其處理復(fù)雜模型和大量參數(shù)的能力遠遠超過了人類工程師和科學(xué)家[10]。深度學(xué)習(xí)應(yīng)用于CCTA可獲得良好的圖像質(zhì)量[11]。目前已出現(xiàn)不少關(guān)于DLIR結(jié)合低輻射劑量的研究,其中采用100 kV管電壓的CCTA的研究結(jié)論也被廣泛認可[12]。考慮到圖像對密度分辨率的要求,100 kV
被認為是CCTA所用電壓的極限,本研究團隊設(shè)計了低管電壓80 kV結(jié)合DLIR算法的更低劑量的掃描方案,探討其應(yīng)用價值。
1 對象與方法
1.1 研究對象
研究對象為2023年2月至7月在我科接受心臟CCTA檢查的60例患者,其中男35例、女25例,年齡55(31~88)歲。納入標準:年齡>18歲;有臨床疾病需要行CCTA增強檢查。排除標準:碘對比劑過敏;孕婦;有腎功能不全、心力衰竭、肝功能不全、甲狀腺功能亢進、影響數(shù)據(jù)測量的其他情況。根據(jù)掃描方案將60例患者分為100 kV方案組(A組)和80 kV 方案組(B組)各30例(保證體脂均衡)。本研究通過我院倫理委員會的批準(批件號:中大附三醫(yī)倫Ⅱ2024-048-01),患者均簽署知情同意書。
1.2 CT掃描方案
采用512層CT掃描儀(Revolution Apex)進行CCTA檢查,患者在CCTA檢查前舌下含服
0.5 mg 硝酸甘油以適當(dāng)擴張血管。患者取仰臥位,檢查前對其盆腔進行常規(guī)防護。
1.2.1 掃描方案
1)A組掃描方案。采用心臟容積模式(Cardiac)。電壓模式:Manual、100 kV,電流模式:Manual、750 mA,平均電流:488 mA,轉(zhuǎn)速:0.28 s/r、前置50% ASIR-V,重建算法:標準算法,探測器寬度:160 mm,螺距:0.992,掃描層厚:2.5 mm,掃描時長:0.42 s,無需憋氣(one beat)。
2)B組掃描方案。采用心臟容積模式(Cardiac)。電壓模式:Manual、80 kV,電流模式:Manual、750 mA,平均電流:488 mA,轉(zhuǎn)速:
0.28 s/r、前置50% ASIR-V,重建算法:標準算法,探測器寬度:160 mm,螺距:0.992,掃描層厚:2.5 mm,掃描時長:0.42 s,無需憋氣(one beat)。
2組均使用閾值觸發(fā)技術(shù),將感興趣區(qū)(region
of interest,ROI)置于降主動脈,觸發(fā)閾值設(shè)置為65 HU,掃描范圍自氣管分叉下1 cm至橫隔,以智能心電門控自動選擇曝光時相。采用2代凍結(jié)技術(shù)(snapshot freezing,SSF-2)對圖像進行運動校正。
1.2.2 注射方案
采用雙筒高壓注射器經(jīng)肘正中靜脈以5 mL/s
流率注射碘佛醇(Iversol 350)造影劑,總量為60 mL,2組均在注入對比劑后再注入生理鹽水
30 mL。
1.3 圖像重建
將60例患者原始數(shù)據(jù)傳輸至AW4.7后處理工作站進行重建,層厚、層間距0.625 mm。A組采用60% 權(quán)重ASIR-V算法及A-DLIR算法,B組采用B-DLIR算法。最后對2組圖像進行冠狀動脈的容積再現(xiàn)(volume rendering,VR)、最大強度投影(maximum intensity projection,MIP)重建以及曲面重建(curved planar reformation,CPR)。對A組60%權(quán)重ASIR-V算法(A-AV60)、A組DLIR算法(A-DLIR)和B組DLIR算法(B-DLIR)共3種方案的圖像重建質(zhì)量進行評價。
1.4 圖像重建質(zhì)量評價
1.4.1 客觀圖像質(zhì)量分析
由2名具有4年工作經(jīng)驗的醫(yī)學(xué)影像技師采用輪流監(jiān)督的方法確??陀^圖像勾畫準確,勾畫原則:放大后軸面勾畫、避開血管壁,取3次的平均,見圖1。出現(xiàn)分歧時由具有17年工作經(jīng)驗的醫(yī)學(xué)影像副主任技師實施最終勾畫方案,讀取數(shù)據(jù)。將ROI分別置于主動脈根(aortic root,AR)、左前降支(left anterior descending coronary artery,LAD)、左回旋支(left circumflex coronary artery,LCX)、右冠狀動脈(right coronary artery,RCA)及同層胸前脂肪密度較均勻的區(qū)域內(nèi),記錄各ROI的CT值及噪聲值。參照測量層上下滾動測量3次,取3次平均值作為最終結(jié)果,計算各血管的信噪比(signal-to-noise ratio,SNR)和對比噪聲比(contrast-to-noise ratio,CNR)。
1.4.2 主觀圖像質(zhì)量分析
由2名分別具有16年和18年工作經(jīng)驗的放射科醫(yī)師通過對冠狀動脈3個主要分支:RCA、LAD、LCX的原始軸位圖像、VR圖、MIP圖及CPR圖進行5個因素的評分,包括清晰度、偽影、噪聲、小分支可見度、診斷可信度。對每個因素采用 5 分評分法,見表1。5個因素平均得分2~5分被視為滿足診斷需求,分析2名放射科醫(yī)師的評價一致性[13]。2名放射科醫(yī)師均不知道患者信息和重建方法。
1.5 有效輻射劑量
記錄2組的容積CT劑量指數(shù)(volume CT dose index,CTDIvol)、劑量長度乘積(dose length product,DLP),并計算有效輻射劑量(effective dose,ED),冠狀動脈的ED轉(zhuǎn)換因子為0.014 mSv/(mGy·cm)。
1.6 統(tǒng)計學(xué)方法
采用SPSS 27.0進行統(tǒng)計分析 ,正態(tài)分布計量資料用表示,2組比較采用獨立樣本t檢驗,組內(nèi)比較采用配對t檢驗;計數(shù)資料用n(%)表示,比較采用χ 2檢驗。具體為A組與B組患者年齡、身高、體質(zhì)量、體質(zhì)量指數(shù)(body mass index,BMI)、CTDIvol、DLP和ED的比較采用獨立樣本t檢驗,性別比較采用χ 2檢驗;客觀圖像質(zhì)量評價指標中A-AV60和A-DLIR 2種算法之間的比較采用配對t檢驗,A-DLIR和B-DLIR 2種算法之間以及A-AV60和B-DLIR 2種算法之間的比較均采用獨立樣本t檢驗。采用Kappa檢驗分析2位放射科醫(yī)師主觀評分的一致性,Kappa值≤0.2為一致性程度很差,0.2 < Kappa值≤0.4為一致性程度一般,0.4 <Kappa值≤0.6為一致性程度中等,0.6 < Kappa值≤0.8為一致性程度較強,Kappa > 0.8為一致性程度很強。雙側(cè)P < 0.05表示差異有統(tǒng)計學(xué)意義。
2 結(jié) 果
2.1 一般資料
2組的年齡、BMI具可比性(P均> 0.05),但CTDIvol、DLP、ED等比較差異均有統(tǒng)計學(xué)意義(P均< 0.05),見表2。B組較A組ED降低45.14%。
2.2 客觀圖像質(zhì)量評價
B-DLIR中AR、LAD、LCX、RCA的CT值均高于A-AV60及A-DLIR,比較差異均有統(tǒng)計學(xué)意義(P均< 0.001)。A-DLIR與B-DLIR相比,AR、LAD、LCX的噪聲值相近,僅在RCA中比較差異有統(tǒng)計學(xué)意義(P < 0.05);A-DLIR與B-DLIR的SD均小于A-AV60,比較差異均有統(tǒng)計學(xué)意義(P均< 0.001)。A-DLIR與B-DLIR中AR、LAD、LCX、RCA的SNR、CNR相近,均高于A-AV60(P均< 0.05)。B-DLIR在客觀圖像評價中更具優(yōu)勢。
2.3 主觀圖像質(zhì)量評價
2名放射科醫(yī)師主觀圖像質(zhì)量評價有較強的一致性(Kappa=0.926,P < 0.001)。B-DLIR主觀圖像質(zhì)量平均分高于A-AV60(P < 0.05),但低于A-DLIR(P < 0.05)。A-DLIR與B-DLIR的清晰度、偽影、小分支可見度比較差異均無統(tǒng)計學(xué)意義(P均>0.05)
3 討 論
隨著我國人口老齡化的加劇,動脈粥樣硬化發(fā)病率逐漸上升,及早診斷對于控制病程進展成為重要。CCTA是冠狀動脈粥樣硬化性心臟?。ü谛牟。┑某R?guī)檢查方法之一,有助于正確診斷[13-14]。
盡管CCTA在解剖描述方面表現(xiàn)出色,也在功能預(yù)測方面具有巨大潛力,但輻射隱患仍然存在[15-20]。
目前常用低電壓、自動管電流調(diào)制、大螺距、ASIR-V、縮小Z軸長度(減少無效掃描層面)等方法來降低CCTA輻射劑量[21-23]。然而,降低有效輻射劑量會直接影響CCTA的圖像質(zhì)量,因此,如何在低電壓下保持甚至提高診斷圖像質(zhì)量是一個重大的技術(shù)挑戰(zhàn)。
在 CCTA 掃描期間,鈣化斑塊會導(dǎo)致圖像出現(xiàn)2種類型的偽影,一種是光暈偽影,另一種是射線束偽影。有研究者比較了IR算法與濾波反投影(filtered back projection,F(xiàn)BP)重建算法對嚴重鈣化血管的評估,結(jié)果表明,與FBP重建算法相比,IR算法的診斷準確性更高,這與其降低了圖像的噪聲和偽影有關(guān)[24]。但目前常用的ASIR-V算法仍存在圖像具有蠟狀、塑料外觀或點狀不自然的偽影等缺點[25-26]。DLIR算法隨人工智能的發(fā)展而出現(xiàn),其被應(yīng)用于低劑量CT中,能有效降低圖像噪聲[27],在不改變圖像紋理的同時提高空間分辨率[28],從而提高圖像質(zhì)量。DLIR算法在診斷準確性、敏感性和特異性方面與IR算法相當(dāng)[10]。
基于既往研究在CCTA中使用60%權(quán)重的ASIR-V算法的圖像質(zhì)量最佳的結(jié)論[29],本研究將使用60%權(quán)重的ASIR-V算法與DLIR算法進行比較。此外,本研究進一步探討了DLIR算法更低輻射的可行性,進一步降低電壓至80 kV[12]。結(jié)果顯示與100 kV方案相比,80 kV DLIR算法的表現(xiàn)更出色,在主觀圖像質(zhì)量評分中,盡管B-DLIR平均得分低于A-DLIR,但其中3個因素兩者比較差異沒有統(tǒng)計學(xué)意義。既往研究顯示,在腹部CT和CT尿路造影中使用DLIR算法能減少有效輻射劑量,提高圖像質(zhì)量[30-31],這與本研究的結(jié)論一致,使用DLIR算法可以彌補低輻射劑量所致的噪聲增加的缺點,并且可在低噪聲下避免ASIR-V算法高權(quán)重出現(xiàn)的塑料、玻璃樣偽影。
本研究有以下突破點:第一,DLIR算法可以降低CCTA檢查的有效輻射劑量,減少輻射暴露,此外采用了更低的電壓80 kV。第二,DLIR算法可以有效地降低圖像噪聲,提高整體圖像質(zhì)量,且在臨床可診斷的低劑量輻射水平下保持FBP樣噪聲紋理,不影響解剖和病理結(jié)構(gòu)[32],更低劑量并沒有降低圖像質(zhì)量。第三,在提高末端血管的顯示及清晰度方面,低劑量高權(quán)重的ASIR-V算法降噪后會出現(xiàn)蠟狀或點狀紋理,降低了低對比度物體的分辨率,使得小血管末端顯示不佳,而DLIR算法可以在不改變圖像紋理的情況下提高空間分辨率,因此對血管細小分支顯示良好[26]。本研究初步證實了對于高空間分辨率的血管疾病,DLIR算法的診斷優(yōu)勢明顯,這與同樣屬于高空間分辨率的結(jié)石的診斷效果相同[31]。
本研究存在一定局限性:第一,樣本量較少,需要在后續(xù)臨床工作中擴大樣本量,進一步探討DLIR算法在提高CCTA診斷性能方面的作用。第二,基于前人的結(jié)論,未開展其他權(quán)重ASIR-V算法和DLIR算法低、中、高級別的交叉比較,在以后的工作中將會嘗試比較多重權(quán)重的效果。第三,未討論不同BMI對輻射劑量、圖像質(zhì)量的影響。第四,未獨立評價病變血管的評分差異,例如未將斑塊、狹窄的評級歸納到清晰度、噪聲的評價中,這需要在未來的研究中針對病變血管進行Gensini評分。
綜上所述,在CCTA檢查中,采用80 kV的DLIR算法方案有助于獲得質(zhì)量更優(yōu)的圖像,從而進一步提高診斷效能,且可減少輻射量。
參 考 文 獻
[1] 車小雙, 魏里, 賈惠娟, 等. 冠脈CTA聯(lián)合能譜雙下肢CTA檢查在多血病變患者中的可行性研究[J]. 中國CT和MRI雜志, 2022, 20(9): 86-88. DOI: 10.3969/j.issn.1672-
5131.2022.09.032.
CHE X S, WEI L, JIA H J, et al. Feasibility study of coronary CTA combined with lower limb dual energy angiography in patients with arterial disease[J]. Chin J CT MRI, 2022, 20(9): 86-88. DOI: 10.3969/j.issn.1672-5131.2022.09.032.
[2] MOHANKUMAR S P, DAS S, LIKITHA P, et al. Kawasaki disease or polyarteritis nodosa: coronary involvement, a diagnostic conundrum[J]. Rheumatol Int, 2023, 43(12): 2327-2331. DOI: 10.1007/s00296-023-05388-1.
[3] ANTONOPOULOS A S, SIMANTIRIS S. Preventative imaging with coronary computed tomography angiography[J]. Curr Cardiol Rep, 2023, 25(11): 1623-1632. DOI: 10.1007/s11886-023-01982-8.
[4] ABDELRAHMAN K M, CHEN M Y, DEY A K, et al. Coronary computed tomography angiography from clinical uses to emerging technologies: JACC state-of-the-art review[J]. J Am Coll Cardiol, 2020, 76(10): 1226-1243. DOI: 10.1016/j.jacc.2020.06.076.
[5] VAN DRIEST F Y, BIJNS C M, VAN DER GEEST R J, et al. Utilizing (serial) coronary computed tomography angiography (CCTA) to predict plaque progression and major adverse cardiac events (MACE): results, merits and challenges[J]. Eur Radiol, 2022, 32(5): 3408-3422. DOI: 10.1007/s00330-021-08393-9.
[6] STOCKER T J, NüHLEN N, SCHMERMUND A, et al. Impact of dose reduction strategies on image quality of coronary CTA in real-world clinical practice: a subanalysis of PROTECTION VI registry data[J]. AJR Am J Roentgenol, 2021, 217(6): 1344-1352. DOI: 10.2214/AJR.21.26007.
[7] M?RUP S D, STOWE J, KUSK M W, et al. The impact of ASiR-V on abdominal CT radiation dose and image quality: a phantom study[J]. J Med Imaging Radiat Sci, 2022, 53(3): 453-459. DOI: 10.1016/j.jmir.2022.06.008.
[8] ZHAO Y, LI D, LIU Z, et al. Comparison of image quality and radiation dose using different pre-ASiR-V and post-ASiR-V levels in coronary computed tomography angiography[J]. J Xray Sci Technol, 2021, 29(1): 125-134. DOI: 10.3233/XST-200754.
[9] JIANG B, LI N, SHI X, et al. Deep learning reconstruction shows better lung nodule detection for ultra-low-dose chest
CT[J]. Radiology, 2022, 303(1): 202-212. DOI: 10.1148/radiol.210551.
[10] ZHONG J, SHEN H, CHEN Y, et al. Evaluation of image quality and detectability of deep learning image reconstruction (DLIR) algorithm in single- and dual-energy CT[J]. J Digit Imaging, 2023, 36(4): 1390-1407. DOI: 10.1007/s10278-023-00806-z.
[11] WANG M, FAN J, SHI X, et al. A deep-learning reconstruction algorithm that improves the image quality of low-tube-voltage coronary CT angiography[J]. Eur J Radiol, 2022, 146: 110070. DOI: 10.1016/j.ejrad.2021.110070.
[12] WANG H, WANG R, LI Y, et al. Assessment of image quality of coronary computed tomography angiography in obese patients by comparing deep learning image reconstruction with adaptive statistical iterative reconstruction veo[J]. J Comput Assist Tomogr, 2022, 46(1): 34-40. DOI: 10.1097/RCT.0000000000001252.
[13] 張茸禎, 賈敏, 婁豆豆, 等. 合并心血管疾病的高血壓患者強化降壓治療研究進展[J]. 新醫(yī)學(xué), 2024, 55(4): 248-254. DOI: 10.3969/j.issn.0253-9802.2024.04.002.
ZHANG R Z, JIA M, LOU D D, et al. Advances in intensive antihypertensive treatment in hypertensive patients complicated with cardiovascular disease[J]. J New Med, 2024, 55(4): 248-254. DOI: 10.3969/j.issn.0253-9802.2024.04.002.
[14] LI W, HUANG W, LI P, et al. Application of deep learning image reconstruction-high algorithm in one-stop coronary and carotid-cerebrovascular CT angiography with low radiation and contrast doses[J]. Quant Imaging Med Surg, 2024, 14(2): 1860-1872. DOI: 10.21037/qims-23-864.
[15] PAALIM?KI-PAAKKI K, VIRTANEN M, HENNER A, et al. Effects of a 360°virtual counselling environment on patient anxiety and CCTA process time: a randomised controlled trial[J]. Radiography, 2023, 29(Suppl 1): S13-S23. DOI: 10.1016/j.
radi.2022.09.013.
[16] AUPONGKAROON P, MAKARAWATE P, CHAOSUWAN-NAKIT N. Comparison of radiation dose and its correlates between coronary computed tomography angiography and invasive coronary angiography in Northeastern Thailand[J]. Egypt Heart J, 2022, 74(1): 6. DOI: 10.1186/s43044-022-00241-5.
[17] CUNDARI G, DEILMANN P, MERGEN V, et al. Saving contrast media in coronary CT angiography with photon-counting detector CT[J]. Acad Radiol, 2024, 31(1): 212-220. DOI: 10.1016/j.acra.2023.06.025.
[18] NAGAYAMA Y, EMOTO T, KATO Y, et al. Improving image quality with super-resolution deep-learning-based reconstruction in coronary CT angiography[J]. Eur Radiol, 2023, 33(12): 8488-8500. DOI: 10.1007/s00330-023-09888-3.
[19] LI W, DIAO K, WEN Y, et al. High-strength deep learning image reconstruction in coronary CT angiography at 70-kVp tube voltage significantly improves image quality and reduces both radiation and contrast doses[J]. Eur Radiol, 2022, 32(5): 2912-2920. DOI: 10.1007/s00330-021-08424-5.
[20] ZHANG Y, WANG Y, LI J, et al. Refining the radiation and contrast medium dose in weight-grouped scanning protocols for coronary CT angiography[J]. J Appl Clin Med Phys, 2023,
24(7): e14041. DOI: 10.1002/acm2.14041.
[21] KNOTT E A, ROSE S D, WAGNER M G, et al. CT fluoroscopy for image-guided procedures: physician radiation dose during full-rotation and partial-angle CT scanning[J]. J Vasc Interv Radiol, 2021, 32(3): 439-446. DOI: 10.1016/j.jvir.2020.10.033.
[22] ZHOU W, MALAVE M N, MALONEY J A, et al. Radiation dose reduction using spectral shaping in pediatric non-contrast sinus CT[J]. Pediatr Radiol, 2023, 53(10): 2069-2078. DOI: 10.1007/s00247-023-05699-2.
[23] DANKERL P, MAY M S, CANSTEIN C, et al. Cutting staff radiation exposure and improving freedom of motion during CT interventions: comparison of a novel workflow utilizing a radiation protection cabin versus two conventional workflows[J]. Diagnostics (Basel), 2021, 11(6): 1099. DOI: 10.3390/diagnostics11061099.
[24] JEON P H, JEON S H, KO D, et al. Assessment of image quality of coronary CT angiography using deep learning-based CT reconstruction: phantom and patient studies[J]. Diagnostics (Basel), 2023, 13(11): 1862. DOI: 10.3390/diagnostics13111862.
[25] WANG J J, CHI X T, WANG W W, et al. Analysis of contrast-enhanced spectral chest CT optimal monochromatic imaging combined with ASIR and ASIR-V[J]. Eur Rev Med Pharmacol Sci, 2022, 26(6): 1930-1938. DOI: 10.26355/eurrev_202203_28339.
[26] KAGA T, NODA Y, FUJIMOTO K, et al. Deep-learning-based image reconstruction in dynamic contrast-enhanced abdominal CT: image quality and lesion detection among reconstruction strength levels[J]. Clin Radiol, 2021, 76(9): 710.e15-710.710.e24. DOI: 10.1016/j.crad.2021.03.010.
[27] JENSEN C T, LIU X, TAMM E P, et al. Image quality assessment of abdominal CT by use of new deep learning image reconstruction: initial experience[J]. AJR Am J Roentgenol, 2020, 215(1): 50-57. DOI: 10.2214/AJR.19.22332.
[28] LYU P, LI Z, CHEN Y, et al. Deep learning reconstruction CT for liver metastases: low-dose dual-energy vs standard-dose single-energy[J]. Eur Radiol, 2024, 34(1): 28-38. DOI: 10.1007/s00330-023-10033-3.
[29] NAM J G, HONG J H, KIM D S, et al. Deep learning reconstruction for contrast-enhanced CT of the upper abdomen: similar image quality with lower radiation dose in direct comparison with iterative reconstruction[J]. Eur Radiol, 2021, 31(8): 5533-5543. DOI: 10.1007/s00330-021-07712-4.
[30] CHENG Y, HAN Y, LI J, et al. Low-dose CT urography using deep learning image reconstruction: a prospective study for comparison with conventional CT urography[J]. Br J Radiol, 2021, 94(1120): 20201291. DOI: 10.1259/bjr.20201291.
[31] RACINE D, BECCE F, VIRY A, et al. Task-based characterization of a deep learning image reconstruction and comparison with filtered back-projection and a partial model-based iterative reconstruction in abdominal CT: a phantom study[J]. Phys Med, 2020, 76: 28-37. DOI: 10.1016/j.ejmp.2020.06.004.
[32] KAGA T, NODA Y, MORI T, et al. Unenhanced abdominal low-dose CT reconstructed with deep learning-based image reconstruction: image quality and anatomical structure d
epiction[J]. Jpn J Radiol, 2022, 40(7): 703-711. DOI: 10.1007/s11604-022-01259-0.
(責(zé)任編輯:洪悅民)